CN107058365B - 同工酶共催化合成2,3-丁二醇的基因工程菌及其构建方法与应用 - Google Patents

同工酶共催化合成2,3-丁二醇的基因工程菌及其构建方法与应用 Download PDF

Info

Publication number
CN107058365B
CN107058365B CN201710122238.5A CN201710122238A CN107058365B CN 107058365 B CN107058365 B CN 107058365B CN 201710122238 A CN201710122238 A CN 201710122238A CN 107058365 B CN107058365 B CN 107058365B
Authority
CN
China
Prior art keywords
butanediol
gene
rbs
seq
butanediol dehydrogenase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710122238.5A
Other languages
English (en)
Other versions
CN107058365A (zh
Inventor
应汉杰
柳东
杨正娇
沈晓宁
庄伟�
朱晨杰
吴菁岚
陈勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN201710122238.5A priority Critical patent/CN107058365B/zh
Publication of CN107058365A publication Critical patent/CN107058365A/zh
Application granted granted Critical
Publication of CN107058365B publication Critical patent/CN107058365B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/18Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic polyhydric
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01004R,R-butanediol dehydrogenase (1.1.1.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01005Acetolactate decarboxylase (4.1.1.5)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明公开了一种利用同工酶共催化合成2,3‑丁二醇的方法,通过两个以上具有互补性催化优势的2,3‑丁二醇脱氢蛋白(又称2,3‑丁二醇脱氢酶)的共同催化,能够将2,3‑丁二醇的前体高效并且彻底地转化为2,3‑丁二醇。本发明通过同工酶共催化合成2,3‑丁二醇的方法,不仅能够提高2,3‑丁二醇合成的效率,还能够实现其前体物质完全转化,因而能够显著提高细胞代谢网络中2,3‑丁二醇合成支路的通量以及2,3‑丁二醇合成过程的经济性。

Description

同工酶共催化合成2,3-丁二醇的基因工程菌及其构建方法与 应用
技术领域
本发明属于基因工程和生物催化技术领域,具体涉及同工酶共催化合成2,3-丁二醇的基因工程菌及其构建方法与应用。
背景技术
2,3-丁二醇可以作为一种潜在的平台化合物,替代传统的平台化合物——碳四烃,用于大规模的合成甲乙酮(优良溶剂)和1,3-丁二烯(广泛应用于合成橡胶、聚酯和聚亚胺酯等领域)。生产2,3-丁二醇的方法可分为化学法和生物法。由于2,3-丁二醇结构特殊,化学法生产2,3-丁二醇主要是以石油裂解时产生的四碳类碳氢化合物在高温高压下水解得到,成本高、过程烦琐、不易操作,所以一直很难实现大规模的工业化生产。
生物法即通过微生物发酵或者酶催化的方法生产2,3-丁二醇。随着传统化学法所带来的环境问题日益严重,各国政府对环境问题越来越关注的前提下,将可再生的生物质转化为化工原料的研究得到广泛的关注;相比于对环境破坏较为严重的化学方法生产2,3-丁二醇,生物法具有以下优点:1、生产成本较低,化学法的生产成本则很高;2、对环境友好,并不会像化学方法给环境保护带来很大压力,2,3-丁二醇作为有机合成中间体取代了许多的化合物和其它石化产品的市场,前景广阔,社会、环境效益显著,非常有利于该产品的广泛应用;3、可再生性,摆脱了化学法对化石原料的依赖性,因此具有很好的应用前景。目前2,3-丁二醇的商业价格达100000元/吨。
然而,生物法与化学法相比,亦存在很多不足之处,其中最为重要的就是生物催化剂合成2,3-丁二醇的浓度低、速率低,前体物质转化不彻底,导致了产品后分离纯化困难、碳原料收率低下等问题,其根本原因是生物催化过程中催化2,3-丁二醇合成的蛋白的催化性能不够稳定。生物体内能够催化2,3-丁二醇合成的蛋白种类众多、催化性能各异,然而目前生物法合成2,3-丁二醇的研究中,无论是采用生物发酵还是酶催化的方式,其2,3-丁二醇合成过程均主要由单个2,3-丁二醇脱氢蛋白催化完成。比如CN201480068734.1中提到的乙偶姻向2,3-丁二醇转化即是导入单个2,3-丁二醇脱氢蛋白编码基因,从而增加2,3-丁二醇的产量;ChiamYu Ng等研究酵母产2,3-丁二醇的途径时,也只是对单个基因进行操作(Nget al.,Microbial Cell Factories 2012 11:68);Soojin Lee等研究合成左型2,3-丁二醇是在大肠杆菌中对budA(乙酰乳酸脱羧反应蛋白编码基因)和meso-budC(编码内消旋型2,3-丁二醇合成基因)操作合成纯的内消旋型2,3-丁二醇(Soojin Lee,Borim Kim etal.,Synthesis of Pure meso-2,3-Butanediol from Crude Glycerol Using anEngineered Metabolic Pathway in Escherichia coli 2012 1801-1813)。Li等人在大肠杆菌中进行全细胞催化合成2,3-丁二醇也仅仅对单个2,3-丁二醇脱氢酶基因进行表达(Lixiang Li et al.,Biocatalytic production of(2S,3S)-2,3-butanediol fromdiacetyl using whole cells of engineered Escherichia coli 2012 111-116)。单独采用一种蛋白进行2,3-丁二醇的合成往往导致催化合成效率低、前体物质利用不完全等问题的出现。
发明内容
本发明要解决的问题是,提供一种同工酶共催化合成2,3-丁二醇的方法。
为解决上述技术问题,本发明提供技术方案如下:
同工酶共催化合成2,3-丁二醇的基因工程菌,其特征在于,该菌株中含有两种或两种以上对2,3-丁二醇具有不同亲和力的2,3-丁二醇脱氢酶同工酶。
其中,所述对2,3-丁二醇具有不同亲和力的2,3-丁二醇脱氢酶同工酶的基因序列包括SEQ ID NO.65~68所示的核苷酸序列。
作为优选,所述2,3-丁二醇脱氢酶同工酶包括:(1)拜氏梭菌(Clostridiumbeijerinckii NCIMB 8052)的2,3-丁二醇脱氢酶;
(2)克雷伯氏菌(K.pneumoniae KCTC 2242)的2,3-丁二醇脱氢酶;
(3)产乙醇梭菌(C.autoethanogenum)的2,3-丁二醇脱氢酶;
(4)枯草芽孢杆菌(B.Subtilis 168)的2,3-丁二醇脱氢酶。
其中,所述枯草芽孢杆菌(B.Subtilis 168)的2,3-丁二醇脱氢酶,其核苷酸序列如SEQ ID NO.65所示;
所述拜氏梭菌(Clostridium beijerinckii NCIMB 8052)的2,3-丁二醇脱氢酶,其核苷酸序列如SEQ ID NO.66所示;
所述克雷伯氏菌(K.pneumoniae KCTC 2242)的2,3-丁二醇脱氢酶,其核苷酸序列如SEQ ID NO.67所示;
所述产乙醇梭菌(C.autoethanogenum)的2,3-丁二醇脱氢酶,其核苷酸序列如SEQID NO.68所示;
同工酶共催化合成2,3-丁二醇的基因工程菌的构建方法,包括如下步骤:
(1)将SEQ ID NO.65~68所示2,3-丁二醇脱氢酶同工酶基因序列中的两种或以上的序列串联连接入表达载体,或者将SEQ ID NO.65~68所示基因序列中的一两种或以上的序列分别连接入不同的表达载体中,得到重组质粒;
(2)将步骤(1)得到的重组质粒导入宿主细胞中,既得到同工酶共催化合成2,3-丁二醇的基因工程菌。
其中,所述的宿主细胞为丙酮丁醇梭菌C.acetobutylicum B3。
其中,任意两个2,3-丁二醇脱氢酶同工酶基因之间由一段RBS序列连接。
其中,所述RBS序列如SEQ ID NO.70所示。
作为优选,2,3-丁二醇脱氢酶同工酶基因串联连接包括如下组合:
(1)枯草芽孢杆菌(B.Subtilis 168)的2,3-丁二醇脱氢酶基因bdhA+拜氏梭菌(Clostridium beijerinckii NCIMB 8052)的2,3-丁二醇脱氢酶基因acr;
(2)枯草芽孢杆菌(B.Subtilis 168)的2,3-丁二醇脱氢酶基因bdhA+克雷伯氏菌(K.pneumoniae KCTC 2242)的2,3-丁二醇脱氢酶基因budc;
(3)枯草芽孢杆菌(B.Subtilis 168)的2,3-丁二醇脱氢酶基因bdhA+产乙醇梭菌(C.autoethanogenum)的2,3-丁二醇脱氢酶基因bdh;
(4)枯草芽孢杆菌(B.Subtilis 168)的乙酰乳酸脱羧酶基因alsD+拜氏梭菌(Clostridiumbeijerinckii NCIMB 8052)的2,3-丁二醇脱氢酶基因acr;
(5)枯草芽孢杆菌(B.Subtilis 168)的乙酰乳酸脱羧酶基因alsD+克雷伯氏菌(K.pneumoniae KCTC 2242)的2,3-丁二醇脱氢酶基因budc;
(6)枯草芽孢杆菌(B.Subtilis 168)的乙酰乳酸脱羧酶基因alsD+产乙醇梭菌(C.autoethanogenum)的2,3-丁二醇脱氢酶基因bdh;
(7)枯草芽孢杆菌(B.Subtilis 168)的乙酰乳酸脱羧酶基因alsD+枯草芽孢杆菌(B.Subtilis 168)的2,3-丁二醇脱氢酶基因bdhA。
当任意两个2,3-丁二醇脱氢酶同工酶基因之间由一段RBS序列连接,包括如下组合:
(1)枯草芽孢杆菌B.Subtilis 168的乙酰乳酸脱羧酶基因alsD+RBS+拜氏梭菌(Clostridium beijerinckii)NCIMB 8052的2,3-丁二醇脱氢酶基因acr;
(2)枯草芽孢杆菌B.Subtilis 168的乙酰乳酸脱羧酶基因alsD+RBS+克雷伯氏菌(K.pneumoniae KCTC 2242)的2,3-丁二醇脱氢酶基因budc;
(3)枯草芽孢杆菌B.Subtilis 168的乙酰乳酸脱羧酶基因alsD+RBS+产乙醇梭菌(C.autoethanogenum)的2,3-丁二醇脱氢酶基因bdh;
(4)枯草芽孢杆菌B.Subtilis 168的乙酰乳酸脱羧酶基因alsD+RBS+枯草芽孢杆菌(B.Subtilis 168)的2,3-丁二醇脱氢酶基因bdhA。
(5)枯草芽孢杆菌B.Subtilis 168的乙酰乳酸脱羧酶基因alsD+RBS+枯草芽孢杆菌(B.Subtilis 168)的2,3-丁二醇脱氢酶基因bdhA+RBS+拜氏梭菌(ClostridiumbeijerinckiiNCIMB 8052)的2,3-丁二醇脱氢酶基因acr;
(6)枯草芽孢杆菌(B.Subtilis 168)的乙酰乳酸脱羧酶基因alsD+RBS+枯草芽孢杆菌(B.Subtilis 168)的2,3-丁二醇脱氢酶基因bdhA+RBS+克雷伯氏菌(K.pneumoniaeKCTC 2242)的2,3-丁二醇脱氢酶基因budc;
(7)枯草芽孢杆菌B.Subtilis 168)的乙酰乳酸脱羧酶基因alsD+RBS+枯草芽孢杆菌(B.Subtilis 168)的2,3-丁二醇脱氢酶基因bdhA+RBS+产乙醇梭菌(C.autoethanogenum)的2,3-丁二醇脱氢酶基因bdh。
从催化反应动力学来讲,酶的底物亲和力以及转换数是酶催化性能的重要表征,而从反应机理上来讲,具有高底物亲和力的酶能够将底物转化的更为彻底,但是转换数通常较低;转换数高的酶具有较快的产物合成速率,但是通常无法将底物转化彻底。本研究考察了多种2,3-丁二醇脱氢酶(又称作乙偶姻还原酶)的催化性能,发现一些蛋白能够高效率、高浓度地合成2,3-丁二醇,但存在前体物质转化不完全的问题;而另一些蛋白虽然合成2,3-丁二醇的速率稍低,但能够将前体物质彻底转化为2,3-丁二醇,亦即此两类酶具有互补性的催化优势。因此,本发明提供的两类同工酶共催化合成2,3-丁二醇的方法,既能实现2,3-丁二醇的高效合成,又能实现前体物质的彻底转化。该方法能够显著提升2,3-丁二醇合成过程的经济性以及相关生物过程的生产性能。
本发明公开了一种同工酶共催化合成2,3-丁二醇的基因工程菌及其构建方法与应用,主要是通过将对2,3-丁二醇具有不同亲和力的2,3-丁二醇脱氢酶同工酶同时构建到宿主细胞中,然后诱导表达,利用得到的重组菌进行发酵,
附图说明
图1是不同2,3-丁二醇脱氢蛋白的基因连接与表达方式示意。
图1中,R1为多个2,3-丁二醇脱氢蛋白基因分别、独立地连接在表达载体上;
R2为多个2,3-丁二醇脱氢蛋白基因通过基因融合表达的方式连接在同一表达载体上;
R3为多个2,3-丁二醇脱氢蛋白基因共同连接在同一表达载体上,且各基因之间补充RBS序列(核糖体结合位点序列),以利于各基因的表达;
R4为多个2,3-丁二醇脱氢蛋白基因共同连接在同一表达载体上,并且与其他基因一起表达。bdhA,来自于Bacillus subtilis的2,3-丁二醇脱氢酶基因(又称为2,3-丁二醇脱氢酶基因);acr,来自于Clostridium acetobutylicum的2,3-丁二醇脱氢酶基因;P表示表达基因的启动子;RBS表示核糖体结合位点。
具体实施方式
根据下述实施例,可以更好地理解本发明。然而,本领域的技术人员容易理解,实施例所描述的内容仅用于说明本发明,而不应当也不会限制权利要求书中所详细描述的本发明。
下述实施例中如无特殊说明,所用方法均为常规方法,如《分子克隆:实验室手册》(New York:Cold Spring Habor Laboratory Press,1989)中所述的方法。所用试剂均可从商业途径获得。
下述实施例以丙酮丁醇梭菌为例阐明本发明的同工酶共催化合成2,3-丁二醇基因工程菌株的构建方法。
本实验所要用得到培养基如下表:
Figure DA00026150139155808
Figure GDA0002615013910000051
Figure GDA0002615013910000061
Figure DA00026150139155871
Figure DA00026150139155918
实施例1:
体外扩增所需2,3-丁二醇脱氢酶基因片段及乙酰乳酸脱羧反应蛋白编码基因NP_391481(SEQ ID NO:5)片段,如需进行多基因整合表达,可通过重叠PCR的方式将两个或多个基因完成整合。
采用细菌基因组试剂盒(TaKaRa Code:DV810A)提取对数生长中后期的枯草芽孢杆菌B.Subtilis 168基因组DNA,用于合成乙酰乳酸脱羧反应蛋白编码基因(对应蛋白编号为NP_391481)和2,3-丁二醇脱氢酶基因(NP_388505)。以下所述基因组提取均与枯草芽孢杆菌B.Subtilis 168基因组DNA提取的方法相同,按照试剂盒说明进行此操作即可,拜氏梭菌(Clostridium beijerinckii)NCIMB 8052基因组DNA,用于合成2,3-丁二醇脱氢酶基因(ABR33642);克雷伯氏菌K.pneumoniae KCTC 2242基因组DNA,用于合成2,3-丁二醇脱氢酶基因(ABR77284);产乙醇梭菌C.autoethanogenum基因组DNA,用于合成2,3-丁二醇脱氢酶基因(YP_001634733)。以上所提到的蛋白编号均为NCBI-Protein ID。
以下引物在设计时,其前端和后端引物都插入了相对应质粒上的酶切位点,为了更好地进行一步克隆连接反应,载体酶切位点前后15~20bp必须与引物上保持一致,一步克隆原理参见ClonExpressTMII One Step Cloning Kit使用说明书。例如,当选用pIMPI-ptb载体进行外源基因表达时,即可选择限制性内切酶Nde I进行酶切,然后进行前后端各含有15~20bp相同序列的引物设计(不仅限于此种表达载体)。下面将以表格的形式列举扩增目的基因的引物。F代表前端引物,R代表后端引物,均为5'到3'。
表1单个2,3-丁二醇脱氢酶基因体外扩增引物
Figure GDA0002615013910000071
Figure GDA0002615013910000081
表2 NP_391481(乙酰乳酸脱羧反应蛋白编码基因,下文出现时不再标示)与上述四种2,3-丁二醇脱氢酶编码基因体外组装引物
Figure GDA0002615013910000082
Figure GDA0002615013910000091
表3 NP_391481与单个2,3-丁二醇脱氢酶基因之间加入一个RBS序列:AGGAGGTTAGTTAGA的扩增引物
Figure GDA0002615013910000092
Figure GDA0002615013910000101
表4用于体外扩增三基因之间含有两个RBS序列的NP_391481与两个2,3-丁二醇脱氢酶编码基因整合片段的引物:
Figure GDA0002615013910000102
Figure GDA0002615013910000111
Figure GDA0002615013910000121
表5 PCR反应体系(100ul)
PCR反应组分 体积(ul)
5×PS Buffer 20
dNTPmix 10
Primer 1 1
Primer 2 1
模板DNA 1
Prime star(高保真酶) 0.5
ddH2O 67.5
表6 PCR扩增反应程序设计
Figure GDA0002615013910000122
通过以上方法即可得到目的基因,使用胶回收试剂盒进行胶回收。具体步骤参见TaKaRa MiniBEST Agarose Gel DNA Extraction Kit Ver.4.0试剂盒。
实施例2:
将扩增的2,3-丁二醇脱氢酶基因与表达载体连接,通过热击转化或电转化的方法导入细胞中,获得具有催化活力的2,3-丁二醇脱氢酶蛋白。
(1)一步克隆法进行基因片段与载体连接:实施例1中所设计的引物,其两端都是含有Nde I酶切位点的,并且都人为的加上了一段与载体Nde I酶切位点两端相同的15-20bp的碱基序列。因此,可以直接用一步克隆试剂盒,具体操作步骤详见ClonExpressTMIIOne Step Cloning Kit使用说明书;
表7一步克隆反应体系:
反应体系组分 体积
ddH2O Up to 20ul
5×CE II Buffer 4ul
线性化克隆载体 1ul(50-200ng)
插入片段扩增产物 1ul(20-200ng)
Exnase<sup>TM</sup> II 2ul
(2)将一步克隆反应液导入细胞中,从而使上述组装的基因获得表达,合成出催化2,3丁二醇合成的蛋白,以下以热击转化大肠杆菌和电击转化丙酮丁醇梭菌为例来说明。
表8大肠杆菌热击转化步骤
Figure GDA0002615013910000131
(3)丙酮丁醇梭菌电击转化:将一步克隆反应液与E.coli Top10混合,E.coli Top10购自北京天根生化科技有限公司(目录号CB104)。pAN2为甲基化质粒(Heap,J.T.,Pennington,O.J.,Cartman,S.T.,Carter,G.P.,Minton,N.P.,2007.The ClosTron:auniversal gene knock-out system for the genus Clostridium.J MicrobiolMethods70,452-464)。并将转化后细胞涂布于含有氨苄青霉素和四环素素的LB平板上,挑取单菌落富集培养后提取质粒,提取到的质粒即是甲基化后的质粒。
(4)厌氧条件下,取2xYTG培养基培养的生长至对数中期的C.acetobutylicum B3(保藏于中国微生物菌种保藏管理委员会普通微生物中心,CGMCC No.5234;地址:北京市朝阳区北辰西路1号院3号,该菌株的信息在申请号为201210075094.X的中国专利中详细公开)培养液60ml,4℃、4000rpm离心10min弃去上清,加入足量预冷的电转缓冲液EPB(270mM蔗糖,5mM NaH2PO4,pH 7.4),洗涤两次,并用2.3ml EPB重悬。然后取570ul加入0.4cm电转杯放置在冰浴中冷却,并加入20ul甲基化的构建质粒,冰浴放置2min。2.0KV电压,25uF电容进行电转化。随后将电转液加入到1ml 37℃的2xYTG培养基中复苏培养4h,离心收集细胞100ul并将细胞涂布于含有20ug/ml甲砜霉素的P2平板中。厌氧培养24-36h后,获得含有构建质粒的重组丙酮丁醇梭菌。
实施例3:
为了更好的展示同工酶催化合成2,3-丁二醇这一方法的应用,在此以丙酮丁醇梭菌为同工酶表达的宿主、以葡萄糖为发酵底物催化合成2,3-丁二醇。
培养条件:丙酮丁醇梭菌(C.acetobutylicum B3(CGMCC 5234),以下简称B3)基因工程菌在平板上(加入1.5g/L琼脂粉的P2液体培养基)进行活化后,转接入种子液静止培养12-16h后,以10%(v/v)的接种量接入到含有50-60g/L的葡萄糖培养基中发酵120h。
发酵液组分用气相色谱检测,气相色谱检测条件如下:火焰离子检测器(FID),Agilent HP-INNOWAX 19091N-236毛细管色谱柱(60m×0.25mm×0.25um),N2为载气,流速2mL/min,分流比10:1,H2流速30ml/min,空气流速300ml/min,进样口温度240℃,检测器250℃,柱温(程序升温):70℃保留0.5min,然后以20℃/min的速率升温到190℃,保留4min。
表9表达不同2,3-丁二醇脱氢酶基因的发酵数据
Figure GDA0002615013910000151
a表示ABR33642和YP_001634733各自单独连接在表达载体上于细胞中共表达;
b表示ABR33642和YP_001634733两个基因一起连接在表达载体于细胞中共表达;
由表9数据可知,通过将2,3-丁二醇脱氢酶蛋白的合成基因导入细胞中,能够表达出催化2,3-丁二醇合成的蛋白进而成功生产出2,3-丁二醇。然而,各种基因编码出来的2,3-丁二醇合成蛋白的催化性能有所差异。如上表中ABR33642、YP_001634733表达出来的蛋白催化2,3-丁二醇合成的能力相对降低,但是能够将前体物质乙偶姻转化完全。NP_388505、ABR77284表达出来的蛋白催化2,3-丁二醇合成的能力较强,但是乙偶姻的转化不完全。因此,本研究以这些催化性能能够优势互补的2,3-丁二醇脱氢酶蛋白进行共同催化合成2,3-丁二醇,结果表明既能提高2,3-丁二醇产量又能实现前体物质转化的彻底性,是一种创新而有应用价值的方法。
表10 NP_391481与2,3-丁二醇脱氢酶基因共表达的工程菌发酵数据
Figure GDA0002615013910000152
催化乙偶姻合成2,3-丁二醇的主要蛋白是2,3-丁二醇脱氢酶,但是为了提高2,3-丁二醇的合成效率,可以将2,3-丁二醇脱氢酶基因与其他相关基因进行共表达,从而实现合成通量的提高。比如本研究除了2,3-丁二醇脱氢酶基因之外,还同时表达了用于乙偶姻合成的乙酰乳酸脱羧反应蛋白编码基因,与只有2,3-丁二醇脱氢酶基因表达的实施例(表9)相比,2,3-丁二醇的产量明显提高。
表11 NP_391481与2,3-丁二醇脱氢酶编码基因之间加入RBS序列进行表达的发酵数据
菌株名称 乙偶姻(g/L) 2,3-丁二醇(g/L)
B3(NP_391481-RBS-NP_388505) 0.9 7.9
B3(NP_391481-RBS-ABR33642) 0.01 5.0
B3(NP_391481-RBS-ABR77284) 1.3 6.5
B3(NP_391481-RBS-YP_001634733) 0.02 4.3
当多个基因连接在同一个表达载体上进行表达时,为了提高各基因的表达,可以通过在基因之间加入核糖体结合位点RBS的方式提高基因的表达强度。本例在两个基因之间加入RBS序列(AGGAGGTTAGTTAGA)后,质粒上的基因得到更好地表达,2,3-丁二醇的产量进一步提升。
表12 NP_391481及多个2,3-丁二醇脱氢酶基因共表达的数据
Figure GDA0002615013910000161
通过将多个不同来源的2,3-丁二醇脱氢酶基因与单个乙酰乳酸脱羧反应编码基因共表达,以B3(NP_391481-RBS-NP_388505-RBS-ABR33642)工程菌株为例,发酵终产物中乙偶姻的含量仅为0.01g/L,几乎可以忽略。而B3(NP_391481-RBS-NP_388505-RBS-ABR33642)工程菌株2,3丁二醇的产量则达到7.2g/L。在非目的产物的浓度极低甚至可以忽略的情况下,进行目的产物的分离与纯化将变得更加简单。若将此种方法应用于工业化发酵生产中,不仅可以降低劳动强度,更可以节约经济成本,同时也降低了分离过程中各种化学物质残留对环境产生的影响。
实施例4:
同工酶共催化合成2,3-丁二醇的方法,不但能应用于以葡萄糖为底物进行细胞发酵合成2,3-丁二醇,也能应用于以2,3-丁二醇合成前体乙偶姻为底物的细胞催化过程中。将实施例3表十二中的B3(NP_391481-RBS-NP_388505-RBS-YP_001634733)菌株在含有15g/L的葡萄糖的P2培养基中37℃培养12h后,加入10g/L的乙偶姻进行细胞催化反应,反应时间24h,最终能获得2,3-丁二醇17g/L(主要产量由前体物质乙偶姻转化而来,部分来自于以葡萄糖为底物的细胞代谢),乙偶姻残留不足0.1g/L,可见乙偶姻转化率接近100%。因此,本发明同工酶共催化的方法能用于酶催化或者含有酶的细胞的催化过程中。
实施例5:
在本发明的应用方面,本发明同工酶共催化合成2,3-丁二醇的方法不但能用于2,3-丁二醇的高效生产过程中,还能用于涉及2,3-丁二醇的其他生物过程中,这些生物过程可能并非以2,3-丁二醇的合成为目标,但是通过采用本发明同工酶共催化合成2,3-丁二醇的方法能够有效地调控这些生物过程,使其有更好的性能。如表十三所示,以生物丁醇发酵为例,丁醇发酵过程产生大约30%(w/w)的廉价副产物丙酮,浓度达到5g/L以上。通过在丁醇发酵中构建同工酶共催化合成2,3-丁二醇的过程,如以实施例3表十二中的B3(NP_391481-RBS-NP_388505-RBS-YP_001634733)用于生物丁醇发酵,几乎能够彻底消除丁醇发酵过程中大量的廉价副产物丙酮,使其浓度不足0.3g/L,从而整体提升丁醇发酵过程的总产品价值,同时让发酵产物更纯更易于后续的分离。
表13本发明在生物丁醇发酵过程中的应用效果
Figure GDA0002615013910000171
Figure GDA0002615013910000181
SEQUENCE LISTING
<110> 南京工业大学
<120> 同工酶共催化合成2,3-丁二醇的基因工程菌及其构建方法与应用
<130> SG20170124001
<160> 69
<170> PatentIn version 3.5
<210> 1
<211> 40
<212> DNA
<213> Artificial Sequence
<220>
<223> NP_388505-F
<400> 1
aaaagggagt gtcgacatat gaaggcagca agatggcata 40
<210> 2
<211> 46
<212> DNA
<213> Artificial Sequence
<220>
<223> NP_388505-R
<400> 2
gtactgagag tgcaccatat gttagttagg tctaacaagg attttg 46
<210> 3
<211> 39
<212> DNA
<213> Artificial Sequence
<220>
<223> ABR33642-F
<400> 3
aaaagggagt gtcgacatat gaaagcagca ttatggtat 39
<210> 4
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> ABR33642-R
<400> 4
gtactgagag tgcaccatat gttaagattt agatacaagt tc 42
<210> 5
<211> 40
<212> DNA
<213> Artificial Sequence
<220>
<223> ABR77284-F
<400> 5
aaaagggagt gtcgacatat gaaggcagct gttgttaccc 40
<210> 6
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> ABR77284-R
<400> 6
gtactgagag tgcaccatat gttagctacg cagatcgata ac 42
<210> 7
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> YP_001634733-F
<400> 7
aaaagggagt gtcgacatat gcgcgccgtc tattatgaag cg 42
<210> 8
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> YP_001634733-R
<400> 8
gtactgagag tgcaccatat gctaaccctg aaactctgta at 42
<210> 9
<211> 43
<212> DNA
<213> Artificial Sequence
<220>
<223> NP_391481-NP_388505-1
<400> 9
aaaagggagt gtcgacatat gaaacgagaa agcaacattc aag 43
<210> 10
<211> 44
<212> DNA
<213> Artificial Sequence
<220>
<223> NP_391481-NP_388505-2
<400> 10
gttatgccat cttgctgcct tcatttattc agggcttcct tcag 44
<210> 11
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> NP_391481-NP_388505-3
<400> 11
caactgaagg aagccctgaa taaatgaagg cagcaagatg gcataac 47
<210> 12
<211> 46
<212> DNA
<213> Artificial Sequence
<220>
<223> NP_391481-NP_388505-4
<400> 12
gtactgagag tgcaccatat gttagttagg tctaacaagg attttg 46
<210> 13
<211> 40
<212> DNA
<213> Artificial Sequence
<220>
<223> NP_391481-ABR33642-1
<400> 13
aaaagggagt gtcgacatat gaaacgagaa agcaacattc 40
<210> 14
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> NP_391481-ABR33642-2
<400> 14
cataccataa tgctgctttc atttattcag ggcttccttc ag 42
<210> 15
<211> 43
<212> DNA
<213> Artificial Sequence
<220>
<223> NP_391481-ABR33642-3
<400> 15
ctgaaggaag ccctgaataa atgaaagcag cattatggta tgc 43
<210> 16
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> NP_391481-ABR33642-4
<400> 16
gtactgagag tgcaccatat gttaagattt agatacaagt tc 42
<210> 17
<211> 40
<212> DNA
<213> Artificial Sequence
<220>
<223> NP_391481-ABR77284-1
<400> 17
aaaagggagt gtcgacatat gaaacgagaa agcaacattc 40
<210> 18
<211> 44
<212> DNA
<213> Artificial Sequence
<220>
<223> NP_391481-ABR77284-2
<400> 18
gtgggtaaca acagctgcct tcatttattc agggcttcct tcag 44
<210> 19
<211> 44
<212> DNA
<213> Artificial Sequence
<220>
<223> NP_391481-ABR77284-3
<400> 19
ctgaaggaag ccctgaataa atgaaggcag ctgttgttac ccac 44
<210> 20
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> NP_391481-ABR77284-4
<400> 20
gtactgagag tgcaccatat gttagctacg cagatcgata ac 42
<210> 21
<211> 39
<212> DNA
<213> Artificial Sequence
<220>
<223> NP_391481-YP_001634733-1
<400> 21
aaaagggagt gtcgacatat gaaacgagaa agcaacatt 39
<210> 22
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> NP_391481-YP_001634733-2
<400> 22
cttcataata gacggcgcgc atttattcag ggcttccttc ag 42
<210> 23
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> NP_391481-YP_001634733-3
<400> 23
ctgaaggaag ccctgaataa atgcgcgccg tctattatga ag 42
<210> 24
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> NP_391481-YP_001634733-4
<400> 24
gtactgagag tgcaccatat gctaaccctg aaactctgta at 42
<210> 25
<211> 43
<212> DNA
<213> Artificial Sequence
<220>
<223> NP_391481-RBS-NP_388505-1
<400> 25
aaaagggagt gtcgacatat gaaacgagaa agcaacattc aag 43
<210> 26
<211> 59
<212> DNA
<213> Artificial Sequence
<220>
<223> NP_391481-RBS-NP_388505-2
<400> 26
gttatgccat cttgctgcct tcattctaac taacctcctt tattcagggc ttccttcag 59
<210> 27
<211> 59
<212> DNA
<213> Artificial Sequence
<220>
<223> NP_391481-RBS-NP_388505-3
<400> 27
ctgaaggaag ccctgaataa aggaggttag ttagaatgaa ggcagcaaga tggcataac 59
<210> 28
<211> 46
<212> DNA
<213> Artificial Sequence
<220>
<223> NP_391481-RBS-NP_388505-4
<400> 28
gtactgagag tgcaccatat gttagttagg tctaacaagg attttg 46
<210> 29
<211> 40
<212> DNA
<213> Artificial Sequence
<220>
<223> NP_391481-RBS-ABR33642-1
<400> 29
aaaagggagt gtcgacatat gaaacgagaa agcaacattc 40
<210> 30
<211> 54
<212> DNA
<213> Artificial Sequence
<220>
<223> NP_391481-RBS-ABR33642-2
<400> 30
accataatgc tgctttcatt ctaactaacc tcctttattc agggcttcct tcag 54
<210> 31
<211> 54
<212> DNA
<213> Artificial Sequence
<220>
<223> NP_391481-RBS-ABR33642-3
<400> 31
ctgaaggaag ccctgaataa aggaggttag ttagaatgaa agcagcatta tggt 54
<210> 32
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> NP_391481-RBS-ABR33642-4
<400> 32
gtactgagag tgcaccatat gttaagattt agatacaagt tc 42
<210> 33
<211> 40
<212> DNA
<213> Artificial Sequence
<220>
<223> NP_391481-RBS-ABR77284-1
<400> 33
aaaagggagt gtcgacatat gaaacgagaa agcaacattc 40
<210> 34
<211> 55
<212> DNA
<213> Artificial Sequence
<220>
<223> NP_391481-RBS-ABR77284-2
<400> 34
gtaacaacag ctgccttcat tctaactaac ctcctttatt cagggcttcc ttcag 55
<210> 35
<211> 55
<212> DNA
<213> Artificial Sequence
<220>
<223> NP_391481-RBS-ABR77284-3
<400> 35
ctgaaggaag ccctgaataa aggaggttag ttagaatgaa ggcagctgtt gttac 55
<210> 36
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> NP_391481-RBS-ABR77284-4
<400> 36
gtactgagag tgcaccatat gttagctacg cagatcgata ac 42
<210> 37
<211> 39
<212> DNA
<213> Artificial Sequence
<220>
<223> NP_391481-RBS-YP_001634733-1
<400> 37
aaaagggagt gtcgacatat gaaacgagaa agcaacatt 39
<210> 38
<211> 58
<212> DNA
<213> Artificial Sequence
<220>
<223> NP_391481-RBS-YP_001634733-2
<400> 38
gcttcataat agacggcgcg cattctaact aacctccttt attcagggct tccttcag 58
<210> 39
<211> 58
<212> DNA
<213> Artificial Sequence
<220>
<223> NP_391481-RBS-YP_001634733-3
<400> 39
ctgaaggaag ccctgaataa aggaggttag ttagaatgcg cgccgtctat tatgaagc 58
<210> 40
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> NP_391481-RBS-YP_001634733-4
<400> 40
gtactgagag tgcaccatat gctaaccctg aaactctgta at 42
<210> 41
<211> 40
<212> DNA
<213> Artificial Sequence
<220>
<223> NP_391481-RBS-NP_388505-RBS-ABR33642-1
<400> 41
aaaagggagt gtcgacatat gaaacgagaa agcaacattc 40
<210> 42
<211> 59
<212> DNA
<213> Artificial Sequence
<220>
<223> NP_391481-RBS-NP_388505-RBS-ABR33642-2
<400> 42
gttatgccat cttgctgcct tcattctaac taacctcctt tattcagggc ttccttcag 59
<210> 43
<211> 59
<212> DNA
<213> Artificial Sequence
<220>
<223> NP_391481-RBS-NP_388505-RBS-ABR33642-3
<400> 43
ctgaaggaag ccctgaataa aggaggttag ttagaatgaa ggcagcaaga tggcataac 59
<210> 44
<211> 62
<212> DNA
<213> Artificial Sequence
<220>
<223> NP_391481-RBS-NP_388505-RBS-ABR33642-4
<400> 44
cataccataa tgctgctttc attctaacta acctccttta gttaggtcta acaaggattt 60
tg 62
<210> 45
<211> 62
<212> DNA
<213> Artificial Sequence
<220>
<223> NP_391481-RBS-NP_388505-RBS-ABR33642-5
<400> 45
caaaatcctt gttagaccta actaaaggag gttagttaga atgaaagcag cattatggta 60
tg 62
<210> 46
<211> 46
<212> DNA
<213> Artificial Sequence
<220>
<223> NP_391481-RBS-NP_388505-RBS-ABR33642-6
<400> 46
gtactgagag tgcaccatat gttaagattt agatacaagt tctttg 46
<210> 47
<211> 40
<212> DNA
<213> Artificial Sequence
<220>
<223> NP_391481-RBS-NP_388505-RBS-ABR77284-1
<400> 47
aaaagggagt gtcgacatat gaaacgagaa agcaacattc 40
<210> 48
<211> 57
<212> DNA
<213> Artificial Sequence
<220>
<223> NP_391481-RBS-NP_388505-RBS-ABR77284-2
<400> 48
gttatgccat cttgctgcct tcattctaac taacctcctt tattcagggc ttccttc 57
<210> 49
<211> 57
<212> DNA
<213> Artificial Sequence
<220>
<223> NP_391481-RBS-NP_388505-RBS-ABR77284-3
<400> 49
gaaggaagcc ctgaataaag gaggttagtt agaatgaagg cagcaagatg gcataac 57
<210> 50
<211> 55
<212> DNA
<213> Artificial Sequence
<220>
<223> NP_391481-RBS-NP_388505-RBS-ABR77284-4
<400> 50
ggtaacaaca gctgccttca ttctaactaa cctcctttag ttaggtctaa caagg 55
<210> 51
<211> 55
<212> DNA
<213> Artificial Sequence
<220>
<223> NP_391481-RBS-NP_388505-RBS-ABR77284-5
<400> 51
ccttgttaga cctaactaaa ggaggttagt tagaatgaag gcagctgttg ttacc 55
<210> 52
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> NP_391481-RBS-NP_388505-RBS-ABR77284-6
<400> 52
gtactgagag tgcaccatat gttagctacg cagatcgata ac 42
<210> 53
<211> 40
<212> DNA
<213> Artificial Sequence
<220>
<223> NP_391481-RBS-ABR33642-RBS-ABR77284-1
<400> 53
aaaagggagt gtcgacatat gaaacgagaa agcaacattc 40
<210> 54
<211> 54
<212> DNA
<213> Artificial Sequence
<220>
<223> NP_391481-RBS-ABR33642-RBS-ABR77284-2
<400> 54
accataatgc tgctttcatt ctaactaacc tcctttattc agggcttcct tcag 54
<210> 55
<211> 54
<212> DNA
<213> Artificial Sequence
<220>
<223> NP_391481-RBS-ABR33642-RBS-ABR77284-3
<400> 55
ctgaaggaag ccctgaataa aggaggttag ttagaatgaa agcagcatta tggt 54
<210> 56
<211> 57
<212> DNA
<213> Artificial Sequence
<220>
<223> NP_391481-RBS-ABR33642-RBS-ABR77284-4
<400> 56
gtgggtaaca acagctgcct tcattctaac taacctcctt taagatttag atacaag 57
<210> 57
<211> 57
<212> DNA
<213> Artificial Sequence
<220>
<223> NP_391481-RBS-ABR33642-RBS-ABR77284-5
<400> 57
cttgtatcta aatcttaaag gaggttagtt agaatgaagg cagctgttgt tacccac 57
<210> 58
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> NP_391481-RBS-ABR33642-RBS-ABR77284-6
<400> 58
gtactgagag tgcaccatat gttagctacg cagatcgata ac 42
<210> 59
<211> 40
<212> DNA
<213> Artificial Sequence
<220>
<223> NP_391481-RBS-NP_388505-RBS-YP_001634733-1
<400> 59
aaaagggagt gtcgacatat gaaacgagaa agcaacattc 40
<210> 60
<211> 54
<212> DNA
<213> Artificial Sequence
<220>
<223> NP_391481-RBS-NP_388505-RBS-YP_001634733-2
<400> 60
atgccatctt gctgccttca ttctaactaa cctcctttat tcagggcttc cttc 54
<210> 61
<211> 54
<212> DNA
<213> Artificial Sequence
<220>
<223> NP_391481-RBS-NP_388505-RBS-YP_001634733-3
<400> 61
gaaggaagcc ctgaataaag gaggttagtt agaatgaagg cagcaagatg gcat 54
<210> 62
<211> 59
<212> DNA
<213> Artificial Sequence
<220>
<223> NP_391481-RBS-NP_388505-RBS-YP_001634733-4
<400> 62
cttcataata gacggcgcgc attctaacta acctccttta gttaggtcta acaaggatt 59
<210> 63
<211> 57
<212> DNA
<213> Artificial Sequence
<220>
<223> NP_391481-RBS-NP_388505-RBS-YP_001634733-5
<400> 63
tccttgttag acctaactaa aggaggttag ttagaatgcg cgccgtctat tatgaag 57
<210> 64
<211> 43
<212> DNA
<213> Artificial Sequence
<220>
<223> NP_391481-RBS-NP_388505-RBS-YP_001634733-6
<400> 64
gtactgagag tgcaccatat gctaaccctg aaactctgta atc 43
<210> 65
<211> 1041
<212> DNA
<213> 来源于枯草芽孢杆菌(B.Subtilis 168)的2,3-丁二醇脱氢酶编码基因bdhA
<400> 65
atgaaggcag caagatggca taaccaaaag gatatccgta ttgaacatat cgaagagcca 60
aaaacggagc cgggaaaagt aaagatcaaa gtcaaatggt gcggcatctg cggaagtgat 120
ttacacgaat atctgggcgg cccgatcttt attccggttg acaaaccgca cccattaaca 180
aatgaaacgg cacctgtcac aatggggcat gaattctccg gtgaagttgt cgaagtcgga 240
gaaggcgttg aaaattataa agttggagac cgcgttgtag tcgagccgat ttttgctaca 300
cacggccacc aaggcgccta caaccttgat gaacaaatgg gattcctcgg cttagccggc 360
ggaggcggcg gtttctctga atacgtctct gtggatgaag agcttttgtt caaacttcct 420
gatgaattat catatgaaca aggcgcgctc gttgaacctt ctgcagttgc tctatacgct 480
gtccgctcaa gcaaactcaa agcaggcgac aaagcggctg tattcggctg cggcccgatc 540
ggacttcttg tcattgaagc gctgaaggct gccggtgcaa ctgatattta cgctgttgag 600
ctttctcctg aacgccagca aaaagctgag gagcttggcg cgatcatcgt tgatccgtct 660
aaaacagacg atgtagtcgc tgagattgca gaacgtacag gaggcggtgt tgacgtagca 720
ttcgaagtca ctggtgtccc agtggtgtta cgacaagcca tccagtccac tacaattgcc 780
ggtgaaaccg tcatcgtcag catttgggaa aaaggtgctg aaatccatcc gaacgatatc 840
gtaatcaaag aacgtacagt aaaaggaatt atcggatacc gcgacatctt cccggctgta 900
ttgtcattaa tgaaagaagg ctatttctca gccgacaaac tcgtaacgaa aaaaatcgta 960
ctagatgatt tgatcgagga aggcttcggg gctcttatta aagagaaaag ccaagtcaaa 1020
atccttgtta gacctaacta a 1041
<210> 66
<211> 1083
<212> DNA
<213> 来源于拜氏梭菌(Clostridium beijerinckii NCIMB 8052)的2,3-丁二醇脱氢酶编码基因acr
<400> 66
atgaaagcag cattatggta tgcaaagaaa gatgttagag tagaggaaat tgaagaacct 60
aaagttacag ttaatggtgt aaagattaaa gtaaaatggt gtggaatatg tggatcagat 120
ttacatgaat atttaggagg acctatattt ataccagtag gacaacctca cccattaagt 180
ggtacaactg ctccagtagt tctaggacat gaattttcag gagatgtcgt tgaagttggt 240
cctaatgtaa agaattttaa accaggagat agagtaatag ttgaacctat agttgcatgt 300
ggaaaatgtc cagcgtgctt agaaggaaaa tataatttat gttcatcatt aggtttccat 360
ggactttgcg gaagtggtgg aggacttgct gaatatacag ttttcccaga agaattcgta 420
cataagattc cagatgaaat gtcttacgaa caagctgctt tagttgagcc aatggcagta 480
gcattacatt caattagaat tggtaatttt agaacagggg atactgcgtt agtactagga 540
tctggtccaa taggactagc aactattgag tgcttaaaag cagccggtgc aaaattaata 600
atagtattac aaagaaaatc tataagacaa gagtatgcta aaagagcagg ggcagatgta 660
gtattagatc ctaatgaagt aaatatagca gaggaagtta agaagcttac taacggatta 720
ggagttgacg tggcgtttga aactacagga gctcaaatag gttttgatac aggtatagat 780
agcttaaagt ttgaaggaac tttagttgta actagcatat gggaaaatga tgttaaattt 840
aatcctaatg tattagtatt cactgagaag aaaatcattg gaacattagc atacagacat 900
gaattcccag caactatggc tcaaatgaaa gatggaagaa taaaagcaga aggatatgta 960
acaaagaaaa tacatttaga tgatatagtt gaagaagggt ttggagcatt aacaggtcca 1020
gaaaagaaga aacatgttaa gatattagta tctccagaca aagaacttgt atctaaatct 1080
taa 1083
<210> 67
<211> 1011
<212> DNA
<213> Artificial Sequence
<220>
<223> 来源于克雷伯氏菌(K.peneumoniae
MGH78578)的2,3-丁二醇脱氢酶编码基因budC
<400> 67
atgaaggcag ctgttgttac ccacgaccat caggttaacg tcacggaaaa aacgctgcgc 60
ccgctggaat acggcgaagc gctgttgaaa atggaatgct gcggcgtgtg tcatactgac 120
ctgcacgtga aaaacggcga ttttggcgat aaaaccggcg tcattctcgg ccatgaaggg 180
atcggggtgg tacaaaaagt cggcccgggc gtcacctccc tgaagccggg cgaccgcgcc 240
agcgtggcgt ggttcttcga aggctgcggc cactgcgatt actgtaacag cggcaacgag 300
acgctctgcc gctcggtgaa aaacgccggc tataccgtcg atggcggcat ggcggaagag 360
tgcatcgtca ccgccaacta cgcggtaaaa gttccggacg gcctcgactc cgccgccgcc 420
agcagcatca cctgcgcggg cgtcaccacc tacaaagcgg tcaaggtctc ccacatcaaa 480
ccgggccagt ggatcgccat ctacggcctc ggcgggttgg gtaacctcgc gctgcagtat 540
gcgaagaatg tctttaacgc caaagtgatc gctatcgacg tcaacgacgg acagctggag 600
ctggcggcct cgatgggcgc cgacctgacc atcaactccc gcaatgaaga tgcggcgaaa 660
gtgattcagg aaaaaaccgg cggcgcccac gctgcggtag taaccgcggt ggctaaagcg 720
gcctttaact cggcggtgga tgccgttcgc gccggtggcc gcgtggtcgc ggtgggcctg 780
ccgccggagg cgatgagcct cgatattccg cgtctggtgc tggacggcat cgaggtggtc 840
ggttcgctgg tcggcacccg tcaggatctg gtggaagcct tccagtttgc cgccgaaggc 900
aaagtggtgc cgaaagtcac cctgcgtccg ctggaagata tcaacgctat cttcaaagag 960
atggagcaag gtcagatccg cggccgtatg gttatcgatc tgcgtagcta a 1011
<210> 68
<211> 1047
<212> DNA
<213> 来源于产乙醇梭菌(C. autoethanogenum)的2,3-丁二醇脱氢酶基因bdh
<400> 68
atgcgcgccg tctattatga agcgtttggt cagatgccat ggatcgccac gctgcccgat 60
ccagccccaa cgccagatgg tgtcgtgctc gcagtacgcg ctaccggcct gtgtcgtagc 120
gactggcatg gctggatggg gcatgatccc gatattaagc tgccgcatgt gccaggccac 180
gaactggccg gcgagattgt tgccgtcgga tcacaggttc ggcgctggcg aatcggtgat 240
cgggtcactg ttcccttcgt gtgtgcctgt ggtttttgcc ctcagtgtca ggccggtcag 300
caacaggtgt gtgacaacca gtttcaaccg ggattcacgc attggggatc gtttgctgaa 360
tacgttgcca ttgatcgcgc cgatctgaat ctggtgcgct tgcctgccga tatgagcttc 420
acgactgccg ccagtctggg gtgtcgtttt gcaactgcct ttcgcgccgt cgttgatttg 480
ggccaggtac gtggaggcga gtgggtggcg gtttacgggt gtggtggcgt tggtctctcg 540
gcgattatgt tagcctctgc cctcggtgga caggtgatcg gaatcgatat taacctggaa 600
cggctggcac tggctcgggc ggtaggggca acggcggtga ttgatgccac taccgaaccg 660
gatgtggtaa gcgtggttcg cgatctcagc cgcggtgggg tacacctcgc gattgatgcg 720
ttgggtagtc ctatgacctg cgccaatgcc attgccagtc tgcggaagcg cgggcgccat 780
gtgcaggttg gtctgctgct ggccgaccaa cggatgcctc cgttgccgat ggatatcgtg 840
gttgcgcgtg agttgacgat tatgggaagc catgggatgc aggcttaccg ctatgatgcg 900
atgctcgacc tcatccagtc tggcaaagta caaccgcagc gcctgattgg ccgcacgatt 960
agcctgagtg aagcaccggc ggcgctggtc gatctcgata gtttccgtgg ttctggggtg 1020
acggtgatta cagagtttca gggttag 1047
<210> 69
<211> 768
<212> DNA
<213> 来源于枯草芽孢杆菌(B.Subtilis 168)的乙酰乳酸脱羧酶基因alsD
<400> 69
atgaaacgag aaagcaacat tcaagtgctc agccgtggtc aaaaagatca gcctgtgagc 60
cagatttatc aagtatcaac aatgacttct ctattagacg gagtatatga cggagatttt 120
gaactgtcag agattccgaa atatggagac ttcggtatcg gaacctttaa caagcttgac 180
ggagagctga ttgggtttga cggcgaattt taccgtcttc gctcagacgg aaccgcgaca 240
ccggtccaaa atggagaccg ttcaccgttc tgttcattta cgttctttac accggacatg 300
acgcacaaaa ttgatgcgaa aatgacacgc gaagactttg aaaaagagat caacagcatg 360
ctgccaagca gaaacttatt ttatgcaatt cgcattgacg gattgtttaa aaaggtgcag 420
acaagaacag tagaacttca agaaaaacct tacgtgccaa tggttgaagc ggtcaaaaca 480
cagccgattt tcaacttcga caacgtgaga ggaacgattg taggtttctt gacaccagct 540
tatgcaaacg gaatcgccgt ttctggctat cacctgcact tcattgacga aggacgcaat 600
tcaggcggac acgtttttga ctatgtgctt gaggattgca cggttacgat ttctcaaaaa 660
atgaacatga atctcagact tccgaacaca gcggatttct ttaatgcgaa tctggataac 720
cctgattttg cgaaagatat cgaaacaact gaaggaagcc ctgaataa 768
<210> 70
<211> 15
<212> DNA
<213> RBS序列
<400> 70
aggaggttag ttaga 15

Claims (3)

1.同工酶共催化合成2,3-丁二醇的基因工程菌,其特征在于,将2,3-丁二醇脱氢酶同工酶基因串联,然后将串联的基因序列导入为丙酮丁醇梭菌CGMCC No.5234既得,所述串联的基因序列包括如下三种基因序列:
(1) 枯草芽孢杆菌B.Subtilis 168的乙酰乳酸脱羧酶基因alsD+RBS+枯草芽孢杆菌(B.Subtilis 168)的2,3-丁二醇脱氢酶基因bdhA +RBS+拜氏梭菌(Clostridium beijerinckii NCIMB 8052)的2,3-丁二醇脱氢酶基因acr;或
(2) 枯草芽孢杆菌(B.Subtilis 168)的乙酰乳酸脱羧酶基因alsD+RBS+枯草芽孢杆菌(B.Subtilis 168)的2,3-丁二醇脱氢酶基因bdhA +RBS+克雷伯氏菌(K.pneumoniae KCTC2242)的2,3-丁二醇脱氢酶基因budc;或
(3) 枯草芽孢杆菌B.Subtilis 168)的乙酰乳酸脱羧酶基因alsD+RBS+枯草芽孢杆菌(B.Subtilis 168)的2,3-丁二醇脱氢酶基因bdhA +RBS+产乙醇梭菌(C.autoethanogenum)的2,3-丁二醇脱氢酶基因bdh
其中,所述乙酰乳酸脱羧酶基因alsD的核苷酸序列如SEQ ID NO.69所示;
所述2,3-丁二醇脱氢酶基因bdhA的核苷酸序列如SEQ ID NO.65所示;
所述2,3-丁二醇脱氢酶基因acr的核苷酸序列如SEQ ID NO.66所示;
所述2,3-丁二醇脱氢酶基因budc的核苷酸序列如SEQ ID NO.67所示;
所述2,3-丁二醇脱氢酶基因bdh的核苷酸序列如SEQ ID NO.68所示;
所述RBS序列如SEQ ID NO.70所示。
2.权利要求1所述同工酶共催化合成2,3-丁二醇的基因工程菌的构建方法,其特征在于,包括如下步骤:
(1)将SEQ ID NO.69、SEQ ID NO.65、SEQ ID NO.66所示的序列依次连接,每两个基因序列之间插入SEQ ID NO.70所示的RBS序列;或者
SEQ ID NO.69、SEQ ID NO.65、SEQ ID NO.67所示的序列依次连接,每两个基因序列之间插入SEQ ID NO.70所示的RBS序列;或者
SEQ ID NO.69、SEQ ID NO.65、SEQ ID NO.68所示的序列依次连接,每两个基因序列之间插入SEQ ID NO.70所示的RBS序列;
得到同工酶基因片段;
(2)将步骤(1)得到的同工酶基因片段连接入表达载体中,得到重组质粒;
(3)将步骤(2)得到的重组质粒导入宿主细胞中,得到同工酶共催化合成2,3-丁二醇的基因工程菌,所述的宿主细胞为丙酮丁醇梭菌CGMCC No.5234。
3.权利要求1所述同工酶共催化合成2,3-丁二醇的基因工程菌在制备2,3-丁二醇中的应用。
CN201710122238.5A 2017-03-03 2017-03-03 同工酶共催化合成2,3-丁二醇的基因工程菌及其构建方法与应用 Active CN107058365B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710122238.5A CN107058365B (zh) 2017-03-03 2017-03-03 同工酶共催化合成2,3-丁二醇的基因工程菌及其构建方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710122238.5A CN107058365B (zh) 2017-03-03 2017-03-03 同工酶共催化合成2,3-丁二醇的基因工程菌及其构建方法与应用

Publications (2)

Publication Number Publication Date
CN107058365A CN107058365A (zh) 2017-08-18
CN107058365B true CN107058365B (zh) 2020-11-06

Family

ID=59622901

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710122238.5A Active CN107058365B (zh) 2017-03-03 2017-03-03 同工酶共催化合成2,3-丁二醇的基因工程菌及其构建方法与应用

Country Status (1)

Country Link
CN (1) CN107058365B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107723307A (zh) * 2017-10-09 2018-02-23 中国科学院天津工业生物技术研究所 一种高效制备d‑阿洛酮糖3‑差向异构酶的方法及其应用
CN114395576B (zh) * 2020-08-31 2023-11-14 南京工业大学 一种提高梭菌中蛋白表达效率的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102965324A (zh) * 2012-12-03 2013-03-13 南京工业大学 产(r, r)-2,3-丁二醇的基因工程菌及其构建方法和应用
CN103436479A (zh) * 2013-09-10 2013-12-11 南京工业大学 一种高产3-羟基丁酮的基因工程菌及其构建方法和应用
CN104560848A (zh) * 2014-10-20 2015-04-29 南京工业大学 一种实现高密度发酵并联产2,3-丁二醇的基因工程菌及其构建方法和应用
CN105505849A (zh) * 2016-01-22 2016-04-20 南京工业大学 联产丁醇与2,3-丁二醇的基因工程菌及其构建方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102965324A (zh) * 2012-12-03 2013-03-13 南京工业大学 产(r, r)-2,3-丁二醇的基因工程菌及其构建方法和应用
CN103436479A (zh) * 2013-09-10 2013-12-11 南京工业大学 一种高产3-羟基丁酮的基因工程菌及其构建方法和应用
CN104560848A (zh) * 2014-10-20 2015-04-29 南京工业大学 一种实现高密度发酵并联产2,3-丁二醇的基因工程菌及其构建方法和应用
CN105505849A (zh) * 2016-01-22 2016-04-20 南京工业大学 联产丁醇与2,3-丁二醇的基因工程菌及其构建方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Engineering Clostridium Acetobutylicum With a Histidine Kinase Knockout for Enhanced N-Butanol Tolerance and Production .;XU,M.M. et.al;《Appl. Microbiol. Biotechnol》;20150131;第9卷(第2期);1011-1022页 *
Simultaneous Production of Butanol and Acetoin by Metabolically Engineered Clostridium Acetobutylicum.;LIU,D.et.al;《Metab. Eng.》;20150131;第27卷;107-114页 *

Also Published As

Publication number Publication date
CN107058365A (zh) 2017-08-18

Similar Documents

Publication Publication Date Title
Ren et al. Characterization of the cellulolytic and hydrogen‐producing activities of six mesophilic Clostridium species
Hao et al. Isolation and characterization of microorganisms able to produce 1, 3-propanediol under aerobic conditions
Keller et al. A hybrid synthetic pathway for butanol production by a hyperthermophilic microbe
US8227217B2 (en) Methods and genetically engineered micro-organisms for the combined production of PDO, BDO and PHP by fermentation
CN101952430B (zh) 增强的产乙醇和丁醇微生物以及使用该微生物制备乙醇和丁醇的方法
CN105051179A (zh) 重组微生物和其用途
BR112013003644B1 (pt) isolado biologicamente puro de uma bactéria clostridium autoethanogenum
Guo et al. 1, 3-Propanediol production by a newly isolated strain, Clostridium perfringens GYL
US10294479B2 (en) Candida carbonyl reductase and method for preparing (R)-lipoic acid precursor
Arslan et al. Engineering Acetobacterium woodii for the production of isopropanol and acetone from carbon dioxide and hydrogen
Jeong et al. Genetic engineering system for syngas-utilizing acetogen, Eubacterium limosum KIST612
CN109055324B (zh) 一种改进的酮还原酶及其应用
CN107058365B (zh) 同工酶共催化合成2,3-丁二醇的基因工程菌及其构建方法与应用
CN105505849A (zh) 联产丁醇与2,3-丁二醇的基因工程菌及其构建方法和应用
CN107354118A (zh) 一种具有γ‑松油烯合成能力的基因工程菌及其构建方法与应用
CN114075524B (zh) 阿魏酸生产工程菌、其建立方法及其应用
CN110527650B (zh) 一种假诺卡氏菌及其应用
CN114908129B (zh) 用于制备(r)-4-氯-3-羟基丁酸乙酯的脱氢酶
KR101743603B1 (ko) 개량된 슈와넬라 오네이덴시스로부터 아이소부탄올 생산 방법
CN107988241B (zh) ptna基因片段在生产丁醇中的应用
CN101423814B (zh) 合成谷胱甘肽的梭菌及其构建方法与应用
CN118325755B (zh) 一种生产s-羟丙基四氢吡喃三醇的工程菌及其构建方法
CN112501092B (zh) 阻断甘油-葡萄糖代谢途径的Diolis梭菌碱基编辑突变株
CN118126919B (zh) 一种合成观蓝的工程菌及其构建方法与应用
US20230265464A1 (en) Optimized ibe fermentation method for upgrading acetone

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 210000, 5 new model street, Gulou District, Jiangsu, Nanjing

Applicant after: NANJING TECH University

Address before: 210009 Nanjing City, Jiangsu Province, the new model road No. 5

Applicant before: NANJING TECH University

GR01 Patent grant
GR01 Patent grant