CN107056283A - 一种氧化锆基多孔梯度复合材料的制备方法 - Google Patents

一种氧化锆基多孔梯度复合材料的制备方法 Download PDF

Info

Publication number
CN107056283A
CN107056283A CN201611217972.1A CN201611217972A CN107056283A CN 107056283 A CN107056283 A CN 107056283A CN 201611217972 A CN201611217972 A CN 201611217972A CN 107056283 A CN107056283 A CN 107056283A
Authority
CN
China
Prior art keywords
powder
sum
rate
accounts
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611217972.1A
Other languages
English (en)
Other versions
CN107056283B (zh
Inventor
韦习成
吴俊玮
王晓
张晨
张一晨
王春燕
全仁夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201611217972.1A priority Critical patent/CN107056283B/zh
Publication of CN107056283A publication Critical patent/CN107056283A/zh
Application granted granted Critical
Publication of CN107056283B publication Critical patent/CN107056283B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/10Ceramics or glasses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/12Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/0615Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances the burned-out substance being a monolitic element having approximately the same dimensions as the final article, e.g. a porous polyurethane sheet or a prepreg obtained by bonding together resin particles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • C04B2235/3212Calcium phosphates, e.g. hydroxyapatite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/75Products with a concentration gradient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Dermatology (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明公开了一种氧化锆基多孔梯度复合材料的制备方法,步骤:(1)制备有机泡沫;(2).配置成浓度为5%的聚乙烯醇溶液,将聚乙烯醇甩净,晾干,得到泡沫陶瓷;(3)称取氧化锆粉体,再预煅烧,得到氧化锆粉体;(4)取聚乙烯醇、羧甲基纤维素和硅溶胶按的质量比混合后,加水搅拌,得到混合浆料,然后称取聚丙烯酸铵、辛醇和上述氧化锆陶瓷粉体加入至上述混合浆料进行搅拌,得到氧化锆陶瓷浆料;(5)配制氧化锆陶瓷浆料、羟基磷灰石粉体和ZrO2粉体和粘接添加剂,制成涂层浆料,依次进行涂覆,得到半成品;(6)将半成品放入烧结炉中烧结,得到氧化锆基多孔梯度复合材料。该材料有较好生物相容性,其抗压强度为21MPa,孔隙率为75%;该方法简单易行,制备成本低。

Description

一种氧化锆基多孔梯度复合材料的制备方法
技术领域
本发明涉及一种生物材料的制备方法,具体涉及一种氧化锆基多孔梯度复合材料的制备方法。
背景技术
氧化锆(ZrO2)陶瓷因具有优良的力学性能、生物惰性、化学稳定性、稳定的结构,故通常用于人体硬组织如骨、齿等的替换及修补材料。但是,由于ZrO2陶瓷与人体骨组织的成分和结构存在差异,导致其生物相容性差,影响其在医学上的广泛应用。
羟基磷灰石(HA)作为一种和人体骨组织的成分和结构相似的、具有优良生物相容性的陶瓷材料,HA材料植入人体后,在体液的作用下,会发生部分降解,游离出钙和磷,并被人体组织所吸收和利用,生长出新的组织,使植入人体的生物材料和人体组织获得良好的生物结合,促进骨细胞的人工修复材料的生长。但是,由于羟基磷灰石(HA)力学性能低,其应用时需要须和其他生物材料复合。
近年来,人们开展了用金属颗粒、金属间化合物、纳米颗粒、晶须、长纤维及氧化锆增强HA生物陶瓷复合材料的研究工作,其中颗粒与纤维的加入可以提高材料的硬度和强度。但是,第二相的引入往往会导致材料的生物相容性降低,甚至加速HA的分解,同时金属纤维及金属间化合物增强的HA陶瓷植入人体后,存在腐蚀及生物惰性,会释放出一些对人体有害的金属离子。因此综合ZrO2和HA各自的性能优势,在制备ZrO2陶瓷表面涂覆HA的梯度复合材料无疑将具有重要的研究价值和应用前景。
发明内容
针对现有技术存在的问题,本发明的目的是提供一种氧化锆基多孔梯度复合材料的制备方法。
为达到上述目的,本发明采用如下技术方案:
一种氧化锆基多孔梯度复合材料的制备方法,其特征在于,该方法具体步骤如下:
(1)配置浓度为15 wt% 的氢氧化钠溶液,并将有机泡沫放入不低于60 ºC的氢氧化钠溶液中浸泡3 h,然后用清水反复揉搓、晾干,得到浸渍后的有机泡沫体;
(2). 将絮状聚乙烯醇固体研磨成粉末,放在75℃~95 ℃ 的恒温水浴中溶解,配置成浓度为5 % 的聚乙烯醇溶液,再将上述浸渍处理后的有机泡沫体浸泡在上述5 % 的聚乙烯醇溶液中冷却,放置24~48 h后取出,放入离心机将聚乙烯醇甩净,室温晾干,得到泡沫陶瓷;
(3)称取氧化锆粉体置于5~15 MPa的压力下,以2~5 ℃/min的速率升温至450~500℃,保温90~100 min,继续以2~5 ℃/min的速率升温至750 ℃,保温90~100 min,再继续以2~5 ℃/min的速率升温至1250 ℃,保温90~100 min,随炉冷却,得到预煅烧处理的氧化锆粉体;
(4)取一定量的聚乙烯醇(PVA)、羧甲基纤维素(CMC)和硅溶胶,按1:1:20的质量比加入到量取的温度为90-100 ℃的水中,置于球磨机搅拌10-15 min,得到搅拌均匀的混合浆料,然后,称取质量百分含量为0.5~0.9 % 的聚丙烯酸铵(PAA-NH4)分散剂、质量百分含量为0.6~0.9 % 的辛醇消泡剂和上述步骤(3)得到的氧化锆陶瓷粉体加入至上述搅拌均匀的混合浆料中,以转速为250-300转/min,搅拌3-5 h后取出,得到氧化锆陶瓷浆料;
(5)配制生物活性涂层,涂层由氧化锆陶瓷浆料、羟基磷灰石(HA)粉体和ZrO2粉体和添加剂制成涂层浆料,各组分的重量配比如下:第1次生物活性涂层,各组分的质量配比如下:氧化锆陶瓷浆料占总量比例为70~80 %,羟基磷灰石(HA)粉体占总量的比例为4~6 %,ZrO2粉体占总量比例为10~13 %、粘结添加剂占总量比例为1~16 %,各组分之和为100 %;第2次生物活性涂层,各组分的质量配比如下:氧化锆陶瓷浆料占总量比例为70~80 %,羟基磷灰石(HA)粉体占总量比例为为13~14 %,ZrO2粉体占总量比例为为4~5 %、粘结添加剂占总量比例为1~13 %,各组分之和为100 %;第3次生物活性涂层,各组分的质量配比如下:氧化锆陶瓷浆料占总量比例为70~80 %,羟基磷灰石(HA)粉体占总量比例为15~19 %、粘结添加剂占总量比例为1~13 %,然后,分别制成生物活性涂层浆料,并依次进行涂覆,得到生物活性涂层涂覆半成品;
(6).将上述涂层涂覆半成品放入烧结炉中进行烧结,以3~5℃/min 的升温速率升温至900℃,保温100min,继续加热到1250℃,保温100~110min,然后以3~5℃/min 的降温速率随炉冷却至室温,得到氧化锆基多孔梯度复合材料。
上述步骤(5)所述的粘结添加剂为碳酸钙、磷酸三钙和银粘结添加剂中的一种或几种。
本发明与现有技术相比较,具有如下显而易见的突出实质性特点和显著优点:
本发明采用与人体骨组织的成分和结构相似的羟基磷灰石(HA),制备的氧化锆基多孔梯度复合材料克服了由于含有ZrO2和羟基磷灰石(HA)导致收缩率不同而引起其界面强度不足的缺陷,保持其中含ZrO2的力学性能,并具有较好的生物相容性,经测试,其抗压强度达到21MPa,孔隙率达到75 %;该制备方法简单易行,易于实现工业化,制备成本低。
附图说明
图1为实施例制备的一种氧化锆基多孔梯度复合材料的扫描电镜(SEM)图。
图2为实施例制备的一种氧化锆基多孔梯度复合材料的扫描电镜(SEM)图。
图3为实施例制备的一种氧化锆基多孔梯度复合材料的X衍射(XRD)图,图中,纵坐标为衍射强度 ,横坐标为衍射线条位置,曲线为各个物相。
图4为实施例制备的一种氧化锆基多孔梯度复合材料用于犬手术6周、12周、24周后的腰椎X线图。
具体实施方式
本发明的优选实施例详述如下:
实施例1:
一种氧化锆基多孔梯度复合材料的制备方法,其步骤如下:
(1). 采用有机泡沫浸渍法制备泡沫陶瓷,配置浓度为15 wt%的氢氧化钠溶液,并将有机泡沫放入60ºC的氢氧化钠溶液中浸泡3 h,然后用清水反复揉搓,晾干,得到得到浸渍后的有机泡沫体;
(2). 将絮状聚乙烯醇固体研磨成粉末,放在95ºC的恒温水浴中溶解,配置成浓度为5%的聚乙烯醇聚乙烯醇溶液,再将上述浸渍处理后的有机泡沫体浸泡上述5 %的聚乙烯醇溶液中冷却,放置24 h后取出,放入离心机将聚乙烯醇甩净,室温晾干,得到泡沫陶瓷;
(3).称取氧化锆粉体15MPa的压力下,以5℃/min的速率升温至500℃,保温100~110min,继续以3~5℃/min的速率升温至750℃,保温90~100min,再继续以3~5℃/min的速率升温至1250℃保温100min,随炉冷却,得到预煅烧处理的氧化锆粉体;
(4). 取一定量的0.5 %聚乙烯醇(PVA)、0.5 %羧甲基纤维素(CMC)和10 % 硅溶胶加入到量取的温度95℃的水中,置于球磨机搅拌10 min,得到搅拌均匀的混合浆料,然后,称取质量百分含量为0.6 %的聚丙烯酸铵(PAA-NH4)分散剂、质量百分含量为0.5 %的辛醇消泡剂和上述步骤(3)得到的氧化锆陶瓷粉体加入至上述搅拌均匀的混合浆料中,以转速为300转/min,搅拌3 h后取出,得到氧化锆陶瓷浆料。
(5). 配制生物活性涂层,涂层由氧化锆陶瓷浆料、羟基磷灰石(HA)粉体和ZrO2粉体和添加剂制成涂层浆料,各组分的重量配比如下:第1次生物活性涂层,各组分的质量配比如下:氧化锆陶瓷浆料占总量比例为80 %,羟基磷灰石(HA)粉体占总量的比例为6 %,ZrO2粉体占总量的比例为13 %、粘结添加剂占总量比例为1 % ;第2次生物活性涂层,各组分的质量配比如下:氧化锆陶瓷浆料占总量比例为80 %,羟基磷灰石(HA)粉体占总量比例为为14 %,ZrO2粉体占总量比例为30 %;第3次生物活性涂层,各组分的质量配比如下:氧化锆陶瓷浆料占总量比例为80 %,羟基磷灰石(HA)粉体占总量比例为19 %、粘结添加剂占总量比例为1 %,然后,分别制成生物活性涂层浆料,并依次进行涂覆,得到生物活性涂层涂覆半成品;
(6).将上述涂层涂覆半成品放入烧结炉中进行烧结,以5℃/min的速率升温至900℃,保温100min,继续加热到1250℃保温100min,然后以3~5℃/min的降温速率随炉冷却至室温。得到氧化锆基多孔梯度复合材料,如图1、图2所示。从图中可以看出,本发明制备的一种氧化锆基多孔梯度复合材料试样的表面饱满、圆润、粗大、光滑且致密,HA涂层与氧化锆骨架基体融合,经SANS CMT5105微机控制万能试验机的测试,其抗压强度为25MPa,孔隙率为68 %。如图3所示,从图3、图4可以看出,本发明制备的一种氧化锆基多孔梯度复合材料具有较好的生物相容性,该材料用于犬手术24周后,人工椎体与自体骨间隙消失,人工椎体骨融合较好。
本发明不限于上述实施例,还可以根据本发明的发明创造的目的做出多种变化,凡依据本发明技术方案的精神实质和原理下做的改变、修饰、替代、组合或简化,均应为等效的置换方式,都属于本发明的保护范围。

Claims (2)

1.一种氧化锆基多孔梯度复合材料的制备方法,其特征在于,该方法具体步骤如下:
(1) 配置浓度为15 wt%的氢氧化钠溶液,并将有机泡沫放入不低于60ºC的氢氧化钠溶液中浸泡3 h,然后用清水反复揉搓、晾干,得到浸渍后的有机泡沫体;
(2) 将絮状聚乙烯醇固体研磨成粉末,放在75~95 ℃的恒温水浴中溶解,配置成浓度为5%的聚乙烯醇溶液,再将上述浸渍处理后的有机泡沫体浸泡在上述5 % 的聚乙烯醇溶液中冷却,放置24~48 h后取出,放入离心机将聚乙烯醇甩净,室温晾干,得到泡沫陶瓷;
(3) 称取氧化锆粉体置于5~15 MPa的压力下,以2~5 ℃/min的速率升温至450~500℃,保温90~100 min,继续以2~5 ℃/min的速率升温至750 ℃,保温90~100 min,再继续以2~5 ℃/min的速率升温至1250 ℃,保温90~100 min,随炉冷却,得到预煅烧处理的氧化锆粉体;
(4) 取一定量的聚乙烯醇(PVA)、羧甲基纤维素(CMC)和硅溶胶,按1:1:20的质量比加入到量取的温度为90-100℃的水中,置于球磨机搅拌10-15 min,得到搅拌均匀的混合浆料,然后,称取质量百分含量为0.5~0.9 % 的聚丙烯酸铵(PAA-NH4)分散剂、质量百分含量为0.6~0.9 % 的辛醇消泡剂和上述步骤(3)得到的氧化锆陶瓷粉体加入至上述搅拌均匀的混合浆料中,以转速为250-300转/min,搅拌3-5 h后取出,得到氧化锆陶瓷浆料;
(5) 配制生物活性涂层,涂层由氧化锆陶瓷浆料、羟基磷灰石(HA)粉体和ZrO2粉体和添加剂制成涂层浆料,各组分的重量配比如下:
第1次生物活性涂层,各组分的质量配比如下:氧化锆陶瓷浆料占总量比例为70~80%,羟基磷灰石(HA)粉体占总量的比例为4~6 %, ZrO2粉体占总量比例为10~13 %、粘结添加剂占总量比例为1~16 %,各组分之和为100 %;第2次生物活性涂层,各组分的质量配比如下:氧化锆陶瓷浆料占总量比例为70~80 %,羟基磷灰石(HA)粉体占总量比例为为13~14 %,ZrO2粉体占总量比例为为4~5 %、粘结添加剂占总量比例为1~13 %,各组分之和为100 %;第3次生物活性涂层,各组分的质量配比如下:氧化锆陶瓷浆料占总量比例为70~80%,羟基磷灰石(HA)粉体占总量比例为15~19 % 、粘结添加剂占总量比例为1~13 %,然后,分别制成生物活性涂层浆料,并依次进行涂覆,得到生物活性涂层涂覆半成品;
(6) 将上述涂层涂覆半成品放入烧结炉中进行烧结,以3~5℃/min的升温速率升温至900 ℃,保温100 min,继续加热到1250℃,保温100~110min,然后以3~5 ℃/min的降温速率随炉冷却至室温,得到氧化锆基多孔梯度复合材料。
2.根据权利要求l所述的一种氧化锆基多孔梯度复合材料的制备方法,其特征在于:上述步骤(5)所述的粘结添加剂为碳酸钙、磷酸三钙和银粘结添加剂中的一种或几种。
CN201611217972.1A 2016-12-26 2016-12-26 一种氧化锆基多孔梯度复合材料的制备方法 Active CN107056283B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611217972.1A CN107056283B (zh) 2016-12-26 2016-12-26 一种氧化锆基多孔梯度复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611217972.1A CN107056283B (zh) 2016-12-26 2016-12-26 一种氧化锆基多孔梯度复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN107056283A true CN107056283A (zh) 2017-08-18
CN107056283B CN107056283B (zh) 2021-04-09

Family

ID=59624314

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611217972.1A Active CN107056283B (zh) 2016-12-26 2016-12-26 一种氧化锆基多孔梯度复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN107056283B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109665821A (zh) * 2019-01-02 2019-04-23 广东工业大学 一种用于催化剂载体的泡沫陶瓷及其制备方法和应用
CN109734476A (zh) * 2019-02-20 2019-05-10 常州兆威不锈钢有限公司 一种复合泡沫陶瓷的制备方法
CN109867520A (zh) * 2019-03-25 2019-06-11 中国科学院上海硅酸盐研究所 一种氧化锆基锶、硅、氟微量掺杂羟基磷灰石氧化锆增韧复合涂层及其制备方法和应用
CN112142462A (zh) * 2020-09-02 2020-12-29 佳木斯大学 一种具有层层自组装涂层的抗炎牙齿修复材料的制造方法
CN112366340A (zh) * 2020-10-26 2021-02-12 南京晓庄学院 一种基于熔融碳酸盐与固体氧化物复合电解质的燃料电池及其应用
CN112479737A (zh) * 2020-12-09 2021-03-12 南京航空航天大学 一种可控多孔生物陶瓷支架及其制备方法、应用
CN113165876A (zh) * 2018-11-16 2021-07-23 安达满纳米奇精密宝石有限公司 氧化锆材料的制造方法
CN114315337A (zh) * 2020-12-30 2022-04-12 佛山仙湖实验室 一种陶瓷材料及其制备方法
CN114656259A (zh) * 2022-04-06 2022-06-24 山东工业陶瓷研究设计院有限公司 一种种植体材料的制备方法
CN114874026A (zh) * 2022-05-23 2022-08-09 哈尔滨工业大学 一种高强度纤维复合氧化锆泡沫陶瓷的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1546423A (zh) * 2003-12-17 2004-11-17 天津大学 自生长磷酸钙晶须强韧多孔生物陶瓷材料的制备方法
KR20120119891A (ko) * 2012-09-20 2012-10-31 순천향대학교 산학협력단 인공골의 제조방법 및 이에 의해 제조된 인공골

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1546423A (zh) * 2003-12-17 2004-11-17 天津大学 自生长磷酸钙晶须强韧多孔生物陶瓷材料的制备方法
KR20120119891A (ko) * 2012-09-20 2012-10-31 순천향대학교 산학협력단 인공골의 제조방법 및 이에 의해 제조된 인공골

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI-LI WANG ET AL.: "Preparation of porous hydroxyapatite-zirconia composite scaffolds by combination of gel-casting and polymer sponge methods", 《ADVANCED MATERIALS RESEARCH》 *
邵荣学等: "梯度复合羟基磷灰石/二氧化锆组织工程骨:应用现状及进展", 《中国组织工程研究》 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113165876B (zh) * 2018-11-16 2023-10-10 奥比睿有限公司 氧化锆材料的制造方法
CN113165876A (zh) * 2018-11-16 2021-07-23 安达满纳米奇精密宝石有限公司 氧化锆材料的制造方法
US11992578B2 (en) 2018-11-16 2024-05-28 Orbray Co., Ltd. Method for producing zirconia material
CN109665821A (zh) * 2019-01-02 2019-04-23 广东工业大学 一种用于催化剂载体的泡沫陶瓷及其制备方法和应用
CN109734476A (zh) * 2019-02-20 2019-05-10 常州兆威不锈钢有限公司 一种复合泡沫陶瓷的制备方法
CN109867520A (zh) * 2019-03-25 2019-06-11 中国科学院上海硅酸盐研究所 一种氧化锆基锶、硅、氟微量掺杂羟基磷灰石氧化锆增韧复合涂层及其制备方法和应用
CN109867520B (zh) * 2019-03-25 2022-01-04 中国科学院上海硅酸盐研究所 一种氧化锆基锶、硅、氟微量掺杂羟基磷灰石氧化锆增韧复合涂层及其制备方法和应用
CN112142462A (zh) * 2020-09-02 2020-12-29 佳木斯大学 一种具有层层自组装涂层的抗炎牙齿修复材料的制造方法
CN112366340A (zh) * 2020-10-26 2021-02-12 南京晓庄学院 一种基于熔融碳酸盐与固体氧化物复合电解质的燃料电池及其应用
CN112366340B (zh) * 2020-10-26 2022-04-26 南京晓庄学院 一种基于熔融碳酸盐与固体氧化物复合电解质的燃料电池及其应用
CN112479737A (zh) * 2020-12-09 2021-03-12 南京航空航天大学 一种可控多孔生物陶瓷支架及其制备方法、应用
CN112479737B (zh) * 2020-12-09 2022-04-22 南京航空航天大学 一种可控多孔生物陶瓷支架及其制备方法、应用
CN114315337A (zh) * 2020-12-30 2022-04-12 佛山仙湖实验室 一种陶瓷材料及其制备方法
CN114315337B (zh) * 2020-12-30 2023-09-15 佛山仙湖实验室 一种陶瓷材料及其制备方法
CN114656259A (zh) * 2022-04-06 2022-06-24 山东工业陶瓷研究设计院有限公司 一种种植体材料的制备方法
CN114874026B (zh) * 2022-05-23 2023-05-12 哈尔滨工业大学 一种高强度纤维复合氧化锆泡沫陶瓷的制备方法
CN114874026A (zh) * 2022-05-23 2022-08-09 哈尔滨工业大学 一种高强度纤维复合氧化锆泡沫陶瓷的制备方法

Also Published As

Publication number Publication date
CN107056283B (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
CN107056283A (zh) 一种氧化锆基多孔梯度复合材料的制备方法
Huang et al. Novel porous hydroxyapatite prepared by combining H2O2 foaming with PU sponge and modified with PLGA and bioactive glass
CN104233431B (zh) 纯镁表面超声微弧氧化-植酸-丝素蛋白多级复合生物活性涂层复合材料的制备方法
US7416564B2 (en) Porous bioceramics for bone scaffold and method for manufacturing the same
Yi et al. Direct 3‐D printing of Ti‐6Al‐4V/HA composite porous scaffolds for customized mechanical properties and biological functions
Zhang et al. Fabrication of hydroxyapatite–zirconia composites for orthopedic applications
Saidi et al. Synthesis and characterization of bioactive glass coated forsterite scaffold for tissue engineering applications
CA2391553A1 (en) Process for producing rigid reticulated articles
CN104744022A (zh) 碳化硅纤维强韧化陶瓷骨支架的激光制备方法
Li et al. Cancellous bone from porous T {i} 6Al4V by multiple coating technique
Guicciardi et al. Rheological characteristics of slurry controlling the microstructure and the compressive strength behavior of biomimetic hydroxyapatite
CN106729965A (zh) 一种基于干铺‑烧结技术制备的骨修复生物陶瓷支架材料及其制备方法
CN106924816B (zh) 生物可降解镁基金属陶瓷复合材料及其制备方法和应用
CN101811874B (zh) 一种纳米氧化锆复合陶瓷的合成方法
Li et al. Improvement of porous titanium with thicker struts
CN106729969A (zh) 一种二氧化锆多孔生物骨修复支架的挂浆方法
CN114213147A (zh) 一种可调控细胞粘附性能的磷酸钙生物活性支架
Zou et al. Physico-chemical properties and microstructure of hydroxyapatite-316L stainless steel biomaterials
CN113584608A (zh) 一种陶瓷基核壳纤维的制备方法
Galić et al. Processing of gelatine coated composite scaffolds based on magnesium and strontium doped hydroxyapatite and yttria-stabilized zirconium oxide
CN110449584A (zh) 粉末冶金法制备医用可降解开孔泡沫锌的方法
Kailasanathan et al. Influence of bio inert Silica on mechanical properties and their dependence on porosity of nanocrystalline based hydroxyapatite/gelatin composites synthesized by coprecipitation method
Moonchaleanporn et al. Sintered titanium-hydroxyapatite composites as artificial bones
KR100558157B1 (ko) 생체이식용 세라믹 다공체 및 그 제조방법
Liu et al. Effect of Sr2+ on 3D gel-printed Sr3− x Mg x (PO4) 2 composite scaffolds for bone tissue engineering

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant