CN107065847A - 一种执行器非对称饱和的水面舰船轨迹跟踪控制方法 - Google Patents

一种执行器非对称饱和的水面舰船轨迹跟踪控制方法 Download PDF

Info

Publication number
CN107065847A
CN107065847A CN201610895669.0A CN201610895669A CN107065847A CN 107065847 A CN107065847 A CN 107065847A CN 201610895669 A CN201610895669 A CN 201610895669A CN 107065847 A CN107065847 A CN 107065847A
Authority
CN
China
Prior art keywords
mtd
mrow
msub
mtr
actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610895669.0A
Other languages
English (en)
Other versions
CN107065847B (zh
Inventor
郑泽伟
黄琰婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Publication of CN107065847A publication Critical patent/CN107065847A/zh
Application granted granted Critical
Publication of CN107065847B publication Critical patent/CN107065847B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/0206Control of position or course in two dimensions specially adapted to water vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明涉及一种执行器非对称饱和的水面舰船轨迹跟踪控制方法,步骤一、给定期望跟踪轨迹:给定期望平面位置(xd,yd);给定期望偏航角ψd;期望轨迹表示为ηd=[xd,ydd]T;步骤二、轨迹跟踪误差计算:计算实际轨迹与期望轨迹之间的误差z1=η‑ηd;步骤三、期望速度计算:计算消除期望轨迹与实际轨迹之间的误差所需的期望速度α;步骤四、神经网络设计:将动力学方程中的不确定项δ利用神经网络δ=W*TΦ(θ)+ε近似表达;步骤五、辅助控制系统设计:利用高斯误差函数,设计光滑的非对称饱和执行器的模型;步骤六、模型控制律计算:计算消除期望轨迹与实际轨迹误差所需的控制量τ。该方法能够逼近模型不确定项、抑制外界扰动影响、抗执行机构非对称饱和,跟踪任意期望轨迹,保证系统渐近稳定。

Description

一种执行器非对称饱和的水面舰船轨迹跟踪控制方法
技术领域
本发明提供一种执行器非对称饱和的水面舰船轨迹跟踪控制方法,它为具有非对称饱和非线性特性的执行器的无人水面舰船,提供一种抑制外界扰动影响的跟踪期望轨迹的新控制方法,属于自动控制技术领域。
背景技术
无人水面舰船是一个拥有机器人技术的舰船,它可以对环境改变作出反应,并且在最少的人力干涉下完成任务。且广泛应用于导航、智能监视侦查任务,对测量、科研、搜寻和营救方面的工作都有很大帮助。所以我们需要针对无人水面舰船设计一种具有高性能的轨迹跟踪能力的控制器,从而实现水面舰船准确参考轨迹或虚拟对象。然而在水面舰船实现跟踪控制的过程中,动力学模型本身存在一定的不确定性,存在的执行器饱和问题,或在强大海洋扰动时,都将会导致系统不稳定。此外,在之前的研究中,都将执行器饱和假设为对称的,然而,当水面舰船实施前进轨迹跟踪任务时,其推进器仅输出正的力,或者当执行器有效性部分损失时,都会出现非对称饱和情况。
因此发明“一种执行器非对称饱和的水面舰船轨迹跟踪控制方法”是把以上问题作为切入点,而提出的有针对性、解决执行器非对称饱和问题的水面舰船轨迹跟踪控制理论,可利用神经网络逼近水面舰船模型的不确定项,抑制外界扰动对系统的影响,改善执行机构的饱和问题,保证系统的渐进稳定性,实现模型的有效轨迹跟踪,为水面舰船轨迹跟踪控制工程提供了一种高效可行的设计手段。
发明内容
(1)目的:本发明的目的在于提供一种执行器非对称饱和的水面舰船轨迹跟踪控制方法,控制工程师可以在结合实际参数的同时,按照该方法实现水面舰船抗不确定项、抗扰动、抗执行机构非对称饱和问题的轨迹跟踪控制。
(2)技术方案:本发明一种执行器非对称饱和的水面舰船轨迹跟踪控制方法,其主要内容及步骤是:先由给定的轨迹期望跟踪值进行误差计算;然后根据轨迹运动学方程进行轨迹运动学控制计算得到虚拟控制律;利用神经网络逼近水面舰船模型中的不确定项,设计辅助控制系统解决执行机构饱和问题,随后基于水面舰船动力学方程得到控制量;最终将此控制量用于水面舰船模型。在实际应用当中,水面舰船的轨迹、速度等状态量由传感器测量得到,而由该方法计算得到的控制量将传输至舵机和螺旋桨等执行机构,即可实现水面舰船抗不确定项、抗扰动、抗执行机构非对称饱和问题的轨迹跟踪控制功能。
本发明一种执行器非对称饱和的水面舰船轨迹跟踪控制方法,其具体步骤如下:
步骤一 给定期望跟踪轨迹:给定期望平面位置(xd,yd);给定期望偏航角ψd;期望轨迹表示为ηd=[xd,ydd]T
步骤二 轨迹跟踪误差计算:计算实际轨迹与期望轨迹之间的误差z1=η-ηd
步骤三 期望速度计算:计算消除期望轨迹与实际轨迹之间的误差所需的期望速度α。
步骤四 神经网络设计:将动力学方程中的不确定项δ利用神经网络δ=W*TΦ(θ)+ε近似表达。
步骤五 辅助控制系统设计:利用高斯误差函数,设计光滑的非对称饱和执行器的模型。
步骤六 模型控制律计算:计算消除期望轨迹与实际轨迹误差所需的控制量τ。
其中,在步骤一中所述的给定期望轨迹包括:期望轨迹为ηd=[xd,ydd]T,三个分量表示含义为:(xd,yd)表示期望平面位置,ψd表示期望偏航角。
其中,在步骤二中所述的轨迹跟踪误差的计算方法如下:
z1=η-ηd
η为水面舰船的实际轨迹,η=[x,y,ψ]T,其中,(x,y)表示水面舰船的位置,ψ表示偏航角。
其中,在步骤三中所述的计算期望速度α,其计算方法如下:
1)给出水面舰船的动力学方程:
根据附图1,首先建立图中所示的惯性坐标系和体坐标系。从而可得到水面舰船的动力学方程:
其中,η=[x,y,ψ]T为在惯性坐标系下舰船的实际轨迹,(x,y)表示水面舰船的位置,ψ表示偏航角。υ=[u,v,r]T为舰船在体坐标系下的速度矢量,u,v,r分别为速度矢量沿船体坐标系的分解量,分别表示前进速度、横向速度和偏航角速度。R(ψ)为旋转矩阵,满足R-1(ψ)=RT(ψ):
M是非奇异、对称的正定惯性矩阵。c(υ)是向心矩阵,D是阻尼矩阵。三者分别表示如下:
b(t)=[b1(t)b2(t)b3(t)]T为不确定项,包括未建模动力以及未知时变的干扰量。为系统输入与执行器的输出。
2)计算实际轨迹与给定期望轨迹的误差:z1=η-ηd
3)计算期望速度:其中k1∈R3×3,为正定的对称矩阵;为期望轨迹对时间求一阶导数。
其中,在步骤四中所述的神经网络设计,其计算方法如下:
1)计算实际速度与期望速度的误差:z2=v-α
2)定义神经网络变量θ
θ=[u v r uv ur vr]T
将前进速度u、横向速度v和偏航角速度r及其两两乘积作为神经网络中的变量;
3)计算径向基函数向量Φ(θ)∈Rl
Φ(x)=[φ1(x),φ2(x),...φl(x)]T
μi∈R与εi∈R分别为函数φi(x)的中心值与范围。
4)计算神经网络权估计值矩阵 (l=神经网络节点数);Γ1=Γ1 T为正定矩阵;kw为一个小数值正数。
5)计算不确定项估计值 Γ2=Γ2 T为正定矩阵;kξ为一个小数值正数。
其中,在步骤五中所述的辅助控制系统设计,其设计方法如下:
利用高斯误差函数,设计光滑的非对称饱和执行器的模型。
为饱和执行器的输出及系统的输入。执行器输入输出的关系可被表示为:
其中,(i=1,2,3)是不考虑执行器饱和下的控制量,可看做饱和执行器的输入。分别是输出上下限。但是此时输入与输出的关系曲线是不平滑的,无法使用反步法进行设计。因此定义一个新的饱和执行器模型:
其中,sign(·)为标准双曲正选函数,erf(·)为高斯误差函数。
其中,在步骤六中所述的模型控制律,其计算方法如下:
1)计算期望速度对时间的导数:
其中, 为期望轨
迹对时间求二阶导数。
2)计算饱和执行器输入量
其中k2∈R3×3,为正定的对称矩阵;ρ为一个小数值正数。
3)将误差向量z1=η-ηd、z2=υ-α以及上述α、的表达式代入上式中,可得饱和执行器输入命令的最终表达式:
4)计算控制量τ:
代入上述饱和执行器模型中,得到最终的模型控制律τ。
(3)优点及效果:
本发明一种执行器非对称饱和的水面舰船轨迹跟踪控制方法,与现有技术比,其优点是:
1)本方法避免模型线性化,可直接应用于非线性模型,步骤简洁高效,并能保证系统的渐次稳定性;
2)本方法利用神经网络,从而良好的抑制了模型不确定性和外界扰动对系统的干扰影响;
3)本方法采用辅助控制系统解决非对称饱和问题,使得执行机构的非对称饱和问题得到了大幅度改善;
4)本方法算法结构简单,响应速度快,易于工程实现。
在应用过程中,控制工程师可以根据实际要求给定水面舰船任意期望轨迹,并将由该方法计算得到的控制量直接传输至执行机构实现轨迹跟踪控制的功能。
附图说明
图1为本发明水面舰船模型图。
符号说明如下:
ηd ηd=[xd,ydd]T为期望水面舰船行进轨迹,其中(xd,yd)表示期望平面位置,ψd表示偏航角。
η η=[x,y,ψ]T为水面舰船的实际轨迹;
α α为所设计的虚拟控制律,为水面舰船的期望速度;
υ υ=[u,v,r]T为水面舰船的速度矢量,u,v,r分别为速度矢量沿船体坐标系的分解量;
z1 z1为期望轨迹与实际轨迹之间的误差;
z2 z2为期望速度与实际速度之间的误差;
b b(t)=[b1(t)b2(t)b3(t)]T为不确定项,包括未建模动力以及未知时变的干扰量。
τ τ为系统控制量;
为不考虑执行器饱和下的系统控制量;
为系统控制量所限定的最小值;
为系统控制量所限定的最大值;
θ 神经网络变量θ=[u v r uv ur vr]T
Φ(θ) Φ(θ)为神经网络中径向基函数向量;
水面舰船动力学模型中不确定项的估计值
为神经网络权重估计值矩阵;
具体实施方式
下面对本发明中的各部分设计方法作进一步的说明:
本发明“一种执行器非对称饱和的水面舰船轨迹跟踪控制方法”,其具体步骤如下:
步骤一:给定期望跟踪值
1)如图1所示,以一个固定点为原点,x轴指向北方,y轴指向东方,建立惯性坐标系;以水面舰船模型中的结构几何中心为原点,x轴指向舰船的头部,y轴垂直于x轴,建立体坐标系。
2)给定的期望轨迹为ηd=[xd,ydd]T,三个分量表示含义为:(xd,yd)表示期望平面位置,ψd表示期望偏航角。
步骤二:计算轨迹跟踪误差z1
z1=η-ηd
步骤三:设计虚拟控制律α
1)给出水面舰船的动力学方程:
根据附图1,首先建立图中所示的惯性坐标系和体坐标系。从而可得到水面舰船的动力学方程:
其中,η=[x,y,ψ]T为在惯性坐标系下舰船的实际轨迹,(x,y)表示水面舰船的位置,ψ表示偏航角。υ=[u,v,r]T为舰船在体坐标系下的速度矢量,u,v,r分别为速度矢量沿船体坐标系的分解量,分别表示前进速度、横向速度和偏航角速度。R(ψ)为旋转矩阵,满足R-1(ψ)=RT(ψ):
M是非奇异、对称的正定惯性矩阵。c(υ)是向心矩阵,D是阻尼矩阵。三者分别表示如下:
b(t)=[b1(t) b2(t) b3(t)]T为不确定项,包括未建模动力以及未知时变的干扰量。为系统输入与执行器的输出。
4)计算实际轨迹与给定期望轨迹的误差:z1=η-ηd
5)计算期望速度:其中k1∈R3×3,为正定的对称矩阵;为期望轨迹对时间求一阶导数。
步骤四:设计神经网络
1)计算实际速度与期望速度的误差:z2=v-α
2)定义神经网络变量θ
θ=[u v r uv ur vr]T
将前进速度u、横向速度v和偏航角速度r及其两两乘积作为神经网络中的变量;
3)计算径向基函数向量Φ(θ)∈Rl
Φ(x)=[φ1(x),φ2(x),...φl(x)]T
μi∈R与εi∈R分别为函数φi(x)的中心值与范围。
4)计算神经网络权估计值矩阵 (l=神经网络节点数);Γ1=Γ1 T为正定矩阵;kw为一个小数值正数。
5)计算不确定项估计值 Γ2=Γ2 T为正定矩阵;kξ为一个小数值正数。
步骤五:辅助控制系统设计:
利用高斯误差函数,得到光滑的非对称饱和非线性执行器的模型,从而可直接用来进行反推设计。
为饱和执行器的输出。执行器输入输出的关系可被表示为:
其中,(i=1,2,3)是不考虑输入饱和下的控制命令,分别是输出上下限。但是此时输入与输出的关系曲线是带尖角的不平滑的,无法使用反步法进行设计。因此利用高斯误差函数定义一个新的模型:
其中,sign(·)为标准双曲正选函数,erf(·)为高斯误差函数。
步骤六:设计模型控制律
1)计算期望速度对时间的导数:
其中, 为期望轨
迹对时间求二阶导数。
2)计算饱和执行器输入量
其中k2∈R3×3,为正定的对称矩阵;ρ为一个小数值正数。
3)将误差向量z1=η-ηd、z2=υ-α以及上述α、的表达式代入上式中,可得饱和执行器输入命令的最终表达式:
4)计算控制量τ:
代入上述饱和执行器模型中,得到最终的模型控制律τ。

Claims (7)

1.一种执行器非对称饱和的水面舰船轨迹跟踪控制方法,其特征在于,该方法具体步骤如下:
步骤一 给定期望跟踪轨迹:给定期望平面位置(xd,yd);给定期望偏航角ψd;期望轨迹表示为ηd=[xd,ydd]T
步骤二 轨迹跟踪误差计算:计算实际轨迹与期望轨迹之间的误差z1=η-ηd
步骤三 期望速度计算:计算消除期望轨迹与实际轨迹之间的误差所需的期望速度α;
步骤四 神经网络设计:将动力学方程中的不确定项δ利用神经网络δ=W*TΦ(θ)+ε近似表达;
步骤五 辅助控制系统设计:利用高斯误差函数,设计光滑的非对称饱和执行器的模型;
步骤六 模型控制律计算:计算消除期望轨迹与实际轨迹误差所需的控制量τ。
2.根据权利要求1所述的一种执行器非对称饱和的水面舰船轨迹跟踪控制方法,其特征在于:步骤一中所述的给定期望跟踪轨迹包括:期望轨迹为ηd=[xd,ydd]T,三个分量表示含义为:(xd,yd)表示期望平面位置,ψd表示期望偏航角。
3.根据权利要求1所述的一种执行器非对称饱和的水面舰船轨迹跟踪控制方法,其特征在于:步骤二中所述的轨迹跟踪误差的计算方法如下:
z1=η-ηd
η为水面舰船的实际轨迹,η=[x,y,ψ]T,其中,(x,y)表示水面舰船的位置,ψ表示偏航角。
4.根据权利要求1所述的一种执行器非对称饱和的水面舰船轨迹跟踪控制方法,其特征在于:步骤三中所述的期望速度α,其计算方法如下:
1)给出水面舰船的动力学方程:
首先建立惯性坐标系和体坐标系,从而可得到水面舰船的动力学方程:
<mrow> <mover> <mi>&amp;eta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mi>R</mi> <mrow> <mo>(</mo> <mi>&amp;Psi;</mi> <mo>)</mo> </mrow> <mi>&amp;upsi;</mi> </mrow>
其中,η=[x,y,ψ]T为在惯性坐标系下舰船的实际轨迹,(x,y)表示水面舰船的位置,ψ表示偏航角;υ=[u,v,r]T为舰船在体坐标系下的速度矢量,u,v,r分别为速度矢量沿船体坐标系的分解量,分别表示前进速度、横向速度和偏航角速度;R(ψ)为旋转矩阵,满足R-1(ψ)=RT(ψ):
<mrow> <mi>R</mi> <mrow> <mo>(</mo> <mi>&amp;psi;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&amp;psi;</mi> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>&amp;psi;</mi> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>&amp;psi;</mi> </mrow> </mtd> <mtd> <mrow> <mi>cos</mi> <mi>&amp;psi;</mi> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> </mrow>
M是非奇异、对称的正定惯性矩阵;c(υ)是向心矩阵,D是阻尼矩阵;三者分别表示如下:
<mrow> <mi>M</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>m</mi> <mn>11</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>m</mi> <mn>22</mn> </msub> </mtd> <mtd> <msub> <mi>m</mi> <mn>23</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>m</mi> <mn>32</mn> </msub> </mtd> <mtd> <msub> <mi>m</mi> <mn>33</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mi>D</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>d</mi> <mn>11</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>d</mi> <mn>22</mn> </msub> </mtd> <mtd> <msub> <mi>d</mi> <mn>23</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>d</mi> <mn>32</mn> </msub> </mtd> <mtd> <msub> <mi>d</mi> <mn>33</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> </mrow> 1
<mrow> <mi>C</mi> <mrow> <mo>(</mo> <mi>&amp;upsi;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>m</mi> <mn>22</mn> </msub> <mi>v</mi> <mo>-</mo> <msub> <mi>m</mi> <mn>23</mn> </msub> <mi>r</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <msub> <mi>m</mi> <mn>11</mn> </msub> <mi>u</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>m</mi> <mn>22</mn> </msub> <mi>v</mi> <mo>+</mo> <msub> <mi>m</mi> <mn>23</mn> </msub> <mi>r</mi> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>m</mi> <mn>11</mn> </msub> <mi>u</mi> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> </mrow>
b(t)=[b1(t) b2(t) b3(t)]T为不确定项,包括未建模动力以及未知时变的干扰量,为系统输入与执行器的输出;
2)计算实际轨迹与给定期望轨迹的误差:z1=η-ηd
3)计算期望速度:其中k1∈R3×3,为正定的对称矩阵;为期望轨迹对时间求一阶导数。
5.根据权利要求1所述的一种执行器非对称饱和的水面舰船轨迹跟踪控制方法,其特征在于:步骤四中所述的神经网络设计,其计算方法如下:
1)计算实际速度与期望速度的误差:z2=v-α;
2)定义神经网络变量θ:
θ=[u v r uv ur vr]T
将前进速度u、横向速度v和偏航角速度r及其两两乘积作为神经网络中的变量;
3)计算径向基函数向量Φ(θ)∈Rl
Φ(x)=[φ1(x),φ2(x),...φl(x)]T
<mrow> <msub> <mi>&amp;phi;</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>exp</mi> <mo>(</mo> <mrow> <mo>-</mo> <mfrac> <mrow> <mo>|</mo> <mo>|</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>&amp;mu;</mi> <mi>i</mi> </msub> <mo>|</mo> <msup> <mo>|</mo> <mn>2</mn> </msup> </mrow> <mrow> <msup> <msub> <mi>&amp;epsiv;</mi> <mi>i</mi> </msub> <mn>2</mn> </msup> </mrow> </mfrac> </mrow> <mo>)</mo> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>...</mn> <mo>,</mo> <mi>l</mi> </mrow>
μi∈R与εi∈R分别为函数φi(x)的中心值与范围;
4)计算神经网络权估计值矩阵 (l=神经网络节点数);Γ1=Γ1 T为正定矩阵;kw为一个小数值正数;
5)计算不确定项估计值 Γ2=Γ2 T为正定矩阵;kξ为一个小数值正数。
6.根据权利要求1所述的一种执行器非对称饱和的水面舰船轨迹跟踪控制方法,其特征在于:步骤五中所述的辅助控制系统设计,其设计方法如下:
利用高斯误差函数,设计光滑的非对称饱和执行器的模型:
为饱和执行器的输出及系统的输入,执行器输入输出的关系可被表示为:
其中,是不考虑执行器饱和下的控制量,可看做饱和执行器的输入;分别是输出上下限;但是此时输入与输出的关系曲线是不平滑的,无法使用反步法进行设计,因此定义一个新的饱和执行器模型:
其中,sign(·)为标准双曲正选函数,erf(·)为高斯误差函数。
7.根据权利要求1所述的一种执行器非对称饱和的水面舰船轨迹跟踪控制方法,其特征在于:步骤六中所述的模型控制律,其计算方法如下:
1)计算期望速度对时间的导数:
<mrow> <mover> <mi>&amp;alpha;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mi>R</mi> <mo>(</mo> <mi>&amp;psi;</mi> <mo>)</mo> <mi>S</mi> <mo>(</mo> <mi>r</mi> <mo>)</mo> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mrow> <mo>(</mo> <mo>-</mo> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>(</mo> <mrow> <mi>&amp;eta;</mi> <mo>-</mo> <msub> <mi>&amp;eta;</mi> <mi>d</mi> </msub> </mrow> <mo>)</mo> <mo>+</mo> <msub> <mover> <mi>&amp;eta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>R</mi> <mi>T</mi> </msup> <mrow> <mo>(</mo> <mi>&amp;psi;</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mo>-</mo> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>(</mo> <mrow> <mover> <mi>&amp;eta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>-</mo> <msub> <mover> <mi>&amp;eta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> </mrow> <mo>)</mo> <mo>+</mo> <msub> <mover> <mi>&amp;eta;</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
其中,为期望轨迹对时间求二阶导数;
2)计算饱和执行器输入量
其中k2∈R3×3,为正定的对称矩阵;ρ为一个小数值正数;
3)将误差向量z1=η-ηd、z2=υ-α以及上述α、的表达式代入上式中,可得饱和执行器输入命令的最终表达式:
4)计算控制量τ:
代入上述饱和执行器模型中,得到最终的模型控制律τ。
CN201610895669.0A 2016-03-31 2016-10-14 一种执行器非对称饱和的水面舰船轨迹跟踪控制方法 Active CN107065847B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610195823 2016-03-31
CN2016101958233 2016-03-31

Publications (2)

Publication Number Publication Date
CN107065847A true CN107065847A (zh) 2017-08-18
CN107065847B CN107065847B (zh) 2020-03-20

Family

ID=59616996

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610895669.0A Active CN107065847B (zh) 2016-03-31 2016-10-14 一种执行器非对称饱和的水面舰船轨迹跟踪控制方法

Country Status (1)

Country Link
CN (1) CN107065847B (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108008628A (zh) * 2017-11-17 2018-05-08 华南理工大学 一种不确定欠驱动无人艇系统的预设性能控制方法
CN108181914A (zh) * 2017-12-11 2018-06-19 西北工业大学 一种中性浮力机器人姿态与轨迹自抗扰控制方法
CN108197350A (zh) * 2017-12-11 2018-06-22 大连海事大学 一种无人船速度和不确定性估计系统及设计方法
CN108427414A (zh) * 2018-03-31 2018-08-21 西北工业大学 一种自主水下航行器水平面自适应轨迹跟踪控制方法
CN108445892A (zh) * 2018-05-31 2018-08-24 大连海事大学 一种欠驱动无人船编队控制器结构及设计方法
CN108803632A (zh) * 2018-09-19 2018-11-13 哈尔滨工程大学 基于饱和补偿技术的水面无人艇全状态约束轨迹跟踪控制方法
CN109062043A (zh) * 2018-08-01 2018-12-21 西北工业大学 考虑网络传输以及执行器饱和的航天器自抗扰控制方法
CN109100939A (zh) * 2018-09-19 2018-12-28 哈尔滨工程大学 考虑输入饱和的水面无人艇全状态约束轨迹跟踪控制方法
CN109240316A (zh) * 2018-11-15 2019-01-18 哈尔滨工程大学 考虑推进器输出饱和的海底飞行节点预设性能轨迹跟踪控制方法
CN111679585A (zh) * 2020-07-03 2020-09-18 大连海事大学 一种具有输入饱和受限的无人船强化学习自适应跟踪控制方法
CN114661056A (zh) * 2022-05-19 2022-06-24 浙江大学湖州研究院 一种考虑推进器伺服控制的差动水面无人船轨迹跟踪方法
CN116577997A (zh) * 2023-07-06 2023-08-11 西北工业大学 一种基于并发学习的全向小车参数辨识方法
CN116627042A (zh) * 2023-07-20 2023-08-22 南京邮电大学 执行器非对称饱和多自主体系统的分布式协同跟踪方法
CN117666341A (zh) * 2023-11-30 2024-03-08 天合光能股份有限公司 目标对象控制方法、装置、计算机设备和存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011209988A (ja) * 2010-03-30 2011-10-20 Nippon Telegr & Teleph Corp <Ntt> 軌道追従制御装置、方法及びプログラム
CN104281155A (zh) * 2014-11-07 2015-01-14 中国人民解放军国防科学技术大学 一种无人飞艇三维航迹跟踪方法
CN104793629A (zh) * 2015-05-04 2015-07-22 中国人民解放军国防科学技术大学 一种飞艇三维航迹跟踪的反步神经网络控制方法
CN104881038A (zh) * 2015-04-22 2015-09-02 哈尔滨工业大学 环境干扰下的水下无人航行器航迹跟踪控制优化方法
CN105159304A (zh) * 2015-06-26 2015-12-16 哈尔滨工业大学 接近并跟踪空间非合作目标的有限时间容错控制方法
CN105242683A (zh) * 2015-11-04 2016-01-13 中国人民解放军国防科学技术大学 一种飞艇神经网络终端滑模航迹控制方法
CN105404304A (zh) * 2015-08-21 2016-03-16 北京理工大学 基于归一化神经网络的航天器容错姿态协同跟踪控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011209988A (ja) * 2010-03-30 2011-10-20 Nippon Telegr & Teleph Corp <Ntt> 軌道追従制御装置、方法及びプログラム
CN104281155A (zh) * 2014-11-07 2015-01-14 中国人民解放军国防科学技术大学 一种无人飞艇三维航迹跟踪方法
CN104881038A (zh) * 2015-04-22 2015-09-02 哈尔滨工业大学 环境干扰下的水下无人航行器航迹跟踪控制优化方法
CN104793629A (zh) * 2015-05-04 2015-07-22 中国人民解放军国防科学技术大学 一种飞艇三维航迹跟踪的反步神经网络控制方法
CN105159304A (zh) * 2015-06-26 2015-12-16 哈尔滨工业大学 接近并跟踪空间非合作目标的有限时间容错控制方法
CN105404304A (zh) * 2015-08-21 2016-03-16 北京理工大学 基于归一化神经网络的航天器容错姿态协同跟踪控制方法
CN105242683A (zh) * 2015-11-04 2016-01-13 中国人民解放军国防科学技术大学 一种飞艇神经网络终端滑模航迹控制方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
YAO ZOU AND ZEWEI ZHENG: "A Robust Adaptive RBFNN Augmenting Backstepping Control Approach for a Model-Scaled Helicopter", 《TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY》 *
刘玉磊: "非完整移动机器人轨迹跟踪控制算法的研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *
张利军: "近水面AUV自适应输出反馈控制器设计", 《中国造船》 *
郑泽伟等: "平流层飞艇轨迹跟踪控制设计", 《控制与决策》 *
郑泽伟等: "非完整移动机器人全局路径跟踪控制", 《控制理论与应用》 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108008628A (zh) * 2017-11-17 2018-05-08 华南理工大学 一种不确定欠驱动无人艇系统的预设性能控制方法
CN108008628B (zh) * 2017-11-17 2020-02-18 华南理工大学 一种不确定欠驱动无人艇系统的预设性能控制方法
CN108197350B (zh) * 2017-12-11 2020-04-24 大连海事大学 一种无人船速度和不确定性估计系统及设计方法
CN108181914A (zh) * 2017-12-11 2018-06-19 西北工业大学 一种中性浮力机器人姿态与轨迹自抗扰控制方法
CN108197350A (zh) * 2017-12-11 2018-06-22 大连海事大学 一种无人船速度和不确定性估计系统及设计方法
CN108181914B (zh) * 2017-12-11 2020-04-14 西北工业大学 一种中性浮力机器人姿态与轨迹自抗扰控制方法
CN108427414A (zh) * 2018-03-31 2018-08-21 西北工业大学 一种自主水下航行器水平面自适应轨迹跟踪控制方法
CN108427414B (zh) * 2018-03-31 2020-10-27 西北工业大学 一种自主水下航行器水平面自适应轨迹跟踪控制方法
CN108445892A (zh) * 2018-05-31 2018-08-24 大连海事大学 一种欠驱动无人船编队控制器结构及设计方法
CN108445892B (zh) * 2018-05-31 2020-10-02 大连海事大学 一种欠驱动无人船编队控制器结构及设计方法
CN109062043A (zh) * 2018-08-01 2018-12-21 西北工业大学 考虑网络传输以及执行器饱和的航天器自抗扰控制方法
CN108803632A (zh) * 2018-09-19 2018-11-13 哈尔滨工程大学 基于饱和补偿技术的水面无人艇全状态约束轨迹跟踪控制方法
CN109100939A (zh) * 2018-09-19 2018-12-28 哈尔滨工程大学 考虑输入饱和的水面无人艇全状态约束轨迹跟踪控制方法
CN108803632B (zh) * 2018-09-19 2021-03-09 哈尔滨工程大学 基于饱和补偿技术的水面无人艇全状态约束轨迹跟踪控制方法
CN109240316A (zh) * 2018-11-15 2019-01-18 哈尔滨工程大学 考虑推进器输出饱和的海底飞行节点预设性能轨迹跟踪控制方法
CN111679585A (zh) * 2020-07-03 2020-09-18 大连海事大学 一种具有输入饱和受限的无人船强化学习自适应跟踪控制方法
CN114661056A (zh) * 2022-05-19 2022-06-24 浙江大学湖州研究院 一种考虑推进器伺服控制的差动水面无人船轨迹跟踪方法
CN116577997A (zh) * 2023-07-06 2023-08-11 西北工业大学 一种基于并发学习的全向小车参数辨识方法
CN116577997B (zh) * 2023-07-06 2023-10-03 西北工业大学 一种基于并发学习的全向小车参数辨识方法
CN116627042A (zh) * 2023-07-20 2023-08-22 南京邮电大学 执行器非对称饱和多自主体系统的分布式协同跟踪方法
CN116627042B (zh) * 2023-07-20 2023-09-29 南京邮电大学 执行器非对称饱和多自主体系统的分布式协同跟踪方法
CN117666341A (zh) * 2023-11-30 2024-03-08 天合光能股份有限公司 目标对象控制方法、装置、计算机设备和存储介质

Also Published As

Publication number Publication date
CN107065847B (zh) 2020-03-20

Similar Documents

Publication Publication Date Title
CN107065847B (zh) 一种执行器非对称饱和的水面舰船轨迹跟踪控制方法
CN106406095B (zh) 输入输出非对称受限的全驱动水面舰船轨迹跟踪控制方法
Chen Robust tracking control for self-balancing mobile robots using disturbance observer
Rezazadegan et al. A novel approach to 6-DOF adaptive trajectory tracking control of an AUV in the presence of parameter uncertainties
CN108319138A (zh) 一种欠驱动无人艇的滑模-反步双回路轨迹跟踪控制方法
CN110618611A (zh) 一种基于回转率约束的无人艇轨迹跟踪安全控制方法
Oktafianto et al. Design of autonomous underwater vehicle motion control using sliding mode control method
Fu et al. A novel asymmetrical integral barrier Lyapunov function-based trajectory tracking control for hovercraft with multiple constraints
Ahmed et al. Modeling and simulation of a quadcopter UAV.
Liu et al. High AOA decoupling control for aircraft based on ADRC
Khebbache et al. Robust stabilization of a quadrotor aerial vehicle in presence of actuator faults
Zhang et al. Adaptive stabilization and trajectory tracking of airship with neutral buoyancy
Juan et al. Path following backstepping control of underactuated unmanned underwater vehicle
Bo-Wen et al. Global asymptotic stabilization of an underactuated surface vessel
Kim et al. Slack variables generation via QR decomposition for adaptive nonlinear control of affine underactuated systems
Gurenko Mathematical model of autonomous underwater vehicle
Lopez et al. Disturbance rejection for a Quadrotor aircraft through a robust control
Lin et al. Heading control of Air Cushion Vehicle with disturbance observer based on terminal sliding mode
Juan et al. AUV control systems of nonlinear extended state observer design
Rodić et al. Dynamic Inversion Control of quadrotor with complementary Fuzzy logic compensator
LIANG et al. Sliding-mode trajectory tracking control of autonomous surface vessel
Ding et al. Course control of air cushion vessel based on terminal sliding mode control with rbf neural network
Fu et al. Coordinated formation control of nonlinear marine vessels under directed communication topology
Wang et al. Second order nonsingular terminal sliding mode control with extended state observer for course control of air cushion vehicle
Fu et al. Barrier Lyapunov function-based backstepping control for acv safety trajectory tracking

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant