CN107058949A - 一种耐磨二硫化钨薄膜的制备方法 - Google Patents

一种耐磨二硫化钨薄膜的制备方法 Download PDF

Info

Publication number
CN107058949A
CN107058949A CN201710207006.XA CN201710207006A CN107058949A CN 107058949 A CN107058949 A CN 107058949A CN 201710207006 A CN201710207006 A CN 201710207006A CN 107058949 A CN107058949 A CN 107058949A
Authority
CN
China
Prior art keywords
target
film
preparation
sputtering
monocrystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710207006.XA
Other languages
English (en)
Other versions
CN107058949B (zh
Inventor
郑晓华
杨芳儿
沈靖枫
徐秉政
李昂
鲁叶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201710207006.XA priority Critical patent/CN107058949B/zh
Publication of CN107058949A publication Critical patent/CN107058949A/zh
Application granted granted Critical
Publication of CN107058949B publication Critical patent/CN107058949B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • C23C14/345Applying energy to the substrate during sputtering using substrate bias
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种耐磨二硫化钨薄膜的制备方法,包括如下步骤:(1)对单晶硅片进行前处理,使其表面清洁、粗糙度不高于Ra 0.1;将石墨靶、WS2靶和前处理后的单晶硅片装入多靶磁控溅射沉积室,将沉积室的气压抽至1.0×10‑3 Pa后,调整好靶基距,并将脉冲直流负偏压施加至基材上;(2)通入高纯氩气为工作气体,然后以石墨靶作为溅射靶材,于单晶硅片表面沉积厚度为20nm~400nm的非晶态碳膜;(3)将步骤(2)所得非晶态碳膜的温度调整到200℃,然后以WS2靶为溅射靶材,在非晶态碳膜上沉积厚度为140~740nm的WS2薄膜,从而获得二硫化钨薄膜。本发明方法工艺简单、经济性较好,能显著提高二硫化钨薄膜的力学性能以及在真空或潮湿环境中的耐磨性能。

Description

一种耐磨二硫化钨薄膜的制备方法
技术领域
本发明涉及一种磁控溅射固体润滑膜的制备方法,具体涉及一种二硫化钨薄膜的制备方法,属于材料的摩擦磨损与固体润滑领域。
背景技术
过渡金属硫化物薄膜,如二硫化钨(WS2),因具有层状晶体结构而呈现出优异的润滑性能,已在金属加工、航空航天、真空设备等摩擦学工程领域得到了广泛应用。但由于其在潮湿大气中容易吸附氧气和水蒸汽,使耐磨性能大幅度降低,服役性能和使用场合受到较大限制。因此,如何提高WS2薄膜在潮湿环境中的摩擦磨损性能得到了极大关注,尤其是磁控溅射WS2薄膜,因其成分及厚度均匀性较好且易于控制、组织结构致密、表面光滑、摩擦特性稳定,在实际应用中被大量采用。
目前,改善潮湿环境中磁控溅射WS2薄膜摩擦磨损性能的方法包括:(1)在WS2薄膜中掺入一定量的金属如Ag(赖德明,摩擦学学报,2006,26(6):515-518)、Ti(Banerjee T,Surface andCoatings Technology,2014,258:849-860)、Cr(Deepthi B,Surface&Coatings Technology,2010,205(2):565-574)等,金属颗粒在薄膜中呈现纳米晶或非晶状态,改善薄膜的致密性和耐磨性,但该方法存在工艺成本高、摩擦因数上升幅度大、耐磨性能提升幅度有限等缺点;(2)掺入一定量的其他硫化物或碳基材料形成纳米复合膜,如WS2/MoS2复合膜(Watanabe S,Surfaceand Coatings Technology,2004,188:644-648)、WS2/MoS2/C复合膜等(周磊,中国有色金属学报,2010,20(3):483-487),所得复合膜结构致密,但磨损率高(约为10-13m3N-1m-1量级)。
发明内容
本发明的目的在于提供一种工艺简单、经济性较好的二硫化钨薄膜的制备方法,能显著提高二硫化钨薄膜的力学性能以及在真空或潮湿环境中的耐磨性能。
为实现前述发明目的,本发明通过在基材与所沉积的二硫化钨薄膜之间增加一层非晶态碳膜,控制碳膜的沉积条件,从而改变二硫化钨薄膜的生长特征,显著提高二硫化钨薄膜的力学性能以及在真空或潮湿环境中的耐磨性能,其采用的具体技术方案如下:
一种二硫化钨薄膜的制备方法,所述的方法包括如下步骤:
(1)镀膜前准备:对单晶硅片进行前处理,使其表面清洁、粗糙度不高于Ra 0.1;将石墨靶、WS2靶和前处理后的单晶硅片装入多靶磁控溅射沉积室,将沉积室的气压抽至1.0×10-3Pa后,调整好靶基距,并将脉冲直流负偏压施加至基材上;
(2)非晶态碳膜的制备:通入高纯氩气为工作气体,然后以石墨靶作为溅射靶材,控制溅射功率为45W~80W,溅射气压为0.2Pa~0.8Pa,单晶硅片温度为100℃~300℃,于单晶硅片表面沉积厚度为20nm~400nm的非晶态碳膜;
(3)WS2薄膜的制备:将步骤(2)所得非晶态碳膜的温度调整到200℃,然后以WS2靶为溅射靶材,在非晶态碳膜上沉积厚度为140nm~740nm的WS2薄膜,从而获得二硫化钨薄膜。
本发明步骤(1)中,对单晶硅片的前处理包括常规除油、机械打磨、机械/化学抛光、干燥等环节。
本发明步骤(1)中,优选控制靶基距为70mm,脉冲直流负偏压的幅值为50V,占空比为50%。
本发明步骤(2)中,溅射时间可根据所需厚度进行控制,一般在22min~270min。
本发明步骤(3)中,控制溅射功率为60W,溅射气压为0.6Pa,沉积温度为200℃。溅射时间可根据所需厚度进行控制,一般在9min~46min。
本发明具体推荐所述制备方法按照如下步骤进行:
(1)镀膜前准备:对单晶硅片进行前处理,使其表面清洁、粗糙度不高于Ra 0.1;将石墨靶、WS2靶和前处理后的单晶硅片装入多靶磁控溅射沉积室,将沉积室的气压抽至1.0×10-3Pa后,控制靶基距为70mm,并将脉冲直流负偏压施加至基材上,脉冲直流负偏压的幅值为50V,占空比为50%;
(2)非晶态碳膜的制备:通入高纯氩气为工作气体,然后以石墨靶作为溅射靶材,控制溅射功率为45W~80W,溅射气压为0.2Pa~0.8Pa,单晶硅片温度为100℃~300℃,溅射时间为22min~270min,于单晶硅片表面沉积厚度为20nm~400nm的非晶态碳膜;
(3)WS2薄膜的制备:将步骤(2)所得非晶态碳膜的温度调整到200℃,然后以WS2靶为溅射靶材,控制溅射功率为60W,溅射气压为0.6Pa,溅射时间为9~46min,在非晶态碳膜上沉积厚度为140nm~740nm的WS2薄膜,从而获得二硫化钨薄膜。
本发明中使用的高纯氩气的含量指标为:纯度:≥99.999%,含氧量:≤1.5PPM,含氮量:≤50PPM,含水量:≤3PPM。
本发明方法制得的二硫化钨薄膜呈非晶态,硬度高、弹性模量大,与基材结合良好,在潮湿大气和真空中均能保持低摩擦因数与低磨损率,摩擦学性能优异。
与现有直接沉积在单晶硅表面的WS2薄膜相比,本发明的有益效果在于:
(1)本发明通过在基材与所沉积的二硫化钨薄膜之间增加一层非晶态碳膜,控制碳膜的沉积条件,从而改变二硫化钨薄膜的生长特征,大幅度提升WS2薄膜的力学性能,硬度高,弹性模量大,薄膜在真空和潮湿大气中的耐磨性能均得到显著提高。这不仅大幅度延长了薄膜的使用寿命,而且显著降低薄膜对使用环境的敏感性,拓展了其服役范围,也有利于简化摩擦副的结构,降低防护等级、维护难度以及综合使用成本。
(2)本发明制备的耐磨二硫化钨薄膜,其工艺简单、经济性较好,与基材的结合优于直接沉积在单晶硅表面的WS2薄膜,有利于延长摩擦副的寿命。
附图说明
图1为实施例2的横截面SEM图。
图2a和2b分别为实施例2和对比例1表面WS2的表面形貌SEM图。
图3为实施例2的X射线光电子能谱(XPS)图。
图4为实施例2和对比例1的X射线衍射(XRD)图。
具体实施方式
下面结合具体实施例对本发明进行进一步描述,但本发明的保护范围并不仅限于此:
实施例1
(1)镀膜前准备
取尺寸为20×20×0.45mm的单晶抛光硅片(<100>或<111>晶向)一块,经无水酒精超声除油、10%(体积分数)氢氟酸溶液浸泡、去离子水清洗后热风吹干,备用。取Φ60×3mm石墨靶(碳质量分数99.99%)和WS2靶各一块(WS2质量分数99.9%),与基材一起装入多靶磁控溅射室,将沉积室抽真空至1.0×10-3Pa,调节靶基距至70mm,调节脉冲直流偏压电源,使负偏压的输出幅值为50V,占空比为50%。
(2)碳膜沉积
通入高纯氩气(流量50sccm)并使气压稳定在0.2Pa,开始加热基材并使温度恒定在300℃,开启石墨靶溅射电源进行溅射(功率为45W),时长为22min,所得碳膜厚度约为20nm。
(3)WS2薄膜沉积
使基材温度降至200℃,调节氩气压力至0.6Pa,开启WS2靶溅射电源进行溅射(功率为60W),时长为46min,所得WS2薄膜厚度约为740nm。
实施例2
(1)镀膜前准备
与实施例1相同。
(2)碳膜沉积
通入高纯氩气(流量50sccm)并使气压稳定在0.6Pa,开始加热基材并使温度恒定在200℃,开启石墨靶溅射电源进行溅射(功率为65W),时长为270min,所得碳膜厚度约为370nm。
(3)WS2薄膜沉积
维持基材温度200℃和沉积气压0.6Pa不变,开启WS2靶溅射电源进行溅射(功率为60W),时长为9min,所得WS2薄膜厚度约为140nm。
实施例3
(1)镀膜前准备
与实施例1相同。
(2)碳膜沉积
通入高纯氩气(流量50sccm)并使气压稳定在0.8Pa,开始加热基材并使温度恒定在100℃,开启石墨靶溅射电源进行溅射(功率为80W),时长为118min,所得碳膜厚度约为210nm。
(3)WS2薄膜沉积
提高基材加热温度并恒定在200℃,调节沉积气压至0.6Pa,开启WS2靶溅射电源进行溅射(功率为60W),时长为33min,所得WS2薄膜厚度约为515nm。
对比例1
(1)镀膜前准备
与实施例1相同。
(2)WS2薄膜沉积
通入高纯氩气(流量50sccm)并使气压稳定在0.6Pa,开始加热基材并使温度恒定在200℃,开启WS2靶溅射电源进行溅射(功率为60W),时长为55min,所得WS2薄膜厚度约为1230nm。
经检测,实施例1~实施例3所获WS2薄膜具有非晶态结构,硫钨比约为0.98~1.02,硬度高于5GPa,在潮湿大气(相对湿度75%~85%)和真空(10-1Pa)中的磨损率(测试条件:球-盘副,GCr15钢球直径3mm,法向载荷0.5N,相对滑动速率0.11m/s,测试时长15min)比Si表面WS2薄膜(对比例1)低一个数量级以上,薄膜的力学及摩擦学性能测试结果见表1。如图1所示为实施例2的横截面SEM照片,图中WS2与a-C膜界面平直,表面平整。图2a和2b所示分别为实施例2和对比例1表面WS2的表面形貌,可以看到实施例2中“蠕虫”结构细小、组织致密,而对比例中结构粗大且疏松。图3所示为实施例2的X射线光电子能谱(XPS)图,表明薄膜中形成了WS2。图4所示为实施例2和对比例1表面WS2的XRD图对比,实施例2呈非晶态,而对比例1中表面WS2呈晶态结构。
表1

Claims (6)

1.一种二硫化钨薄膜的制备方法,所述的方法包括如下步骤:
(1)镀膜前准备:对单晶硅片进行前处理,使其表面清洁、粗糙度不高于Ra 0.1;将石墨靶、WS2靶和前处理后的单晶硅片装入多靶磁控溅射沉积室,将沉积室的气压抽至1.0×10- 3Pa后,调整好靶基距,并将脉冲直流负偏压施加至基材上;
(2)非晶态碳膜的制备:通入高纯氩气为工作气体,然后以石墨靶作为溅射靶材,控制溅射功率为45W~80W,溅射气压为0.2Pa~0.8Pa,单晶硅片温度为100℃~300℃,于单晶硅片表面沉积厚度为20nm~400nm的非晶态碳膜;
(3)WS2薄膜的制备:将步骤(2)所得非晶态碳膜的温度调整到200℃,然后以WS2靶为溅射靶材,在非晶态碳膜上沉积厚度为140nm~740nm的WS2薄膜,从而获得二硫化钨薄膜。
2.如权利要求1所述的制备方法,其特征在于:步骤(1)中,控制靶基距为70mm,脉冲直流负偏压的幅值为50V,占空比为50%。
3.如权利要求1所述的制备方法,其特征在于:步骤(2)中,溅射时间为22min~270min。
4.如权利要求1所述的制备方法,其特征在于:步骤(3)中,控制溅射功率为60W,溅射气压为0.6Pa,沉积温度为200℃。
5.如权利要求1所述的制备方法,其特征在于:步骤(3)中,溅射时间为9min~46min。
6.如权利要求1所述的制备方法,其特征在于:所述制备方法按照如下步骤进行:
(1)镀膜前准备:对单晶硅片进行前处理,使其表面清洁、粗糙度不高于Ra 0.1;将石墨靶、WS2靶和前处理后的单晶硅片装入多靶磁控溅射沉积室,将沉积室的气压抽至1.0×10- 3Pa后,控制靶基距为70mm,并将脉冲直流负偏压施加至基材上,脉冲直流负偏压的幅值为50V,占空比为50%;
(2)非晶态碳膜的制备:通入高纯氩气为工作气体,然后以石墨靶作为溅射靶材,控制溅射功率为45W~80W,溅射气压为0.2Pa~0.8Pa,单晶硅片温度为100℃~300℃,溅射时间为22min~270min,于单晶硅片表面沉积厚度为20nm~400nm的非晶态碳膜;
(3)WS2薄膜的制备:将步骤(2)所得非晶态碳膜的温度调整到200℃,然后以WS2靶为溅射靶材,控制溅射功率为60W,溅射气压为0.6Pa,溅射时间为9min~46min,在非晶态碳膜上沉积厚度为140nm~740nm的WS2薄膜,从而获得二硫化钨薄膜。
CN201710207006.XA 2017-03-31 2017-03-31 一种耐磨二硫化钨薄膜的制备方法 Active CN107058949B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710207006.XA CN107058949B (zh) 2017-03-31 2017-03-31 一种耐磨二硫化钨薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710207006.XA CN107058949B (zh) 2017-03-31 2017-03-31 一种耐磨二硫化钨薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN107058949A true CN107058949A (zh) 2017-08-18
CN107058949B CN107058949B (zh) 2019-11-29

Family

ID=59602476

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710207006.XA Active CN107058949B (zh) 2017-03-31 2017-03-31 一种耐磨二硫化钨薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN107058949B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107946080A (zh) * 2017-11-30 2018-04-20 西南交通大学 一种制备染料敏化太阳能电池对电极碳薄膜的方法
CN108977765A (zh) * 2018-07-03 2018-12-11 浙江工业大学 一种WSx/Me/a-C/Me纳米多层结构固体润滑膜及其制备方法
CN111455386A (zh) * 2020-05-19 2020-07-28 中国科学院兰州化学物理研究所 一种超滑二硫化钨/含氢碳薄膜及其制备方法
CN112795898A (zh) * 2020-12-29 2021-05-14 杭州电子科技大学 一种硼、氮共掺杂二硫化钨薄膜的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102994947A (zh) * 2011-09-17 2013-03-27 中国科学院兰州化学物理研究所 类金刚石复合二硫化钼纳米多层薄膜及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102994947A (zh) * 2011-09-17 2013-03-27 中国科学院兰州化学物理研究所 类金刚石复合二硫化钼纳米多层薄膜及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
J.-H.WU: ""Tribological behavior of WC/DLC/WS2 nanocomposite coatings"", 《SURFACE & COATINGS TECHNOLOGY》 *
宋玉波 等: ""磁控溅射WS2 薄膜的制备工艺及其性能"", 《真空》 *
张学谦 等: ""基体偏压对高功率脉冲磁控溅射制备类石墨碳膜的影响研究"", 《真空科学与技术学报》 *
杨芳儿 等: ""不同调制周期WSx/a-C多层膜的组织结构及摩擦学特性"", 《中国有色金属学报》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107946080A (zh) * 2017-11-30 2018-04-20 西南交通大学 一种制备染料敏化太阳能电池对电极碳薄膜的方法
CN108977765A (zh) * 2018-07-03 2018-12-11 浙江工业大学 一种WSx/Me/a-C/Me纳米多层结构固体润滑膜及其制备方法
CN111455386A (zh) * 2020-05-19 2020-07-28 中国科学院兰州化学物理研究所 一种超滑二硫化钨/含氢碳薄膜及其制备方法
CN111455386B (zh) * 2020-05-19 2022-02-01 中国科学院兰州化学物理研究所 一种超滑二硫化钨/含氢碳薄膜及其制备方法
CN112795898A (zh) * 2020-12-29 2021-05-14 杭州电子科技大学 一种硼、氮共掺杂二硫化钨薄膜的制备方法

Also Published As

Publication number Publication date
CN107058949B (zh) 2019-11-29

Similar Documents

Publication Publication Date Title
Tyagi et al. A critical review of diamond like carbon coating for wear resistance applications
CN101444985B (zh) 一种非晶碳涂层及其制备方法和用途
CN107058949B (zh) 一种耐磨二硫化钨薄膜的制备方法
Nossa et al. The influence of the addition of C and N on the wear behaviour of W–S–C/N coatings
CN105908126B (zh) 一种高Al含量的AlTiN复合涂层及制备方法
CN106884149A (zh) 水环境耐磨涂层、其制备方法及应用
CN108728802A (zh) 多层耐高温Ti/Zr共掺杂类金刚石涂层及其制备方法
CN103920185A (zh) 一种Mo金属掺杂复合类金刚石涂层钛合金人工骨关节及其制备方法
CN113106408B (zh) 一种自润滑难熔高熵合金薄膜及其制备方法
CN103212729A (zh) 一种具有CrAlTiN超晶格涂层的数控刀具及其制备方法
CN111647851B (zh) 兼具高硬度和高韧性Zr-B-N纳米复合涂层及其制备方法
CN110670038A (zh) 具有自润滑和耐磨性能的AlCrN/MoS2纳米复合薄膜及其制备方法
Zhang et al. Microstructure and friction behavior of LaF3 doped Ti-MoS2 composite thin films deposited by unbalanced magnetron sputtering
CN101921983B (zh) 一种w-s-c复合膜的制备方法
CN105951044A (zh) 乙炔气体改性类石墨碳膜的制备方法
US20240093344A1 (en) Hard carbon coatings with improved adhesion strength by means of hipims and method thereof
CN107699859A (zh) 轴瓦用全金属自润滑减摩涂层及其制备方法
CN111534803B (zh) 一种Mo-V-C-N复合涂层的制备方法
CN106467959B (zh) 一种基体表面的固体润滑复合涂层及其制备方法
CN108396306A (zh) 一种低温沉积硬度可控的类金刚石复合薄膜的方法
CN114351088B (zh) 一种固体自润滑涂层及其制备方法
CN109023265A (zh) CrN/CrNiN纳米多层涂层及其制备方法、纳米多层涂层及其制备方法与应用
CN109972101A (zh) 一种低掺杂金属纳米类金刚石涂层的制备方法
CN104928639B (zh) 一种超强韧碳基表面防护涂层及其制备方法
Liu et al. Mechanical and tribological properties of CrN coated Inconel X750

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant