CN107093640A - 一种离子掺杂的CsPbI2Br薄膜、制备方法及其应用 - Google Patents

一种离子掺杂的CsPbI2Br薄膜、制备方法及其应用 Download PDF

Info

Publication number
CN107093640A
CN107093640A CN201710264822.4A CN201710264822A CN107093640A CN 107093640 A CN107093640 A CN 107093640A CN 201710264822 A CN201710264822 A CN 201710264822A CN 107093640 A CN107093640 A CN 107093640A
Authority
CN
China
Prior art keywords
solution
powder
films
cspb
cspbi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710264822.4A
Other languages
English (en)
Inventor
姜明浩
胡延强
张树芳
苗晓亮
邱婷
白帆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201710264822.4A priority Critical patent/CN107093640A/zh
Publication of CN107093640A publication Critical patent/CN107093640A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0321Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/40Alloying of impurity materials, e.g. doping materials, electrode materials, with a semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种离子掺杂的CsPbI2Br薄膜、制备方法及其应用,所述薄膜化学式为CsPb(1‑x)MnxI2Br,其中0<x<1,优选0.05≤x≤0.5。本发明通过离子掺杂,在空气中就可制备高质量的CsPb(1‑x)MnxI2Br钙钛矿薄膜,可有效避免当前太阳能电池制备的繁琐手套箱操作及昂贵真空蒸发设备投入;通过离子掺杂制备的CsPb(1‑x)MnxI2Br薄膜,其光谱吸收范围得到了很好的扩宽,初次试制的平面异质结钙钛矿电池的效率达9.7%。

Description

一种离子掺杂的CsPbI2Br薄膜、制备方法及其应用
技术领域
本发明属于微电子器件制备领域,涉及一种离子掺杂的无机卤素钙钛矿薄膜、制备及其在光伏领域的应用。
背景技术
有机-无机卤素杂化钙钛矿材料(结构式为ABX3)由于具备可调节的带隙,载流子扩散距离大,磁性以及电介质极化等特性而引起了人们日益增加的关注,并被广泛的应用于太阳能电池,发光二极管,光探测器以及激光等器件应用方面。除此之外,另外一个显著的特点就是这类钙钛矿材料可以在150℃以下通过简单的液相方法制备得到具有高结晶度的纳米颗粒。但是由于有机分子的热稳定性差,在空气中易吸潮等原因,从而导致有机-无机卤素杂化钙钛矿材料极易受热分解。例如,最广泛用作光吸收剂的甲胺铅碘薄膜在85℃以上就会发生热分解,导致钙钛矿结构的瓦解。作为替代,采用更为稳定的无机离子Cs取代MA、FA等有机基团可望解决钙钛矿电池的稳定性问题。
目前通过液相法制备的棕黑色α-相CsPbI3钙钛矿薄膜在室温下的空气中就会迅速转变成黄色δ-相的非钙钛矿结构,导致基于该薄膜电池器件的光伏性能迅速降低。另一方面,通过低成本工艺的制备高质量的CsPbI2Br薄膜的虽然在稳定性方面得到了很大的提高,但是由于纯CsPbI2Br钙钛矿薄膜的带隙为1.82eV,相对于传统的有机-无机钙钛矿材料MAPbI3(带隙约为1.5eV),对光谱的吸收应用范围窄,从而限制了其在太阳能的应用效率。
发明内容
本发明的目的在于提供一种通过向CsPbI2Br钙钛矿薄膜内掺杂锰离子改性,以达到提高其光谱吸收性能及稳定性。
实现本发明目的的技术方案如下:一种离子掺杂的CsPbI2Br薄膜,所述薄膜化学式为CsPb(1-x)MnxI2Br,其中0<x<1,优选0.05≤x≤0.5。
一种离子掺杂的CsPbI2Br薄膜的制备方法,包括如下步骤:
(1)将CsBr溶于DMF溶剂中,并搅拌至CsBr完全溶解制成30~300mg/mL的溶液;
(2)向步骤(1)所得溶液中加入MnI2粉末,并搅拌溶解;继续向溶液中加入PbI2粉末,并于避光条件下搅拌反应,反应充分后即得到含锰离子的CsPb(1-x)MnxI2Br钙钛矿前驱体溶液,其中,MnI2粉末在溶液中的浓度为0.05~0.5mol/L;PbI2粉末在溶液中的浓度为0.95~0.5mol/L;
(3)将步骤(2)所得前驱液滴于基底上,然后旋涂10~40秒;最后再于70~120℃条件下退火处理30~120分钟,然后冷却至室温,即得含锰离子钙钛矿薄膜。
进一步地,步骤(2)中,向步骤(1)所得溶液中加入MnI2粉末,并搅拌30~40分钟溶解;向溶液中加入PbI2粉末,并于避光条件下搅拌反应12~14小时。
进一步地,步骤(3)中,所述的基底是通过在导电玻璃FTO或ITO上旋涂二氧化钛形成。
本发明与现有技术相比,其优势为:
(1)本发明通过离子掺杂,在空气中就可制备高质量的CsPb(1-x)MnxI2Br钙钛矿薄膜,可有效避免当前太阳能电池制备的繁琐手套箱操作及昂贵真空蒸发设备投入;
(2)本发明通过离子掺杂制备的CsPb(1-x)MnxI2Br薄膜,利用储量丰富、无毒且价格低廉的Mn元素取代了对环境有害的Pb元素,大大增加了其商业化的可行性;
(3)本发明通过简单的离子掺杂工艺,使得所制备的CsPb(1-x)MnxI2Br薄膜的光谱吸收范围得到了很好的扩宽,初次试制的平面异质结钙钛矿电池的效率达9.7%,为进一步制备高效的无机钙钛矿电池奠定的基础。
附图说明
图1为制备钙钛矿太阳能电池结构示意图。
图2为传统CsPbI2Br薄膜扫描电镜(SEM)形貌图。
图3为本发明实例1制备CsPb0.75Mn0.25I2Br薄膜扫描电镜(SEM)形貌图。
图4为本发明实例2制备CsPb0.5Mn0.5I2Br薄膜扫描电镜(SEM)形貌图。
图5为传统CsPbI2Br薄膜以及本发明实例1、2制备CsPb(1-x)MnxI2Br薄膜的光吸收图。
图6为基于传统CsPbI2Br薄膜以及本发明实例1、2中制备基于CsPb(1-x)MnxI2Br薄膜的太阳能电池J-V曲线。
具体实施方式
下面结合附图和具体施实例对本发明进行详细的说明。
本发明提供了一种含锰离子钙钛矿薄膜,主要应用于钙钛矿太阳电池方面,其化学式为CsPb(1-x)MnxI2Br。含锰离子钙钛矿薄膜及相关太阳能电池组件的制备过程如下:
一、配制含锰离子钙钛矿前驱体溶液
(1)将CsBr溶于DMF溶剂中,并搅拌30~40分钟至CsBr完全溶解,从而制得30~300mg/mL的溶液;
(2)向步骤(1)所得溶液中加入MnI2粉末,并搅拌溶解。其中,MnI2粉末在溶液中的浓度为0.05~0.5mol/L;
(3)继续向溶液中加入PbI2粉末,并于避光条件下搅拌反应2~14小时,反应充分后即得到含锰离子的CsPb(1-x)MnxI2Br钙钛矿前驱体溶液。其中,PbI2粉末在溶液中的浓度为0.95~0.5mol/L;
二、制备含锰离子钙钛矿薄膜
(1)利用去污剂、丙酮、异丙醇依次清洗衬底材料,直至清洗干净;所述的衬底材料可以是刚性衬底材料(如普通玻璃、硅片、FTO、ITO等等),也可以是柔性衬底材料(如PET);
(2)将清洗好的衬底材料置于紫外臭氧清洗仪中清洗30~60分钟;
(3)将清洗好的衬底材料置于旋涂仪上,然后将含锰离子钙钛矿前驱体溶液100μL~120μL(优选100μL)滴于衬底材料上,并启动旋涂仪,调节其旋涂速度为3000~5000转/秒,且旋涂时间为10~40秒;
(4)将空穴传输材料的有机溶液均匀的旋涂在掺杂改性的无机钙钛矿多晶膜上形成空穴传输材料层,旋涂速度为4000~6000转/秒,且旋涂时间为60~90秒;
(5)使用蒸镀方法,在空穴传输材料层上蒸镀蒸镀金电极层,最终的电池结构如图1所示。
实施例1
当Mn含量为0.25、Pb含量为0.75,其化学式为CsPb0.75Mn0.25I2Br;其相应的SEM、光吸收性能则分别如图3、5所示,最终电池的J-V曲线见图6。
从图4可以看出,当Mn含量为0.25、Pb含量为0.75时,相比于传统的CsPbI2Br薄膜(图2):25%的锰含量的无机钙钛矿薄膜中的晶粒粒径更大,分布也更均匀、致密;根据图5的吸收曲线可以看出,0.25%锰的掺杂也提升了薄膜的吸光性能;另外相对于基于传统的CsPbI2Br薄膜的太阳能电池(效率为7.5%),其电池效率也有很大程度的提高(效率为9.7)。
实施例2
当Mn含量为0.5、Pb含量为0.5,其化学式为CsPb0.5Mn0.5I2Br,其对应的SEM、光吸收性能则分别如图4、5所示,最终电池的J-V曲线见图6。
从图4可以看出,Mn含量为0.5,Pb含量为0.5时,制备的无机钙钛矿薄膜的晶粒粒径分布范围广,覆盖度差,表面存在许多孔洞;根据图5的吸收曲线可以看出,50%锰的掺杂虽然也提升了薄膜的吸光性能,但是相对于25%锰掺杂的提升程度低;另外其电池效率同样的有所提高(效率为8.3),但是仍然低于25%锰掺杂的钙钛矿电池,可能是因为过量的掺杂会导致钙钛矿晶体内部缺陷的大量出现,从而导致电池的性能遭到破坏。

Claims (5)

1.一种离子掺杂的CsPbI2Br薄膜,其特征在于,所述薄膜化学式为CsPb(1-x)MnxI2Br,其中0<x<1。
2.如权利要求1所述的薄膜,其特征在于,0.05≤x≤0.5。
3.如权利要求1或2所述的离子掺杂的CsPbI2Br薄膜的制备方法,其特征在于,包括如下步骤:
(1)将CsBr溶于DMF溶剂中,并搅拌至CsBr完全溶解制成30~300mg/mL的溶液;
(2)向步骤(1)所得溶液中加入MnI2粉末,并搅拌溶解;继续向溶液中加入PbI2粉末,并于避光条件下搅拌反应,反应充分后即得到含锰离子的CsPb(1-x)MnxI2Br钙钛矿前驱体溶液,其中,MnI2粉末在溶液中的浓度为0.05~0.5mol/L;PbI2粉末在溶液中的浓度为0.95~0.5mol/L;
(3)将步骤(2)所得前驱液滴于基底上,然后旋涂10~40秒;最后再于70~120℃条件下退火处理30~120分钟,然后冷却至室温,即得含锰离子钙钛矿薄膜。
4.如权利要求3所述的方法,其特征在于,步骤(2)中,向步骤(1)所得溶液中加入MnI2粉末,并搅拌30~40分钟溶解;向溶液中加入PbI2粉末,并于避光条件下搅拌反应12~14小时。
5.如权利要求3所述的方法,其特征在于,步骤(3)中,所述的基底是通过在导电玻璃FTO或ITO上旋涂二氧化钛形成。
CN201710264822.4A 2017-04-21 2017-04-21 一种离子掺杂的CsPbI2Br薄膜、制备方法及其应用 Pending CN107093640A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710264822.4A CN107093640A (zh) 2017-04-21 2017-04-21 一种离子掺杂的CsPbI2Br薄膜、制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710264822.4A CN107093640A (zh) 2017-04-21 2017-04-21 一种离子掺杂的CsPbI2Br薄膜、制备方法及其应用

Publications (1)

Publication Number Publication Date
CN107093640A true CN107093640A (zh) 2017-08-25

Family

ID=59636989

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710264822.4A Pending CN107093640A (zh) 2017-04-21 2017-04-21 一种离子掺杂的CsPbI2Br薄膜、制备方法及其应用

Country Status (1)

Country Link
CN (1) CN107093640A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108922962A (zh) * 2018-07-24 2018-11-30 湖北大学 一种基于Zr元素掺杂的钙钛矿阻变存储器及其制备方法
CN110047951A (zh) * 2019-03-18 2019-07-23 中国海洋大学 基于过渡金属离子掺杂全无机钙钛矿电池制备及其应用
CN110416333A (zh) * 2019-07-11 2019-11-05 华中科技大学 一种紫外光电探测器及其制备方法
CN111864015A (zh) * 2020-07-29 2020-10-30 陕西师范大学 一种包括阴离子交换层的无机钙钛矿太阳电池及其制备方法
CN112746286A (zh) * 2021-01-22 2021-05-04 南京理工大学 一种碘元素双位点掺杂钙钛矿催化剂材料及其制备方法
CN114686811A (zh) * 2022-03-04 2022-07-01 电子科技大学 基于高通量气相共蒸制备稳定CsPbI2Br无机钙钛矿薄膜的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105702865A (zh) * 2016-04-05 2016-06-22 河北大学 一种金属掺杂钙钛矿薄膜、其制备方法及应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105702865A (zh) * 2016-04-05 2016-06-22 河北大学 一种金属掺杂钙钛矿薄膜、其制备方法及应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
AMIT K. GURIA: ""Doping Mn2+ in Lead Halide Perovskite Nanocrystals: Successes and Challenges"", 《ACS ENERGY LETTERS》 *
DAVID PAROBEK: ""Exciton-to-Dopant Energy Transfer in Mn-Doped Cesium Lead Halide Perovskite Nanocrystals"", 《NANO LETTERS》 *
HUIWEN LIU: ""CsPbxMn1−xCl3 Perovskite Quantum Dots with High Mn Substitution Ratio"", 《ACS NANO》 *
JAE KEUN NAM: ""Potassium Incorporation for Enhanced Performance and Stability of Fully Inorganic Cesium Lead Halide Perovskite Solar Cells"", 《NANO LETTERS》 *
WENYONG LIU: ""Mn2+-Doped Lead Halide Perovskite Nanocrystals with Dual-Color Emission Controlled by Halide Content"", 《JOURNAL OF THE AMERICAN CHEMICAL SOCIETY》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108922962A (zh) * 2018-07-24 2018-11-30 湖北大学 一种基于Zr元素掺杂的钙钛矿阻变存储器及其制备方法
CN110047951A (zh) * 2019-03-18 2019-07-23 中国海洋大学 基于过渡金属离子掺杂全无机钙钛矿电池制备及其应用
CN110416333A (zh) * 2019-07-11 2019-11-05 华中科技大学 一种紫外光电探测器及其制备方法
CN111864015A (zh) * 2020-07-29 2020-10-30 陕西师范大学 一种包括阴离子交换层的无机钙钛矿太阳电池及其制备方法
CN112746286A (zh) * 2021-01-22 2021-05-04 南京理工大学 一种碘元素双位点掺杂钙钛矿催化剂材料及其制备方法
CN112746286B (zh) * 2021-01-22 2022-07-22 南京理工大学 一种碘元素双位点掺杂钙钛矿催化剂材料及其制备方法
CN114686811A (zh) * 2022-03-04 2022-07-01 电子科技大学 基于高通量气相共蒸制备稳定CsPbI2Br无机钙钛矿薄膜的方法

Similar Documents

Publication Publication Date Title
CN107093640A (zh) 一种离子掺杂的CsPbI2Br薄膜、制备方法及其应用
CN108365102B (zh) 一种稳定高效二维层状钙钛矿太阳能电池及其制备方法
CN109888105B (zh) 一种钝化钙钛矿太阳电池及其制备方法
CN107240643B (zh) 溴元素掺杂甲胺铅碘钙钛矿太阳能电池及其制作方法
Li et al. Optimization of anti-solvent engineering toward high performance perovskite solar cells
CN106025067B (zh) 一种溶液法生成钙钛矿薄膜的成膜方法及其器件应用
Zhong et al. Enhanced efficiency and stability of perovskite solar cell by adding polymer mixture in perovskite photoactive layer
CN108389969A (zh) 一种用于制备钙钛矿太阳能电池钙钛矿层的绿色溶剂体系及混合溶液
CN110729403A (zh) 一种高质量有机-无机杂化钙钛矿薄膜的制备方法及应用
Ding et al. Atmosphere dependent gas-solid reaction for high-quality MAPbBr3 perovskite solar cells
CN109336852B (zh) 一种非富勒烯电子传输材料及其合成方法和用途
CN110808335B (zh) 一种择优取向生长的锡铅二元钙钛矿薄膜的制备方法及应用
CN111403606A (zh) 一种掺杂番茄红素的钙钛矿太阳能电池及其制备方法
CN116056537A (zh) 快干慢生长沉积法制备高效准二维钙钛矿太阳能电池
CN115835741A (zh) 一种钙钛矿太阳能电池及其制备方法
CN115020598A (zh) 一种提升无机CsPbI3钙钛矿薄膜环境稳定性的方法
CN108198940A (zh) 一种ZnMgO纳米柱氧化铝纳米颗粒复合薄膜作为电子传输层的倒结构有机太阳电池
CN114284440A (zh) 一种双功能离子盐钝化锡基钙钛矿薄膜及其钙钛矿太阳能电池的制备方法和应用
CN115188899B (zh) 高湿度空气中一步法印刷制备钙钛矿太阳能电池的方法
CN114944457B (zh) 一种钙钛矿太阳能电池及其制备方法
CN103943781A (zh) 聚合物太阳能电池活性层墨液、高稳定性聚合物太阳能电池及其制备方法
CN113675347B (zh) 一种制备2d/3d有机-无机杂化钙钛矿太阳能电池的方法
CN115109261A (zh) 一种二维MOFs薄膜的制备方法及其在光电探测器领域的应用
CN114824105B (zh) 一种钙钛矿太阳能电池及其制备方法
CN111106244B (zh) CsPbBr3薄膜及其制备方法和器件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170825

RJ01 Rejection of invention patent application after publication