CN107032324A - 一种用于靶向给药的磁性有序介孔碳纳米球的制备方法 - Google Patents

一种用于靶向给药的磁性有序介孔碳纳米球的制备方法 Download PDF

Info

Publication number
CN107032324A
CN107032324A CN201710177157.5A CN201710177157A CN107032324A CN 107032324 A CN107032324 A CN 107032324A CN 201710177157 A CN201710177157 A CN 201710177157A CN 107032324 A CN107032324 A CN 107032324A
Authority
CN
China
Prior art keywords
magnetic
nano carbon
carbon balls
mesoporous nano
order mesoporous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710177157.5A
Other languages
English (en)
Other versions
CN107032324B (zh
Inventor
陈琳
刘旭光
杨永珍
张欢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN201710177157.5A priority Critical patent/CN107032324B/zh
Publication of CN107032324A publication Critical patent/CN107032324A/zh
Application granted granted Critical
Publication of CN107032324B publication Critical patent/CN107032324B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0002Galenical forms characterised by the drug release technique; Application systems commanded by energy
    • A61K9/0009Galenical forms characterised by the drug release technique; Application systems commanded by energy involving or responsive to electricity, magnetism or acoustic waves; Galenical aspects of sonophoresis, iontophoresis, electroporation or electroosmosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • A61K9/143Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/08Ferroso-ferric oxide [Fe3O4]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及一种用于磁靶向给药的磁性有序介孔碳纳米球的制备方法,针对抗肿瘤药物非特异性和毒性大的缺点,以苯酚、甲醛、氢氧化钠、α型氧化铁为原料,硝酸铁为磁性剂,经水热合成、真空高温烧结,制备磁性有序介孔碳纳米球,为癌症靶向药物缓释剂,此制备方法工艺先进、数据精确翔实,产物为黑色粉体颗粒,颗粒粒径≤100nm,纳米球的比表面积达344.9m2/g,具有磁性有序介孔结构、介孔孔径≤3nm,产物纯度达99.8%,是先进的磁性有序介孔碳纳米球的制备方法。

Description

一种用于靶向给药的磁性有序介孔碳纳米球的制备方法
技术领域
本发明涉及一种用于磁靶向给药的磁性有序介孔碳纳米球的制备方法,属于生物医用材料的制备及应用的技术领域。
背景技术
癌症是目前严重威胁人类健康的疾病之一,化学药物疗法在癌症治疗中一直发挥着重要的作用,但抗肿瘤药物存在非特异性、毒性大的缺点,在杀死肿瘤细胞的过程中,也会不同程度地损坏正常的组织,致使人体的免疫功能下降,而且药物治疗也受药物剂量依赖性的影响,致使癌症治疗效果较差。
磁靶向给药制剂是一种将磁性纳米粒子、药物载体和药物分子组成的靶向制剂,在外加磁场作用下,将药物定向携带到病灶组织,并在病灶组织处富集,在环境温度、pH刺激下,实现药物的缓慢释放,磁靶向给药制剂不仅能够提高药物在靶区的药物浓度,减少药物用量,也可以控制药物的释放速率,较长时间内维持药物在体内的浓度,延长药物作用时间,降低药物的毒副作用,因此,磁靶向给药制剂有望实现高效、低毒治疗癌症。
磁性有序介孔碳纳米球不仅具有靶向性、磁热疗特性,也具有酸碱稳定性、热稳定性、生物相容性、丰富的孔结构、高的比表面积,而且表面含有丰富的含氧官能团,使药物分子不仅负载在药物载体表面,而且贯穿整个材料内部,吸附并存储到孔道结构中,增加药物分子的上载量。
人体的不同组织结构中pH值是不同的,癌细胞周围环境呈弱酸性,而抗肿瘤药物盐酸阿霉素的分子结构中含有氨基,在酸性条件下,氨基被质子化,亲水性增强,在弱碱条件下,盐酸阿霉素因脱盐而变得疏水,因此,通过调节pH值,改变盐酸阿霉素本身的亲疏水性可以控制抗癌药物的缓慢释放。
磁性有序介孔碳纳米球具有高的比表面积、丰富的孔径、表面含有丰富的含氧官能团,可以将盐酸阿霉素直接存储在磁性有序介孔碳纳米球的孔道结构中,具备较高的药物装载量;而且,盐酸阿霉素可以响应pH的变化实现药物的缓慢释放,因此,制备基于磁性有序介孔碳纳米球的磁靶向给药系统实现盐酸阿霉素的控制释放具有重要意义。
发明内容
发明目的
本发明的目的是针对背景技术癌症患者药物治疗中,抗肿瘤药物的非特异性和毒性大的缺点,制备一种磁性有序介孔碳纳米球,作为癌症药物缓释剂,实现癌症药物治疗集中给药,以提高癌症药物的治疗效果。
技术方案
本发明使用的化学物质材料为:苯酚、甲醛、聚环氧乙烷-聚环氧丙烷-聚环氧乙烷、α型氧化铁、氢氧化钠、硝酸铁、氨水、盐酸阿霉素、磷酸二氢钾、磷酸、去离子水、氮气,其组合准备用量如下:以克、毫升、厘米3为计量单位
制备方法如下:
(1)制备有序介孔碳纳米球
①配制混合液
称取苯酚0.6g±0.0001g、氢氧化钠0.06g±0.0001g、α型氧化铁0.04g±0.0001g,量取甲醛2.1mL±0.0001mL、去离子水15mL±0.0001mL,加入三口烧瓶中,成混合液;
②将盛有混合溶液的三口烧瓶置于超声波分散仪上,进行超声分散,超声波频率60KHz,超声分散时间10min,成混合溶液;
③配制聚环氧乙烷-聚环氧丙烷-聚环氧乙烷溶液
称取聚环氧乙烷-聚环氧丙烷-聚环氧乙烷0.96g±0.0001g,量取去离子水15mL±0.0001mL,加入烧杯中,搅拌混合10min,成0.004774mol/L的聚环氧乙烷-聚环氧丙烷-聚环氧乙烷溶液;
④聚合处理
将配制的聚环氧乙烷-聚环氧丙烷-聚环氧乙烷溶液加入三口烧瓶中,将盛有聚环氧乙烷-聚环氧丙烷-聚环氧乙烷混合溶液的三口烧瓶置于水浴缸上,并固定;
将水浴缸置于电加热器上,并固定;
在三口烧瓶上插入水循环冷凝管,进行水循环冷凝;
在三口烧瓶内置放磁子搅拌器,进行搅拌;
开启电加热器,加热温度66℃±1℃,反应时间17h;
三口烧瓶内的聚环氧乙烷-聚环氧丙烷-聚环氧乙烷混合溶液在加热、磁子搅拌、水循环冷凝过程中将发生聚合反应,反应方程式如下:
式中:
C641H1277O284:聚合物混合溶液
聚合反应后,停止加热,停止水循环冷凝,冷却至25℃,得到呈粉红色聚合物混合溶液;
(2)水热合成
将粉红色聚合物混合溶液置于聚四氟乙烯容器中,然后置于反应釜中,密闭;
将反应釜置于加热炉中,加热温度130℃±1℃,加热时间1200min;
水热合成后停止加热,反应釜内的聚合物混合溶液随加热炉冷却至25℃;
(3)离心分离
将聚合物混合溶液置于离心分离管内,进行离心分离、分离转数8000r/min,分离时间10min,分离后留存絮状物,弃去分离液;
(4)真空冷冻干燥
将絮状物置于石英容器中,然后置于真空冷冻干燥箱中,进行冷冻干燥,真空度2Pa,冷冻温度-80℃,冷冻干燥时间720min;
冷冻干燥后得米黄色粉体颗粒,即复合聚合物粉体颗粒;
(5)真空高温烧结、碳化处理
复合聚合物粉体颗粒的烧结是在真空烧结炉内进行的,是在抽真空、中频感应加热、氮气保护、外水循环冷却下完成的;
①打开真空炉烧结,用氮气驱除炉内有害气体,氮气输入速度200cm3/min,输入时间10min;
②将复合聚合物粉体颗粒置于石英容器中,然后置于真空烧结炉内的工作台上,密闭;
③开启真空泵,抽取炉内空气,使炉内压强达2Pa;
④开启氮气瓶,向炉内输入氮气,氮气输入速度100cm3/min,使炉内压强恒定在1个大气压;
⑤开启中频感应加热器,加热温度700℃±1℃,进行烧结,烧结时间60min,
复合聚合物粉体颗粒在真空加热烧结、氮气保护下,将发生碳化过程,碳化反应方程式如下:
式中:
C:含羟基的有序介孔碳纳米球
CO2:二氧化碳
H2O:水蒸气
(6)制备磁性有序介孔碳纳米球
①配制混合液
称取硝酸铁0.32g±0.0001g,含羟基的有序介孔碳纳米球0.3g±0.0001g,量取无水乙醇5mL±0.0001mL,加入烧杯中,成混合液;②将盛有混合液的烧杯置于超声波分散仪中,进行超声分散,超声波频率40KHz,超声分散时间20min,分散后得混合液;
③真空干燥
将盛有混合液的烧杯置于真空干燥箱中,真空度2Pa,干燥温度60℃,干燥时间360min,干燥后得含羟基的有序介孔碳纳米球和硝酸铁混合物;
④将0.3g±0.0001g含羟基的有序介孔碳纳米球和硝酸铁的混合物移至玻璃瓶中,将其放于聚四氟乙烯容器中,聚四氟乙烯容器底部置放氨水溶液10mL±0.0001mL;
⑤将反应釜置于加热炉中,进行加热,加热温度60℃±1℃,加热时间180min;然后停止加热,反应釜随加热炉冷却至25℃;
⑥反应完成后,成含羟基的有序介孔碳纳米球和氢氧化铁混合物;
⑦开炉,开釜,将混合液置于抽滤瓶的布式漏斗中,用三层中速定性滤纸进行抽滤,留存滤饼,弃去滤液;
⑧无水乙醇洗涤、抽滤
将滤饼置于烧杯中,加入无水乙醇100mL,搅拌洗涤10min;然后用三层中速定性滤纸进行抽滤,留存滤饼,弃去洗涤液;
⑨去离子水洗涤、抽滤
将滤饼置于另一烧杯中,加入去离子水100mL,搅拌洗涤10min;然后用三层中速定性滤纸进行抽滤,留存滤饼,弃去洗涤液;
⑩真空烧结、碳化处理
打开真空烧结炉,用氮气驱除炉内有害气体;
将滤饼置于石英容器中,然后置于真空烧结炉的工作台上,密闭;
开启真空泵,抽取炉内空气,使炉内压强达2Pa;
开启氮气瓶,向炉内输入氮气,氮气输入速度100cm3/min,使炉内压强恒定在1个大气压;
开启中频感应加热器,加热温度500℃±1℃,加热时间30min,含羟基的有序介孔碳纳米球和氢氧化铁混合物碳化,成磁性有序介孔碳纳米球;
在烧结、碳化过程中,生成磁性有序介孔碳纳米球,由含羟基的有序介孔碳纳米球生成磁性有序介孔碳纳米球总反应方程式如下:
式中:
Fe3O4/C:磁性有序介孔碳纳米球
NO2:二氧化氮
O2:氧气
(7)研磨、过筛
将磁性有序介孔碳纳米球用玛瑙研钵、研棒进行研磨,然后用650目筛网过筛;
研磨、过筛反复进行;
得磁性有序介孔碳纳米球;
(8)检测、分析、表征
对制备的磁性有序介孔碳纳米球的色泽、形貌、结构、成分、化学物理性能、载药释药性能和吸光度进行检测、分析、表征;
用透射电子显微镜进行微观结构分析;
用X射线衍射仪进行晶型结构分析;
用比表面积及孔径分析仪进行比表面积及孔结构分析;
用紫外分光光度计进行载药量与释药分析;
结论:磁性有序介孔碳纳米球为黑色粉体颗粒,颗粒直径≤100nm,比表面积344.9m2/g,产物纯度达99.8%,具有有序介孔结构,介孔孔径≤3nm;
(9)产物储存
对制备的磁性有序介孔碳纳米球产物储存于棕色透明的玻璃容器中,密闭避光保存,置于干燥、洁净环境,要防水、防晒、防酸碱盐腐蚀,存储温度20℃,相对湿度≤10%。
有益效果
本发明与背景技术相比具有明显的先进性,针对抗肿瘤药物非特异性和毒性大的缺点,以苯酚、甲醛、氢氧化钠、α型氧化铁为原料,硝酸铁为磁性剂,经水热合成、真空高温烧结,制备磁性有序介孔碳纳米球,为癌症靶向药物缓释剂,此制备方法工艺先进、数据精确翔实,产物为黑色粉体颗粒,颗粒直径≤100nm,比表面积344.9m2/g,具有磁性有序介孔结构,介孔孔径≤3nm,产物纯度达99.8%,是先进的磁性有序介孔碳纳米球的制备方法。
附图说明
图1、真空烧结磁性有序介孔碳纳米球状态图
图2、磁性有序介孔碳纳米球形貌图
图3、磁性有序介孔碳纳米球X射线衍射图谱
图4、磁性有序介孔碳纳米球氮吸附-脱附曲线图
图5、磁性有序介孔碳纳米球动态吸附曲线图
图6、载药的磁性有序介孔碳纳米球对盐酸阿霉素释放曲线图
图中所示,附图标记清单如下:
1、真空烧结炉,2、炉座,3、炉盖,4、炉腔,5、工作台,6、石英容器,7、不锈钢丝网,8、磁性有序介孔碳纳米球,9、微波加热器,10、外水循环冷却管,11、进水阀,12、出水阀,13、真空泵,14、真空管,15、真空阀,16、真空表,17、氮气瓶,18、氮气管,19、氮气阀,20、氮气表,21、氮气,22、出气管阀,23、显示屏,24、指示灯,25、电源开关,26、微波加热控制器,27、真空泵控制器,28、导线。
具体实施方式
以下结合附图对本发明做进一步的说明:
图1所示,为真空烧结磁性有序介孔碳纳米球状态图,各部位置、连接关系要正确,安装牢固,按序操作。
制备使用的化学物质的量值按预先设置的范围确定的、以克、毫升、厘米3为计算单位。
真空烧结炉为立式,真空烧结炉1的下部为炉座2、上部为炉盖3、内部为炉腔4;在真空烧结炉1的内底部设有工作台5,在工作台5上置放石英容器6,在石英容器6上部设有不锈钢丝网7,在石英容器6内置放磁性有序介孔碳纳米球8;在真空烧结炉1的内壁上为微波加热器9;在炉腔4内由氮气21充填;在真空烧结炉1的外部由外水循环冷却管10环绕,外水循环冷却管10上设有进水阀11、出水阀12,并与外接水源连接;在真空烧结炉1的左上部设有出气管阀22;在真空烧结炉1的右下部设有真空泵13,真空泵13上部设有真空管14、真空阀15、真空表16,并与炉腔4连通;在真空烧结炉1的左部设有氮气瓶17,氮气瓶17上部设有氮气管18、氮气阀19、氮气表20,并向炉腔4内输入氮气21;在炉座2上设有显示屏23、指示灯24、电源开关25、微波加热控制器26、真空泵控制器27;炉座2与真空泵13之间由导线28连接。
图2所示,为磁性有序介孔碳纳米球形貌图,磁性有序介孔碳纳米球形貌规整、粒径均一,粒径≤100nm,磁性纳米粒子镶嵌在碳层中,呈有序介孔结构。
图3所示,为磁性有序介孔碳纳米球衍射强度图谱,图中可知:在10°-30°范围内存在一个宽的衍射峰,是由水热反应中酚醛树脂高温处理后生成的无定形碳引起的;在30.2°、35.3°、43.15°、53.5°、57.1°和62.9°处出现了新的衍射峰,分别对应了四氧化三铁的(220)、(311)、(400)、(422)、(511)和(440)晶面。
图4所示,为磁性有序介孔碳纳米球氮吸附-脱附曲线图,图中可知,磁性有序介孔碳纳米球的比表面积为344.9m2/g,根据国际纯粹与应用化学联合会标准,确定曲线类型属于Ⅳ型曲线,滞后环属于H1型,表明材料属于孔径均一的介孔材料,孔径≤3nm。
图5所示,为磁性有序介孔碳纳米球动态吸附曲线图,磁性有序介孔碳纳米球对盐酸阿霉素的载药量随着盐酸阿霉素浓度的增加而增加,成正比,最大的载药量为284.7μg/mg。
图6所示,为载药的磁性有序介孔碳纳米球对盐酸阿霉素释放曲线图,在不同pH条件下,载药的磁性有序介孔碳纳米球的释药率随着pH的降低而增加,成反比,当pH为5.5时,释药率达25%,释药时间20h。

Claims (5)

1.一种用于靶向给药的磁性有序介孔碳纳米球的制备方法,其特征在于:
使用的化学物质材料为:苯酚、甲醛、聚环氧乙烷-聚环氧丙烷-聚环氧乙烷、α型氧化铁、氢氧化钠、硝酸铁、氨水、盐酸阿霉素、磷酸二氢钾、磷酸、去离子水、氮气,其组合准备用量如下:以克、毫升、厘米3为计量单位
制备方法如下:
(1)制备有序介孔碳纳米球
①配制混合液
称取苯酚0.6g±0.0001g、氢氧化钠0.06g±0.0001g、α型氧化铁0.04g±0.0001g,量取甲醛2.1mL±0.0001mL、去离子水15mL±0.0001mL,加入三口烧瓶中,成混合液;
②将盛有混合溶液的三口烧瓶置于超声波分散仪上,进行超声分散,超声波频率60KHz,超声分散时间10min,成混合溶液;
③配制聚环氧乙烷-聚环氧丙烷-聚环氧乙烷溶液
称取聚环氧乙烷-聚环氧丙烷-聚环氧乙烷0.96g±0.0001g,量取去离子水15mL±0.0001mL,加入烧杯中,搅拌混合10min,成0.004774mol/L的聚环氧乙烷-聚环氧丙烷-聚环氧乙烷溶液;
④聚合处理
将配制的聚环氧乙烷-聚环氧丙烷-聚环氧乙烷溶液加入三口烧瓶中,将盛有聚环氧乙烷-聚环氧丙烷-聚环氧乙烷混合溶液的三口烧瓶置于水浴缸上,并固定;
将水浴缸置于电加热器上,并固定;
在三口烧瓶上插入水循环冷凝管,进行水循环冷凝;
在三口烧瓶内置放磁子搅拌器,进行搅拌;
开启电加热器,加热温度66℃±1℃,反应时间17h;
三口烧瓶内的聚环氧乙烷-聚环氧丙烷-聚环氧乙烷混合溶液在加热、磁子搅拌、水循环冷凝过程中将发生聚合反应,反应方程式如下:
式中:
C641H1277O284:聚合物混合溶液
聚合反应后,停止加热,停止水循环冷凝,冷却至25℃,得到呈粉红色聚合物混合溶液;
(2)水热合成
将粉红色聚合物混合溶液置于聚四氟乙烯容器中,然后置于反应釜中,密闭;
将反应釜置于加热炉中,加热温度130℃±1℃,加热时间1200min;
水热合成后停止加热,反应釜内的聚合物混合溶液随加热炉冷却至25℃;
(3)离心分离
将聚合物混合溶液置于离心分离管内,进行离心分离、分离转数8000r/min,分离时间10min,分离后留存絮状物,弃去分离液;
(4)真空冷冻干燥
将絮状物置于石英容器中,然后置于真空冷冻干燥箱中,进行冷冻干燥,真空度2Pa,冷冻温度-80℃,冷冻干燥时间720min;
冷冻干燥后得米黄色粉体颗粒,即复合聚合物粉体颗粒;
(5)真空高温烧结、碳化处理
复合聚合物粉体颗粒的烧结是在真空烧结炉内进行的,是在抽真空、中频感应加热、氮气保护、外水循环冷却下完成的;
①打开真空炉烧结,用氮气驱除炉内有害气体,氮气输入速度200cm3/min,输入时间10min;
②将复合聚合物粉体颗粒置于石英容器中,然后置于真空烧结炉内的工作台上,密闭;
③开启真空泵,抽取炉内空气,使炉内压强达2Pa;
④开启氮气瓶,向炉内输入氮气,氮气输入速度100cm3/min,使炉内压强恒定在1个大气压;
⑤开启中频感应加热器,加热温度700℃±1℃,进行烧结,烧结时间60min,
复合聚合物粉体颗粒在真空加热烧结、氮气保护下,将发生碳化过程,碳化反应方程式如下:
式中:
C:含羟基的有序介孔碳纳米球
CO2:二氧化碳
H2O:水蒸气
(6)制备磁性有序介孔碳纳米球
①配制混合液
称取硝酸铁0.32g±0.0001g,含羟基的有序介孔碳纳米球0.3g±0.0001g,量取无水乙醇5mL±0.0001mL,加入烧杯中,成混合液;
②将盛有混合液的烧杯置于超声波分散仪中,进行超声分散,超声波频率40KHz,超声分散时间20min,分散后得混合液;
③真空干燥
将盛有混合液的烧杯置于真空干燥箱中,真空度2Pa,干燥温度60℃,干燥时间360min,干燥后得含羟基的有序介孔碳纳米球和硝酸铁混合物;
④将0.3g±0.0001g含羟基的有序介孔碳纳米球和硝酸铁混合物移至敞口玻璃瓶中,将其放于聚四氟乙烯容器中,聚四氟乙烯容器底部置放氨水溶液10mL±0.0001mL;
⑤将反应釜置于加热炉中,进行加热,加热温度60℃±1℃,加热时间180min;然后停止加热,反应釜随加热炉冷却至25℃;
⑥反应完成后,成含羟基的有序介孔碳纳米球和氢氧化铁混合物;
⑦开炉,开釜,将混合液置于抽滤瓶的布式漏斗中,用三层中速定性滤纸进行抽滤,留存滤饼,弃去滤液;
⑧无水乙醇洗涤、抽滤
将滤饼置于烧杯中,加入无水乙醇100mL,搅拌洗涤10min;然后用三层中速定性滤纸进行抽滤,留存滤饼,弃去洗涤液;
⑨去离子水洗涤、抽滤
将滤饼置于另一烧杯中,加入去离子水100mL,搅拌洗涤10min;
然后用三层中速定性滤纸进行抽滤,留存滤饼,弃去洗涤液;
⑩真空烧结、碳化处理
打开真空烧结炉,用氮气驱除炉内有害气体;
将滤饼置于石英容器中,然后置于真空烧结炉的工作台上,密闭;
开启真空泵,抽取炉内空气,使炉内压强达2Pa;
开启氮气瓶,向炉内输入氮气,氮气输入速度100cm3/min,使炉内压强恒定在1个大气压;
开启中频感应加热器,加热温度500℃±1℃,加热时间30min,含羟基的有序介孔碳纳米球和氢氧化铁混合物碳化,成磁性有序介孔碳纳米球;
在烧结、碳化过程中,生成磁性有序介孔碳纳米球,由含羟基的有序介孔碳纳米球生成磁性有序介孔碳纳米球总反应方程式如下:
式中:
Fe3O4/C:磁性有序介孔碳纳米球
NO2:二氧化氮
O2:氧气
(7)研磨、过筛
将磁性有序介孔碳纳米球用玛瑙研钵、研棒进行研磨,然后用650目筛网过筛;
研磨、过筛反复进行;
得磁性有序介孔碳纳米球;
(8)检测、分析、表征
对制备的磁性有序介孔碳纳米球的色泽、形貌、结构、成分、化学物理性能、载药释药性能和吸光度进行检测、分析、表征;
用透射电子显微镜进行微观结构分析;
用X射线衍射仪进行晶型结构分析;
用比表面积及孔径分析仪进行比表面积及孔结构分析;
用紫外分光光度计进行载药量与释药分析;
结论:磁性有序介孔碳纳米球为黑色粉体颗粒,颗粒直径≤100nm,比表面积344.9m2/g,产物纯度达99.8%,具有有序介孔结构,介孔孔径≤3nm;
(9)产物储存
对制备的磁性有序介孔碳纳米球产物储存于棕色透明的玻璃容器中,密闭避光保存,置于干燥、洁净环境,要防水、防晒、防酸碱盐腐蚀,存储温度20℃,相对湿度≤10%。
2.根据权利要求1所述的一种用于靶向给药的磁性有序介孔碳纳米球的制备方法,其特征在于:
真空烧结炉为立式,真空烧结炉(1)的下部为炉座(2)、上部为炉盖(3)、内部为炉腔(4);在真空烧结炉(1)的内底部设有工作台(5),在工作台(5)上置放石英容器(6),在石英容器(6)上部设有不锈钢丝网(7),在石英容器(6)内置放磁性有序介孔碳纳米球(8);在真空烧结炉(1)的内壁上为微波加热器(9);在炉腔(4)内由氮气(21)充填;在真空烧结炉(1)的外部由外水循环冷却管(10)环绕,外水循环冷却管(10)上设有进水阀(11)、出水阀(12),并与外接水源连接;在真空烧结炉(1)的左上部设有出气管阀(22);在真空烧结炉(1)的右下部设有真空泵(13),真空泵(13)上部设有真空管(14)、真空阀(15)、真空表(16),并与炉腔(4)连通;在真空烧结炉(1)的左部设有氮气瓶(17),氮气瓶(17)上部设有氮气管(18)、氮气阀(19)、氮气表(20),并向炉腔(4)内输入氮气(21);在炉座(2)上设有显示屏(23)、指示灯(24)、电源开关(25)、微波加热控制器(26)、真空泵控制器(27);炉座(2)与真空泵(13)之间由导线(28)连接。
3.根据权利要求1所述的一种用于靶向给药的磁性有序介孔碳纳米球的制备方法,其特征在于:
磁性有序介孔碳纳米球的比表面积为344.9m2/g,曲线类型属于Ⅳ型曲线,滞后环属于H1型,为介孔结构,介孔孔径≤3nm。
4.根据权利要求1所述的一种用于靶向给药的磁性有序介孔碳纳米球的制备方法,其特征在于:
磁性有序介孔碳纳米球对盐酸阿霉素的载药量随着盐酸阿霉素浓度的增加而增加,成正比,最大载药量为284.7μg/mg。
5.根据权利要求1所述的一种用于靶向给药的磁性有序介孔碳纳米球的制备方法,其特征在于:
磁性有序介孔碳纳米球的释药率随pH值的降低而增加,成反比,当pH值为5.5时,释药率为25%,释药时间为20h。
CN201710177157.5A 2017-03-23 2017-03-23 一种用于靶向给药的磁性有序介孔碳纳米球的制备方法 Active CN107032324B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710177157.5A CN107032324B (zh) 2017-03-23 2017-03-23 一种用于靶向给药的磁性有序介孔碳纳米球的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710177157.5A CN107032324B (zh) 2017-03-23 2017-03-23 一种用于靶向给药的磁性有序介孔碳纳米球的制备方法

Publications (2)

Publication Number Publication Date
CN107032324A true CN107032324A (zh) 2017-08-11
CN107032324B CN107032324B (zh) 2019-01-15

Family

ID=59534612

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710177157.5A Active CN107032324B (zh) 2017-03-23 2017-03-23 一种用于靶向给药的磁性有序介孔碳纳米球的制备方法

Country Status (1)

Country Link
CN (1) CN107032324B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110272517A (zh) * 2019-04-28 2019-09-24 杭州可靠护理用品股份有限公司 具有抗菌性能的高吸水性树脂微球的合成方法及其应用
CN113058555A (zh) * 2021-04-22 2021-07-02 苏州科技大学 一种磁性介孔碳吸附材料的制备方法及其应用
CN115651143A (zh) * 2022-12-13 2023-01-31 北京普尔伟业生物科技有限公司 酚醛树脂微球、多孔碳材料微球及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103041758A (zh) * 2013-01-17 2013-04-17 复旦大学 一种核壳结构的磁性空心多孔碳球及其制备方法
US20130302428A1 (en) * 2010-09-11 2013-11-14 Dalian University Of Technology Process for preparing carbon protected superparamagnetic or magnetic nanospheres
CN104072693A (zh) * 2014-07-10 2014-10-01 太原理工大学 一种温敏性聚合物接枝碳球复合物的制备方法
CN104117329A (zh) * 2014-07-21 2014-10-29 太原理工大学 一种碳包覆四氧化三铁磁性微球的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130302428A1 (en) * 2010-09-11 2013-11-14 Dalian University Of Technology Process for preparing carbon protected superparamagnetic or magnetic nanospheres
CN103041758A (zh) * 2013-01-17 2013-04-17 复旦大学 一种核壳结构的磁性空心多孔碳球及其制备方法
CN104072693A (zh) * 2014-07-10 2014-10-01 太原理工大学 一种温敏性聚合物接枝碳球复合物的制备方法
CN104117329A (zh) * 2014-07-21 2014-10-29 太原理工大学 一种碳包覆四氧化三铁磁性微球的制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110272517A (zh) * 2019-04-28 2019-09-24 杭州可靠护理用品股份有限公司 具有抗菌性能的高吸水性树脂微球的合成方法及其应用
CN110272517B (zh) * 2019-04-28 2021-06-29 杭州可靠护理用品股份有限公司 具有抗菌性能的高吸水性树脂微球的合成方法及其应用
CN113058555A (zh) * 2021-04-22 2021-07-02 苏州科技大学 一种磁性介孔碳吸附材料的制备方法及其应用
CN115651143A (zh) * 2022-12-13 2023-01-31 北京普尔伟业生物科技有限公司 酚醛树脂微球、多孔碳材料微球及其制备方法和应用
CN115651143B (zh) * 2022-12-13 2023-03-28 北京普尔伟业生物科技有限公司 酚醛树脂微球、多孔碳材料微球及其制备方法和应用

Also Published As

Publication number Publication date
CN107032324B (zh) 2019-01-15

Similar Documents

Publication Publication Date Title
Rajaee et al. Multifunctional bismuth ferrite nanoparticles as magnetic localized dose enhancement in radiotherapy and imaging
CN107032324B (zh) 一种用于靶向给药的磁性有序介孔碳纳米球的制备方法
CN104587485B (zh) 替拉扎明‑金纳米粒子复合物制备方法及其应用
CN103611172B (zh) 载纳米雄黄磁性白蛋白纳米球及制备方法
CN106729773A (zh) 靶向修饰的负载阿霉素的磁性纳米颗粒及制备方法及应用
CN107929242B (zh) 基于纳米金刚石的药物载体、药物复合体及其制备方法和应用
CN112245579B (zh) 一种缓解肿瘤乏氧的光动力治疗剂及其制备方法和应用
CN108559091A (zh) 具有聚集诱导发光及双重敏感性的聚合物药物载体、载药胶束及其制备方法
CN104288784B (zh) 纳米羟基磷灰石‑基因‑药物复合物及制备方法和应用
CN109091674B (zh) 一种多功能药物载体及其制备方法与应用
CN102671220B (zh) 一种放射性阴离子树脂微球及其制备方法
CN105214090A (zh) 一种Fe3O4@ZnO核壳纳米球的合成方法
CN109999197A (zh) 肿瘤靶向的纳米复合物、制备方法及其在声动力介导的肿瘤精准治疗中的应用
CN107952081A (zh) pH控释靶向药物纳米运输载体及其制备方法和应用
Sun et al. A polyethylenimine functionalized porous/hollow nanoworm as a drug delivery system and a bioimaging agent
CN108543070B (zh) 一种载药液态金属复合物及其制备方法和应用
CN114306282A (zh) 一种增强铁死亡效果的诊疗一体化载药纳米颗粒及其制备方法与应用
CN103550162A (zh) 具有靶向性四氧化三铁-卟啉复合纳米粒子的制备方法
Hu et al. An Intelligent and Soluble Microneedle Composed of Bi/BiVO4 Schottky Heterojunction for Tumor Ct Imaging and Starvation/Gas Therapy‐Promoted Synergistic Cancer Treatment
CN104650307B (zh) 基于PDEAEMA的pH敏感五嵌段线性聚合物及胶束
CN107115528A (zh) 一种具有温度控释和磁热疗作用的温敏磁性有序介孔碳纳米球的制备方法
CN108324958B (zh) 一种紫红素18-脂质体纳米囊泡的制备方法以及在制备用于治疗肿瘤药物中的应用
CN110124057A (zh) 一种包含谷氨酰胺修饰的环糊精的抗肿瘤药物或药物载体
CN107982242A (zh) 一种抗肿瘤治疗可降解有机无机复合纳米颗粒及其制备方法
CN110279675A (zh) 一种利用松塔松香烷型二萜酸构建纳米药物传输体系的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant