CN107070623B - 混合载波系统的近似最小误码率功率分配方法 - Google Patents

混合载波系统的近似最小误码率功率分配方法 Download PDF

Info

Publication number
CN107070623B
CN107070623B CN201710147332.6A CN201710147332A CN107070623B CN 107070623 B CN107070623 B CN 107070623B CN 201710147332 A CN201710147332 A CN 201710147332A CN 107070623 B CN107070623 B CN 107070623B
Authority
CN
China
Prior art keywords
power distribution
data
frequency domain
error rate
mixed carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710147332.6A
Other languages
English (en)
Other versions
CN107070623A (zh
Inventor
梅林�
王震铎
王晓鲁
沙学军
李勇
张乃通
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
CETC 54 Research Institute
Original Assignee
Harbin Institute of Technology
CETC 54 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology, CETC 54 Research Institute filed Critical Harbin Institute of Technology
Priority to CN201710147332.6A priority Critical patent/CN107070623B/zh
Publication of CN107070623A publication Critical patent/CN107070623A/zh
Application granted granted Critical
Publication of CN107070623B publication Critical patent/CN107070623B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

混合载波系统的近似最小误码率功率分配方法,涉及混合载波系统的近似最小误码率功率分配技术。本发明是为了提升混合载波系统BER性能,以及为了提升了系统的可达速率。本发明在发射端,对每一个频带上的数据进行α阶的加权分数傅里叶变换,得到频域的数据;在频域,对步骤一获得的数据进行功率分配操作,并对分配后的数据进行IFFT变换,将数据变换到时域,并发送到信道;在接收端,对接收到的数据进行FFT变换,将数据变换回频域;在频域进行信道均衡;均衡后,在频域进行功率分配的逆操作;并进行‑α阶的分数傅里叶变换解调,并输出。本发明适用于无线通信中的功率分配场合。

Description

混合载波系统的近似最小误码率功率分配方法
技术领域
本发明涉及混合载波系统的近似最小误码率功率分配技术。
背景技术
近年来,随着通信技术的飞速发展,人们也不在局限于语音传输,视频资源的快速传输也逐渐成为人们的追求目标。因此,通信链路中的负载也越来大,将来的无线通信系统就需要更好的准则来精确地控制资源。资源分配策略也就成为了无线通信网络中的核心部分,它包括一系列的功能,例如调度、速率控制、功率控制、带宽预留等。目前很多技术都是依据信道的特征来提升系统的性能的,比如功率分配技术和比特分配技术等。
功率分配技术是一项兼容性很强的技术,既适用于LTE系统的上下行链路,也适用于非正交多址等5G中新型的多址方案。功率分配的度量目标一般包括系统可达速率(Achievable Rate,AR)、误码率和公平性等。通常我们研究的是LTE系统下行的OFDM系统的功率分配方法,包括最大可达速率分配和最小误码率分配等。
此外,在未来的5G系统中将考虑更加复杂的场景和需求,因此在设计时就需要灵活的波形方案来实现多性能目标的联合优化问题。而混合载波系统恰恰符合了5G的这种需求,它把LTE系统下行的OFDM和上行的SC系统相融合,通过灵活可调的参数,得到更加适用于场景需求的系统。
文献[1](N.Wang和S.D.Blostein于2003年公开的《Power loading for CP-OFDMover frequency-selective fading channels》)研究了CP-OFDM系统的功率分配方法并给出了不同功率分配的表达式,包括最小误码率功率分配、逼近的最小误码率功率分配、等增益功率分配以及最小均方误差(MMSE)功率分配。此外,文献[1]指出,可以通过拉格朗日乘数法求得OFDM系统的最小误码率功率分配的表达式。
文献[2](N.Wang和S.D.Blostein于2005年公开的《Comparison of CP-basedsingle carrier and OFDM with power allocation》)把文献[1]提出的几种多载波分配方法和单载波频域迫零(ZF)均衡的系统性能进行了比较。对于OFDM系统,逼近的最小误码率功率分配的误码率性能要优于MMSE功率分配;单载波ZF均衡的性能和OFDM系统等增益功率分配的性能是一致的。
文献[3](D.Zanatta Filho,L.F′ety和M.Terr′e于2007年公开的《A hybridsingle carrier/multicarrier transmission scheme with power allocation》)对于单载波ZF均衡和MMSE均衡系统的功率分配方法进行了分析,提出了单载波的最优功率分配方法,对于单载波而言,由于各个子载波上的信噪比一样,所以最大容量策略等于最小误码率策略。但是,对于OFDM系统二者就不相同。
文献[4](E.Castaneda,A.Silva,A.Gameiro和M.Kountouris公开的《An overviewon resource allocation techniques for multi-user mimo systems》)指出了OFDM系统不同功率分配策略之间的关系,在总功率恒定的情况下,最大容量策略通常把更多的功率分配给信道条件较好的子载波,而最小误码率策略把更多的功率分配给信道条件较差的子载波,也就是说两种分配策略存在一定的互斥性,即在实现最大系统容量时往往意味着BER性能的恶化,实现BER最优时,系统的可达速率将有所下降。
对于多载波OFDM系统,通过功率分配使系统容量的最大化往往意味着BER性能的恶化,而为了实现最优BER性能,又会使系统容量下降,所以怎样实现系统容量和BER的公平性,就成为了一个研究课题。
发明内容
本发明是为了提升混合载波系统BER性能,以及为了提升了系统的可达速率,从而提供一种混合载波系统的近似最小误码率功率分配方法。
混合载波系统的近似最小误码率功率分配方法,它包括以下步骤:
步骤一、在发射端,对每一个频带上的数据进行α阶的加权分数傅里叶变换,得到频域的数据;
步骤二、在频域,对步骤一获得的数据进行功率分配操作:
矩阵P是一个对角矩阵,其对角线上的元素为[P]i,i=pi,第i个子载波分配的功率为且分配的总功率满足:其中:N为调制子载波的数量,功率分配矩阵服从下式,
其中:E[·]表示取均值操作,λi为信道参数;
步骤三、对步骤二分配后的数据进行IFFT变换,将数据变换到时域,并发送到信道;
步骤四、在接收端,对接收到的步骤三的数据进行FFT变换,将数据变换回频域,其中:信道矩阵H被傅里叶矩阵F对角化,表示为Λ=FHF-1,其中:[Λ]i,i=λi
步骤五、在频域进行信道均衡,均衡矩阵为:Λ-1
步骤六、均衡后,在频域进行功率分配的逆操作,功率分配逆矩阵为:P-1
步骤七、对步骤六获得的数据进行-α阶的分数傅里叶变换解调,并输出。
本发明主要研究混合载波系统的功率分配技术,并提出了一种混合载波系统的近似最优误码率(Approximated Minimum BER,AMBER)功率分配方法,这种方法在有效提升混合载波系统BER性能的同时,也提升了系统的可达速率,也就是说实现了系统的BER和AR的联合优化。
附图说明
图1是混合载波系统的近似最小误码率功率分配方法的原理示意图;
图2是多载波、混合载波和单载波的BER性能对比示意图;
图3是多载波、混合载波和单载波的可达速率对比示意图;
图4是多载波、混合载波和单载波的峰均功率比对比示意图;
具体实施方式
具体实施方式一、结合图1至4说明本具体实施方式,混合载波系统的近似最小误码率功率分配方法,具体实施步骤如下:
步骤一、在发射端对每一个频带上的数据进行α阶的加权分数傅里叶变换,得到频域的数据;
步骤二、在频域对数据进行功率分配操作,矩阵P是一个对角矩阵,其对角线上的元素为[P]i,i=pi,第i个子载波分配的功率为且分配的总功率一定,满足其中N为调制子载波的数量,功率分配矩阵服从下式,
其中:E[·]表示取均值操作,λi为信道参数;
步骤三、对得到的数据进行IFFT变换,把数据变换到时域进行传输;
步骤四、经过信道后,对数据进行FFT变换,把数据变换回频域,其中信道矩阵H可以被傅里叶矩阵F对角化,表示为Λ=FHF-1,其中[Λ]i,i=λi
步骤五、在频域进行信道均衡,可用的信道均衡方法包括ZF均衡和MMSE均衡,这里我们使用ZF均衡策略,即均衡矩阵为Λ-1
步骤六、在均衡后,在频域进行功率分配的逆操作,这里我们使用ZF准则,即功率分配逆矩阵为P-1
步骤七、进行-α阶的分数傅里叶变换解调输出。
名词解释:
WFRFT:Weighted-type fractional Fourier transform,加权分数傅变换;
PA:Power allocation,功率分配;
OFDM:Orthogonal Frequency Division Multiplexing,正交频分复用;
BER:Bit Error Rate,误码率;
MMSE:Minimum Mean-Squared Error,最小均方误差;
AR:Achievable Rate,可达速率;
AMBER:Approximated Minimum BER,近似最优BER;
SC:Single Carrier,单载波;
PAPR:Peak to Average Power Ratio,峰均功率比;
本发明提出了一种混合载波的AMBER功率分配方法,这种方法在提升混合载波系统BER性能的同时也提升了系统的可达速率。
在数学模型上,我们知道混合载波系统通过其WFRFT阶数的可调性,可以等效为单载波系统和OFDM系统。在图1中,α=0时,本发明所提出的功率分配方法等效于OFDM系统MMSE功率分配方法;当α=1时,本发明所提出的功率分配方法等效于SC最优(Optimal,OP)功率分配方法。
理论基础:WFRFT理论
对于长度为N的离散信号d,则d的α阶离散四项加权分数傅里叶变换是:Fα[d]=Wαd,其中Fα表示四项加权分数傅里叶变换,Wα是WFRFT矩阵,在不会引起歧义的情况下,在本发明里,把Wα简记为W,表示为
W=A0 αI+A1 αF+A2 αΓI+A3 αΓF (1)
这里A0 α~A3 α是加权系数定义如下:
I是N×N单位矩阵,F是N×N离散傅里叶变换矩阵。Γ是置换矩阵,它每一行每一列只有一个元素非零,具体可以表如下:
另外加权分数傅里叶逆变换可以表示为:Wd,其中W表示Wα的逆矩阵,可以证明W是一个酉矩阵,则根据酉矩阵的性质,W-1=WH。并且可以证明矩阵Wα满足变换阶数的可加性,即Wα+β=WαWβ。需要指出的是,本发明提及的混合载波系统是通过WFRFT变换实现的。
如前文所述,本发明提出了功率分配方法是一种基于混合载波的近似最小误码率的功率分配方法,此外,步骤二给出的功率分配方法在多载波OFDM系统(α=0)中等效为MMSE功率分配,在单载波系统(α=1)中等效为最优功率分配方法。
下面给出了使用所提出的AMBER功率分配算法时的系统的误码率、可达速率和峰均功率比。
如图2所示,在衰落信道条件下给出了混合载波系统(包括单载波和多载波)在没有功率分配和AMBER功率分配下的理论和仿真误码率。信道模型为多径衰落信道,每一条路径的延迟为[0,100,200,300,500,700]ns,码片速率10Mcps,每一条路径的功率衰减为[0,-3.6,-7.2,-10.8,-18,-25.2]dB。为了保证仿真的准确性,每一次我们产生500个独立的信道,每一个信道我们仿真20次。如图所示,本专利提出的AMBER算法可以有效的提升系统的BER性能。此外,没有功率分配操作时,在低信噪比区间,多载波的BER较优,但是文献[5](Y.-P.Lin和S.-M.Phoong于2003年公开的《BERminimized OFDM systems with channelindependent precoders》)证明在高信噪比时,单载波的系统性能更优。
图3给出了单载波、多载波和混合载波系统的可达速率。整体上,OFDM系统的可达速率要高于SC系统的可达速率,但是MMSE功率分配会使系统的可达速率降低,而OP功率分配会提升系统的可达速率。本发明所提出的AMBER功率分配在提升BER性能的同时,仍然会提升混合载波系统的可达速率。
图4给出了单载波、多载波和混合载波系统在本文所提出的功率分配下、4倍频域过采样后的峰均功率比。对于多载波系统,MMSE功率分配不会影响系统的PAPR,对于单载波系统,OP功率分配会显著的增大系统的PAPR,而作为单载波和多载波体制的折中,混合载波的PAPR性能只会有轻微的下降。
综上所述,经过功率分配后,对于OFDM系统,MMSE功率分配虽然可以有效提升系统的BER性能,但是系统的可达速率有所下降;对于单载波系统,OP功率分配既可以提升BER性能也可以提升可达速率,但是会显著恶化峰均功率比性能;对于混合载波而言,由于它是单载波和多载波系统的融合,其误码率和可达速率均有性能提升,仅PAPR性能有小幅度恶化。
此外,横向比较三种系统,单载波系统在高信噪比时的误码率和PAPR性能较优,OFDM系统在低信噪比时的误码率和可达速率较优,因此二者均有不同程度的性能缺陷,而混合载波系统实现了误码率、可达速率和PAPR的性能折中。不仅如此,利用其灵活的参数选择特性,可以根据信道条件、需求的不同合理的选取WFRFT阶数以获得所需的系统性能。
因此,本发明提出的基于混合载波的功率分配方法实现了系统的BER、可达速率和PAPR的性能折中,在此基础上,所提出的AMBER功率分配方法实现了BER和可达速率的联合性能提升。

Claims (4)

1.混合载波系统的近似最小误码率功率分配方法,其特征是:包括以下步骤:
步骤一、在发射端,对每一个频带上的数据进行α阶的加权分数傅里叶变换,得到频域的数据;
步骤二、在频域,对步骤一获得的数据进行功率分配操作:
矩阵P是一个对角矩阵,其对角线上的元素为[P]i,i=pi,第i个子载波分配的功率为且分配的总功率满足:其中:N为调制子载波的数量,功率分配矩阵服从下式,
其中:E[·]表示取均值操作,λi为信道参数;
步骤三、对步骤二分配后的数据进行IFFT变换,将数据变换到时域,并发送到信道;
步骤四、在接收端,对接收到的步骤三的数据进行FFT变换,将数据变换回频域,其中:信道矩阵H被傅里叶矩阵F对角化,表示为Λ=FHF-1,其中:[Λ]i,i=λi
步骤五、在频域进行信道均衡,均衡矩阵为:Λ-1
步骤六、均衡后,在频域进行功率分配的逆操作,功率分配逆矩阵为:P-1
步骤七、对步骤六获得的数据进行-α阶的分数傅里叶变换解调,并输出。
2.根据权利要求1所述的混合载波系统的近似最小误码率功率分配方法,其特征在于步骤五中,在频域进行信道均衡采用ZF均衡方法实现。
3.根据权利要求1所述的混合载波系统的近似最小误码率功率分配方法,其特征在于步骤五中,在频域进行信道均衡采用MMSE均衡方法实现。
4.根据权利要求2所述的混合载波系统的近似最小误码率功率分配方法,其特征在于步骤六中,在频域进行功率分配的逆操作采用ZF准则。
CN201710147332.6A 2017-03-13 2017-03-13 混合载波系统的近似最小误码率功率分配方法 Expired - Fee Related CN107070623B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710147332.6A CN107070623B (zh) 2017-03-13 2017-03-13 混合载波系统的近似最小误码率功率分配方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710147332.6A CN107070623B (zh) 2017-03-13 2017-03-13 混合载波系统的近似最小误码率功率分配方法

Publications (2)

Publication Number Publication Date
CN107070623A CN107070623A (zh) 2017-08-18
CN107070623B true CN107070623B (zh) 2019-10-11

Family

ID=59622579

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710147332.6A Expired - Fee Related CN107070623B (zh) 2017-03-13 2017-03-13 混合载波系统的近似最小误码率功率分配方法

Country Status (1)

Country Link
CN (1) CN107070623B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110830405B (zh) * 2019-11-07 2022-04-05 哈尔滨工程大学 一种基于分层wfrft架构的非对称混合载波信号传输方法
CN111224764A (zh) * 2019-11-22 2020-06-02 国网河南省电力公司电力科学研究院 一种基于子载波功率分配方案的物理层安全算法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102340476A (zh) * 2011-07-14 2012-02-01 哈尔滨工业大学 基于加权分数傅里叶变换扩展的ofdm通信系统
CN106332260A (zh) * 2015-07-06 2017-01-11 哈尔滨工业大学 功率分配方法和装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102340476A (zh) * 2011-07-14 2012-02-01 哈尔滨工业大学 基于加权分数傅里叶变换扩展的ofdm通信系统
CN106332260A (zh) * 2015-07-06 2017-01-11 哈尔滨工业大学 功率分配方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A Novel Analysis ofPAPR ofFRFT-OFDM System;Zhenduo Wang;《2015 10th International Conference on Communications and Networking in China》;20160623;第326-331页 *

Also Published As

Publication number Publication date
CN107070623A (zh) 2017-08-18

Similar Documents

Publication Publication Date Title
CN101584141B (zh) Sc-fdma系统中的自适应调制与编码
KR101067183B1 (ko) 무선 통신 시스템에서 안테나 다이버시티의 제공
CN105530217B (zh) 基于加权分数傅里叶变换的gfdm系统的信号发射和接收方法
EP1531594A1 (en) Apparatus and method for sub-carrier allocation in a multiple-input and multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) communication system
EP1489775A1 (en) Transmission apparatus and method for use in mobile communication system based on orthogonal frequency division multiplexing scheme
US20070081449A1 (en) Multi-carrier wireless network using flexible fractional frequency reuse
US20060291431A1 (en) Novel pilot sequences and structures with low peak-to-average power ratio
CN105306118B (zh) 广带异步可调多载波无线传输方法及系统
TW200414708A (en) Coded MIMO systems with selective channel inversion applied per eigenmode
TW200835255A (en) Joint use of multi-carrier and single-carrier multiplexing schemes for wireless communication
JP2009529285A (ja) 電力及び帯域幅の要件を満たすために変調及びフィルタロール−オフを選択するための装置及び方法
CN104734831A (zh) 无线通信系统中的基站
CN102047732A (zh) 用户装置和基站装置以及通信控制方法
WO2010016355A1 (ja) 無線通信システム、制御局装置および端末装置
CN100484116C (zh) Ofdm通信系统及降低峰均功率比的方法
CN105049397B (zh) 一种用于sim-ofdm系统的功率分配方法
CN101141167B (zh) 一种dft-cdma系统中单载波频域均衡方法和系统
CN107070623B (zh) 混合载波系统的近似最小误码率功率分配方法
CN114337751A (zh) 一种时间反转ofdm多用户通信系统的功率分配方法
CN102160312B (zh) 移动台
Phetsomphou et al. A partial transmit sequence technique for PAPR reduction in MIMO-OFDM systems
CN102104946A (zh) 可变速率变换域通信系统的最优化功率比特分配方法
CN107317783B (zh) 用于索引调制ofdm的自适应调制方法
CN102487368B (zh) Per-tone均衡器的设计方法及实现装置
JP5230661B2 (ja) 無線送信装置、無線受信装置、無線通信システムおよび無線送信方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20191011

Termination date: 20210313