CN107021939B - 基于苯并噻二唑的d-a-a型近红外发光化合物及其应用 - Google Patents

基于苯并噻二唑的d-a-a型近红外发光化合物及其应用 Download PDF

Info

Publication number
CN107021939B
CN107021939B CN201710277331.3A CN201710277331A CN107021939B CN 107021939 B CN107021939 B CN 107021939B CN 201710277331 A CN201710277331 A CN 201710277331A CN 107021939 B CN107021939 B CN 107021939B
Authority
CN
China
Prior art keywords
layer
diazosulfide
type
infrared luminous
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710277331.3A
Other languages
English (en)
Other versions
CN107021939A (zh
Inventor
廖良生
王亚坤
蒋佐权
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN201710277331.3A priority Critical patent/CN107021939B/zh
Publication of CN107021939A publication Critical patent/CN107021939A/zh
Application granted granted Critical
Publication of CN107021939B publication Critical patent/CN107021939B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D285/00Heterocyclic compounds containing rings having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by groups C07D275/00 - C07D283/00
    • C07D285/01Five-membered rings
    • C07D285/02Thiadiazoles; Hydrogenated thiadiazoles
    • C07D285/14Thiadiazoles; Hydrogenated thiadiazoles condensed with carbocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1037Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur

Abstract

本发明提供了基于苯并噻二唑的D‑A‑A型近红外发光化合物及其应用,所述的基于苯并噻二唑的D‑A‑A型近红外发光化合物化学结构如下:;其中,苯并噻二唑为主体;A为氰基、吡啶、砜基、二(2,4,6‑三甲苯基)硼烷;D为二苯胺、三苯胺、4,4'‑二甲基二苯胺、4,4'‑二甲基三苯胺、4,4'‑二甲氧基二苯胺或4,4'‑二甲氧基三苯胺。本发明的D‑A‑A型近红外发光化合物不但保留了D‑A之间强烈的作用,还具有较高的荧光量子产率。通过调节D‑A的强度,可以调节其发光光谱和量子产率,从而找到两者的平衡,进而提高近红外有机发光二极管的效率。

Description

基于苯并噻二唑的D-A-A型近红外发光化合物及其应用
技术领域
本发明涉及近红外有机光电材料技术领域,具体涉及基于苯并噻二唑的D-A-A型近红外发光化合物及其应用。
背景技术
众所周知,二十一世纪是一个信息呈指数式暴增的时代,而信息显示技术作为这个时代最重要的标志,其发展更是万众瞩目。毫无疑问,信息显示技术的迅速发展已经对显示技术提出了越来越高的要求。图像显示作为人类接触外界环境重要的手段,在人类的生活和工作中都起着不可替代的作用。除了对日常显示与图像技术的孜孜追求之外,具有特殊用途的红外显示技术也逐渐展现其重要性。这是因为其不仅在常规的红外检测技术上,更在太空科学、医学、军事等重要领域有着可见光不可替代的用途。
在可见光显示领域,有机发光二极管(OLED)作为冉冉升起的新星而备受瞩目。OLED具有高效、低成本、高响应速度以及可实现柔性和透明显示等众多特点。然而,将OLED技术应用到红外发光与显示领域却未见明显成效。不过我们可以推断,在国防军事等领域,近红外(NIR)有机发光材料及发光器件将可在通讯、显示、传感、探测等方面大展拳脚。
目前,虽然国际上人们尚未大范围开展基于红外OLED(IR-OLED)的研究,但对IR-OLED 单元器件的研究却一直在进行。最常用的红外发光材料是稀土镧系金属(如镱、铌、铒、铕等)配合物。这类有机-金属配合物利用中心金属原子中的f 轨道跃迁,可以发出特定波长(在800~1600 nm范围内)的窄波宽红外光。由于镧系金属在地球上的储量很少,人们继而研究了许多近红外发光的有机染料。日本NTT 公司的N.Suziki 于2002年利用一种离子型染料制备出光谱范围在900~1500 nm的IR-OLED器件,优化后的外量子效率为0.036。为了进一步提高IR-OLED 器件的红外发光强度,电致磷光发光的红外发光材料最近受到了人们的重视。南加利福尼亚大学的M. E. Thompson教授研究组于2007 年报道了一种红外电致磷光发光的铂金属配合物[Pt(tpbp)],通过在卟啉发色团的中间位置引入β取代的吡咯基团,形成非平面的分子结构,使材料的吸收峰和发射峰都红移,将Pt(tpbp)以6%的浓度掺杂在Alq 中,制备出的IR-OLED 器件在0.1mA/cm2 下亮度下外量子效率可以达到6.3%。考虑到可持续性发展,采用全有机材料取代重金属存在的配合物是目前发展近红外发光材料的热门领域。例如,中科院长春应用化学所马东阁教授研究组于2009 年报道了一系列结构简单的发色体材料,这些材料分子中含有交替的D-π-A-π-D基团,降低了分子能级带隙,可在1000~1220 nm 范围内发出单峰红外光,其中发光峰在1080 nm 处的IR-OLED 器件具有0.28%的外量子效率。日本九州大学Adachi教授于2014年通过采用蒽醌作为电子受体,二苯胺衍生物为电子给体合成了一系列红光TADF材料(峰值在637),并取得了9.0%的外量子效率。原吉林大学马於光教授研究组于2014 年分别利用噻吩嗪和苯并噻二唑作为给体和受体基团,制备了一种具有类似蝴蝶性质的发色体材料,这种材料发出的红外波峰在700 nm左右,对应的IR-OLED 器件的外量子效率为1.54%。吉林大学王悦教授和武汉大学杨楚罗教授也分别通过合理的分子设计,开发出了发光波长在700 nm左右的近红外发光材料并分别取得了2.1%和3.9%的外量子效率。考虑到NIR OLED的重要性以及目前的发展现状,设计新型的有机材料以实现高效的NIR OLED则变得尤为重要。同时,由于能隙定律的存在,设计新型材料以探究发光光谱和效率的平衡也同等重要。
发明内容
要解决的技术问题:本发明的目的在于通过合理的分子设计,设计一种荧光量子产率高、发光光谱超过700 nm并且器件效率高于3.0%的NIR OLED器件。
技术方案:为实现上述目的,本发明提供如下技术方案:
基于苯并噻二唑的D-A-A型近红外发光化合物,具有式(Ⅰ)所示的化学结构:
(Ⅰ);
其中,苯并噻二唑为主体;
A为氰基、吡啶、砜基或二(2,4,6-三甲苯基)硼烷;
D为二苯胺、三苯胺、4,4'-二甲基二苯胺、4,4'-二甲基三苯胺、4,4'-二甲氧基二苯胺或4,4'-二甲氧基三苯胺。
进一步的,所述的基于苯并噻二唑的D-A-A型近红外发光化合物,主体为未取代的苯并噻二唑,所述衍生物具有式(Ⅱ)的结构:
(Ⅱ)。
上述技术方案中,当A为氰基,D为三苯胺时,所述衍生物具有式(I-A)的结构,命名为TPA-BT-CN:
(I-A)。
上述技术方案中,当A为氰基,D为4,4'-二甲基三苯胺时,所述衍生物具有式(I-B)的结构,命名为MeTPA-BT-CN:
(I-B)。
上述技术方案中,当A为氰基,D为4,4'-二甲氧基三苯胺时,所述衍生物具有式(I-C)的结构,命名为OMeTPA-BT-CN:
(I-C)。
本发明还提供一种上述的基于苯并噻二唑的D-A-A型近红外发光化合物在有机电致荧光器件中的应用。
本发明还提供一种包含基于苯并噻二唑的D-A-A型近红外发光化合物的有机电致荧光器件,有机电致荧光器件包括玻璃、附着在玻璃上的导电玻璃衬底层,与导电玻璃衬底层贴合的空穴注入层,与空穴注入层贴合的空穴传输层,与空穴传输层贴合的发光层,与发光层贴合的空穴阻挡层,与空穴阻挡层贴合的电子传输层,与电子传输层贴合的阴极层,所述的发光层可由单一发光材料组成非掺杂器件或者采用主客体掺杂方式组成,所述的发光材料为上述的基于苯并噻二唑的D-A-A型近红外发光化合物。
进一步的,所述的有机电致荧光器件,所述的基于苯并噻二唑的D-A-A型近红外发光化合物的发光峰处于深红或者近红外发光区域。
进一步的,所述的非掺杂器件为纯的发光材料,所述主客体掺杂方式组成的器件中基于苯并噻二唑的D-A-A型近红外发光化合物的掺杂比例为15wt%。
有益效果:本发明的发光材料应用于有机电致荧光器件中时,在保持发光峰在高于700 nm时仍可取得优异的电致发光效果。本发明以MeTPA-BT-CN作为单独的发光层时,最高可达到3.1%的外量子效率,并且由于较短的激子寿命,基于材料的效率滚降也非常小。当亮度达到1000 cd m-2时,其外量子效率仍可保持最高效率的66%。当采用掺杂型的器件结构时,其外量子效率可进一步提升至3.8%。除此之外,基于掺杂型的NIR OLED的效率滚降也得到了进一步的提升,当亮度达到1000 cd m-2时,其外量子效率可保持70%以上。
本发明通过在苯并噻二唑的两侧分别衍生具有给电子性三苯胺衍生物和强极性的C≡N三键或者其它吸电子基团,从而得到了一种D-A-A型的近红外发光化合物。考虑到苯并噻二唑的吸电子能力主要来于极化的C=N双键,因而引入极化性更强的C≡N三键来使光谱红移则是一个绝佳的选择。同时,采用D-A-A型的构建对提高效率和红移光谱都有明显的作用。具体为:与目前大部分的D-A-D型近红外发光化合物相比,D-A-A型的分子不但保留了D-A之间强烈的作用,并且由于受体旁边又增加了一个吸电子基的受体,因而还可以起到使发光光谱红移的效果,从而更容易取得处于近红外区的光谱。同时,由于减少了非刚性给体的数量(D-A-A),因而较高的荧光两字产率也是其一个明显的优点。与A-D-A型近红外分子相比,D-A-A型的分子同样可以更好的保持其D-A之间的强烈相互作用(>700 nm),并且,由于给体只有一侧有降低量子产率的吸电子基团的存在,D-A-A型分子与A-D-A型相比同样可以有较高的量子产率。并且,通过调节D-A的强度,我们可以很容易调节其发光光谱和量子产率,从而可以找到两者的平衡,进而提高近红OLED的效率。
附图说明
图1为本发明实施例1-3制备的深红-近红外发光材料的紫外-可见吸收光谱图;
图2 为本发明实施例4-6的电致发光器件的发射光谱图;
图3为本发明比较例1的电致发光器件发射图;
图4为本发明的电致发光器件结构示意图,其中1为基片;2为空穴注入层(HIL);3为空穴传输层(HTL);4为电子阻挡层(EBL);5为有机发光层(EML);6为空穴阻挡层(HBL);7为电子传输层(ETL);8为电子注入层(EIL);9为阴极。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行详细的描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
步骤一:将3.7克三苯胺硼酸酯,2.43 克7-溴-4-醛基苯并[C][1,2,5]噻二唑在氩气保护下溶于100 mL水和1,4-二氧六环的混合溶液中,其中水和1,4-二氧六环的体积比为1:10,并依次加入碳酸钾3.45克以及8%当量的四三苯基膦钯到反应瓶中。在氩气保护下回流48小时后,反应液冷却至室温。溶剂通过旋转蒸发仪除干。反应固体溶于80 mL二氯甲烷中,用50 mL水洗有机层三次。有机层用无水硫酸钠干燥后旋干。加入硅胶旋干所得的固体用二氯甲烷/石油醚为4:6(体积比)过柱,旋干得3.45克7-三苯胺-4-醛基苯并[C][1,2,5]噻二唑,产率84.5%。
步骤二:将2.00克7-三苯胺-4-醛基苯并[C][1,2,5]噻二唑在氩气保护下溶于20mL二甲基亚砜(DMSO)中,然后将0.7克盐酸羟胺在氩气保护下溶于10 mL DMSO中并加到反应瓶中。100 ℃下反应8小时后,将反应液倒入冰水中,然后抽滤并将固体溶解掉。然后将溶剂通过减压旋干。固体溶于80 mL二氯甲烷中,用50 mL水洗有机层三次。有机层用无水硫酸钠干燥后旋干。加入硅胶旋干所得的固体用二氯甲烷/石油醚为3:7(体积比)过柱,旋干得3.31克7-三苯胺-4-氰基苯并[C][1,2,5]噻二唑,即TPA-BT-CN,产率82.1%。
实施例2
步骤一:将4.00克4,4’-二甲基三苯胺硼酸酯,2.43 克7-溴-4-醛基苯并[C][1,2,5]噻二唑在氩气保护下溶于100 mL水和1,4-二氧六环的混合溶液中,其中水和1,4-二氧六环的体积比为1:10,并依次加入碳酸钾3.45克以及8%当量的四三苯基膦钯到反应瓶中。在氩气保护下回流48小时后,反应液冷却至室温。溶剂通过旋转蒸发仪除干。反应固体溶于80mL二氯甲烷中,用50 mL水洗有机层三次。有机层用无水硫酸钠干燥后旋干。加入硅胶旋干所得的固体用二氯甲烷/石油醚为5:5(体积比)过柱,旋干得3.84克7-(4,4’-二甲基三苯胺)-4-醛基苯并[C][1,2,5]噻二唑,产率88.3%。
步骤二:将2.20克7-(4,4’-二甲基三苯胺)-4-醛基苯并[C][1,2,5]噻二唑在氩气保护下溶于20 mL二甲基亚砜(DMSO)中,然后将0.7克盐酸羟胺在氩气保护下溶于10mLDMSO中并加到反应瓶中。100℃下反应8小时后,将反应液倒入冰水中,然后抽滤并将固体溶解掉。然后将溶剂通过减压旋干。固体溶于80 mL二氯甲烷中,用50 mL水洗有机层三次。有机层用无水硫酸钠干燥后旋干。加入硅胶旋干所得的固体用二氯甲烷/石油醚为3:7(体积比)过柱,旋干得3.84克7-(4,4’-二甲基三苯胺)-4-氰基苯并[C][1,2,5]噻二唑,即MeTPA-BT-CN,产率86.3%。
实施例3
步骤一:将4.3克4,4’-二甲氧基三苯胺硼酸酯,2.43 克7-溴-4-醛基苯并[C][1,2,5]噻二唑在氩气保护下溶于100 mL水和1,4-二氧六环的混合溶液中,其中水和1,4-二氧六环的体积比为1:10,并依次加入碳酸钾3.45克以及8%当量的四三苯基膦钯到反应瓶中。在氩气保护下回流48小时后,反应液冷却至室温。溶剂通过旋转蒸发仪除干。反应固体溶于80 mL二氯甲烷中,用50 mL水洗有机层三次。有机层用无水硫酸钠干燥后旋干。加入硅胶旋干所得的固体用二氯甲烷/石油醚为3:7(体积比)过柱,旋干得3.85克7-(4,4’-二甲氧基三苯胺)-4-醛基苯并[C][1,2,5]噻二唑,产率82.5%。
步骤二:将2.32克7-(4,4’-二甲氧基三苯胺)-4-醛基苯并[C][1,2,5]噻二唑在氩气保护下溶于20mL二甲基亚砜(DMSO)中,然后将0.7克盐酸羟胺在氩气保护下溶于10mLDMSO中并加到反应瓶中。100℃下反应8小时后,将反应液倒入冰水中,然后抽滤并将固体溶解掉。然后将溶剂通过减压旋干。固体溶于80 mL二氯甲烷中,用50 mL水洗有机层三次。有机层用无水硫酸钠干燥后旋干。加入硅胶旋干所得的固体用二氯甲烷/石油醚为2:8(体积比)过柱,旋干得3.31克7-(4,4’-二甲氧基三苯胺)-4-氰基苯并[C][1,2,5]噻二唑,即OMeTPA-BT-CN,产率81.1%。
下面是本发明化合物的应用实施例:
制备器件的优选实施方式:
如图3所示,OLED器件的典型结构为:基片1/阳极/空穴注入层(HIL)2/空穴传输层(HTL)3/电子阻挡层(EBL)4/有机发光层(EML)5/空穴阻挡层(HBL)6/电子传输层(ETL)7/电子注入层(EIL)8/阴极9。
基片采用ITO透明导电玻璃基板,空穴注入层可以采用三氧化钼(MoO3)或2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂三亚苯(HAT-CN),空穴传输层采用N,N'-二苯基-N,N'-(1-萘基)-1,1'-联苯-4,4'-二胺(NPB)、4,4-N,N’-二咔唑基联苯(CBP)或1,1′-二 4,4′-二甲基三苯胺环已烷(TAPC),电子传输层为4,6-双(3,5-二(3-吡啶)基苯基)-2-甲基嘧啶(B3PyMPM),器件结构可以为单发光层也可以是多发光层,每层发光可以为单掺杂结构、多掺杂结构或者纯的客体材料。LiF/Al、Liq/Al作为阴极结构,其中电子注入层可以为碱金属、碱土金属、过渡金属的单质、化合物或混合物等。在本发明中所选用的阴极材料是Liq/Al。
实施例4
采用本发明的化合物TPA-BT-CN作为OLED器件发光材料,采用掺杂器件结构时,4CzIPN为主体材料,器件结构为:
ITO/HAT-CN(10nm)/TAPC(40nm)/TCTA(10 nm)/ 4CzIPN:15% TPA-BT-CN (20nm)/B3PyMPM(45nm)/Liq(2nm)/Al(120nm)。
器件制备过程如下:将ITO透明导电玻璃基片在商用清洗剂中超声处理,在去离子水中冲洗,用去离子水、丙酮、乙醇反复清洗三次,在洁净的环境下烘烤至完全出去水分,用紫外灯和臭氧处理ITO导电玻璃。把处理过的ITO导电玻璃置于真空腔内,抽真空至3.0×10-4-4.0×10-4Pa,在ITO导电玻璃上真空蒸镀HAT-CN作为空穴注入层(HIL),蒸镀速率为0.25Å/s,镀膜厚度为10nm;在空穴注入层之上真空蒸镀TAPC作为空穴传输层(HTL)和电子阻挡层(EBL),蒸镀速率为2Å/s,镀膜厚度为45nm;然后采用双源蒸镀的工艺方法,以本发明化合物TPA-BT-CN作为发光材料,采用掺杂结构作为发光层(EML),控制蒸镀速率为2Å/s,镀膜厚度为20nm,掺杂结构时,TPA-BT-CN的掺杂浓度为15%。在有机发光层之上真空蒸镀一层B3PyMPM作为器件的空穴阻挡层(HBL)和电子传输层(ETL),蒸镀速率为2Å/s,镀膜厚度为45nm;在电子传输层上真空蒸镀Liq和Al层作为器件阴极,厚度为120nm。
实施例5
采用本发明的化合物MeTPA-BT-CN作为OLED器件发光材料,采用掺杂器件结构时,4CzIPN为主体材料,器件结构为:
ITO/HAT-CN(10nm)/TAPC(40nm)/TCTA(10 nm)/ 4CzIPN:15% MeTPA-BT-CN (20nm)/B3PyMPM(45nm)/Liq(2nm)/Al(120nm)。
器件制备过程如下:将ITO透明导电玻璃基片在商用清洗剂中超声处理,在去离子水中冲洗,用去离子水、丙酮、乙醇反复清洗三次,在洁净的环境下烘烤至完全出去水分,用紫外灯和臭氧处理ITO导电玻璃。把处理过的ITO导电玻璃置于真空腔内,抽真空至3.0×10-4-4.0×10-4Pa,在ITO导电玻璃上真空蒸镀HAT-CN作为空穴注入层(HIL),蒸镀速率为0.25Å/s,镀膜厚度为10nm;在空穴注入层之上真空蒸镀TAPC作为空穴传输层(HTL)和电子阻挡层(EBL),蒸镀速率为2Å/s,镀膜厚度为45nm;然后采用双源蒸镀的工艺方法,以本发明化合物MeTPA-BT-CN作为发光材料,采用掺杂结构作为发光层(EML),控制蒸镀速率为2Å/s,镀膜厚度为20nm,掺杂结构时,MeTPA-BT-CN的掺杂浓度为15%。在有机发光层之上真空蒸镀一层B3PyMPM作为器件的空穴阻挡层(HBL)和电子传输层(ETL),蒸镀速率为2Å/s,镀膜厚度为45nm;在电子传输层上真空蒸镀Liq和Al层作为器件阴极,厚度为120nm。
实施例6
采用本发明的化合物OMeTPA-BT-CN作为OLED器件发光材料,采用掺杂器件结构时,4CzIPN为主体材料,器件结构为:
ITO/HAT-CN(10nm)/TAPC(40nm)/TCTA(10nm)/4CzIPN:15%OMeTPA-BT-CN(20nm)/B3PyMPM(45nm)/Liq(2nm)/Al(120nm)。
器件制备过程如下:将ITO透明导电玻璃基片在商用清洗剂中超声处理,在去离子水中冲洗,用去离子水、丙酮、乙醇反复清洗三次,在洁净的环境下烘烤至完全出去水分,用紫外灯和臭氧处理ITO导电玻璃。把处理过的ITO导电玻璃置于真空腔内,抽真空至3.0×10-4-4.0×10-4Pa,在ITO导电玻璃上真空蒸镀HAT-CN作为空穴注入层(HIL),蒸镀速率为0.25Å/s,镀膜厚度为10nm;在空穴注入层之上真空蒸镀TAPC作为空穴传输层(HTL)和电子阻挡层(EBL),蒸镀速率为2Å/s,镀膜厚度为45nm;然后采用双源蒸镀的工艺方法,以本发明化合物OMeTPA-BT-CN作为发光材料,可以采用掺杂结构作为发光层(EML),控制蒸镀速率为2Å/s,镀膜厚度为20nm掺杂结构时,OMeTPA-BT-CN的掺杂浓度为15%。在有机发光层之上真空蒸镀一层B3PyMPM作为器件的空穴阻挡层(HBL)和电子传输层(ETL),蒸镀速率为2Å/s,镀膜厚度为45nm;在电子传输层上真空蒸镀Liq和Al层作为器件阴极,厚度为120nm。
比较例1
采用本发明的化合物OMeTPA-BT-CN作为OLED器件发光材料,采用非掺杂器件结构时,MeTPA-BT-CN为主体材料,器件结构为:
ITO/HAT-CN(10nm)/TAPC(40nm)/TCTA(10nm)/ MeTPA-BT-CN (20 nm)/B3PyMPM(45nm)/Liq(2nm)/Al(120nm)。
器件制备过程如下:将ITO透明导电玻璃基片在商用清洗剂中超声处理,在去离子水中冲洗,用去离子水、丙酮、乙醇反复清洗三次,在洁净的环境下烘烤至完全出去水分,用紫外灯和臭氧处理ITO导电玻璃。把处理过的ITO导电玻璃置于真空腔内,抽真空至3.0×10-4-4.0×10-4Pa,在ITO导电玻璃上真空蒸镀HAT-CN作为空穴注入层(HIL),蒸镀速率为0.25Å/s,镀膜厚度为10nm;在空穴注入层之上真空蒸镀TAPC作为空穴传输层(HTL)和电子阻挡层(EBL),蒸镀速率为2Å/s,镀膜厚度为45nm;然后采用双源蒸镀的工艺方法,以本发明化合物MeTPA-BT-CN作为发光材料,采用非掺杂结构作为发光层(EML),控制蒸镀速率为2Å/s,镀膜厚度为20nm。在有机发光层之上真空蒸镀一层B3PyMPM作为器件的空穴阻挡层(HBL)和电子传输层(ETL),蒸镀速率为2Å/s,镀膜厚度为45nm;在电子传输层上真空蒸镀Liq和Al层作为器件阴极,厚度为120nm。
实施例4-5及比较例1的器件结构见表1:
表1
器件编号 器件结构
实施例4 ITO/HAT-CN(10nm)/TAPC(40nm)/TCTA(10 nm)/ 4CzIPN:15% TPA-BT-CN (20 nm)/B3PyMPM(45nm)/Liq(2nm)/Al(120nm)
实施例5 ITO/HAT-CN(10nm)/TAPC(40nm)/TCTA(10 nm)/4CzIPN:15% MeTPA-BT-CN (20 nm)/B3PyMPM(45nm)/Liq(2nm)/Al(120nm)
实施例6 ITO/HAT-CN(10nm)/TAPC(40nm)/TCTA(10 nm)/ 4CzIPN:15% OMeTPA-BT-CN (20 nm)/B3PyMPM(45nm)/Liq(2nm)/Al(120nm)
比较例1 ITO/HAT-CN(10nm)/TAPC(40nm)/TCTA(10 nm)/MeTPA-BT-CN (20 nm)/B3PyMPM(45nm)/Liq(2nm)/Al(120nm)
器件的电流-亮度-电压特性是由带有校正过的硅光电二极管的Keithley源测量系统(Keithley 2400 Sourcemeter、Keithley 2000 Currentmeter)完成的,电致发光光谱是由Photo research公司PR655光谱仪测量的,所有测量均在室温大气中完成。
实施例4-5及比较例1的器件数据见表2:
表2
器件 最高亮度(cd/m<sup>2</sup>) 最高EQE(%) 发光光谱
实施例4 5507 4.1 图2
实施例5 2085 3.8 图2
实施例6 1082 0.8 图2
比较例1 1162 3.1 图3
由上表2可以看出,基于本发明的近红外发光化合物在同时拥有可调光谱范围的条件下(680 nm-750 nm 可调),实施例4和5在掺杂条件下可以取得高达3.8%和4.1%的外量子效率。同时,比较例1中的数据也显示出,即使在非掺杂的条件下,基于此类D-A-A型的苯并噻二唑的近红外发光材料仍可达到3.1%,说明此种设计方法和理念对于实现高效的近红外发光器件有很大帮助。并且,据文献报道,到目前为止,此类效率在具有相同发光光谱的有机小分子中都处于最高值的行列。这一结果也充分说明我们基于苯并噻二唑的D-A-A的分子构建策略在有机小分子红外OLED中的广阔的应用前景。
本发明通过在苯并噻二唑的两侧分别衍生具有给电子性三苯胺衍生物和强极性的C≡N三键或者其它吸电子基团,从而得到了一种D-A-A型的近红外发光化合物。考虑到苯并噻二唑的吸电子能力主要来于极化的C=N双键,因而引入极化性更强的C≡N三键来使光谱红移则是一个绝佳的选择。同时,采用D-A-A型的构建对提高效率和红移光谱都有明显的作用。具体为:与目前大部分的D-A-D型近红外发光化合物相比,D-A-A型的分子不但保留了D-A之间强烈的作用,并且由于受体旁边又增加了一个吸电子基的受体,因而还可以起到使发光光谱红移的效果,从而更容易取得处于近红外区的光谱。同时,由于减少了非刚性给体的数量(D-A-A),因而较高的荧光两字产率也是其一个明显的优点。与A-D-A型近红外分子相比,D-A-A型的分子同样可以更好的保持其D/A之间的强烈相互作用(>700 nm),并且,由于给体只有一侧有降低量子产率的吸电子基团的存在,D-A-A型分子与A-D-A型相比同样可以有较高的量子产率。并且,通过调节D/A的强度,我们可以很容易调节其发光光谱和量子产率,从而可以找到两者的平衡,进而提高近红OLED的效率。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (7)

1.基于苯并噻二唑的D-A-A型近红外发光化合物,其特征在于,具有式(Ⅰ)所示的化学结构:(Ⅰ);其中,苯并噻二唑为主体; A为氰基; D为三苯胺、4,4'-二甲基三苯胺或4,4'-二甲氧基三苯胺。
2.根据权利要求1所述基于苯并噻二唑的D-A-A型近红外发光化合物,其特征在于:当A为氰基,D为三苯胺时,所述化合物具有式(I-A)的结构:(I-A)。
3.根据权利要求1所述基于苯并噻二唑的D-A-A型近红外发光化合物,其特征在于:当A为氰基,D为4,4'-二甲基三苯胺时,所述化合物具有式(I-B)的结构:(I-B)。
4.根据权利要求1所述基于苯并噻二唑的D-A-A型近红外发光化合物,其特征在于:当A为氰基,D为4,4'-二甲氧基三苯胺时,所述化合物具有式(I-C)的结构:(I-C)。
5.根据权利要求1所述的基于苯并噻二唑的D-A-A型近红外发光化合物在有机电致荧光器件中的应用。
6.有机电致荧光器件, 包括玻璃、附着在玻璃上的导电玻璃衬底层,与导电玻璃衬底层贴合的空穴注入层,与空穴注入层贴合的空穴传输层,与空穴传输层贴合的发光层,与发光层贴合的空穴阻挡层,与空穴阻挡层贴合的电子传输层,与电子传输层贴合的阴极层,其特征在于:所述的发光层可由单一发光材料组成非掺杂器件或者采用主客体掺杂方式组成,所述的发光材料为权利要求1所述的基于苯并噻二唑的D-A-A型近红外发光化合物。
7.根据权利要求6所述的有机电致荧光器件,其特征在于:所述的基于苯并噻二唑的D-A-A型近红外发光化合物的发光峰处于深红或者近红外发光区域。
CN201710277331.3A 2017-04-25 2017-04-25 基于苯并噻二唑的d-a-a型近红外发光化合物及其应用 Active CN107021939B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710277331.3A CN107021939B (zh) 2017-04-25 2017-04-25 基于苯并噻二唑的d-a-a型近红外发光化合物及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710277331.3A CN107021939B (zh) 2017-04-25 2017-04-25 基于苯并噻二唑的d-a-a型近红外发光化合物及其应用

Publications (2)

Publication Number Publication Date
CN107021939A CN107021939A (zh) 2017-08-08
CN107021939B true CN107021939B (zh) 2019-06-07

Family

ID=59528001

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710277331.3A Active CN107021939B (zh) 2017-04-25 2017-04-25 基于苯并噻二唑的d-a-a型近红外发光化合物及其应用

Country Status (1)

Country Link
CN (1) CN107021939B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109449303B (zh) * 2018-11-06 2021-03-02 固安翌光科技有限公司 一种oled器件
CN111253338B (zh) * 2020-03-20 2021-11-12 湖州师范学院 一种高效有机近红外荧光材料及其制备和用途
CN112111070B (zh) * 2020-10-20 2022-02-25 苏州大学 一种金属配位卟啉基共轭聚合物及其制备方法与在光催化降解有机污染物中的应用
CN114085195B (zh) * 2021-11-30 2022-06-14 浙江播下环保科技有限公司 一种具有转光作用的生物降解薄膜材料及其制备方法及其薄膜掺杂材料

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103342702A (zh) * 2013-07-11 2013-10-09 湘潭大学 一种d-a-a型c∧n配体化合物及其c∧n环金属铂配合物和应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103342702A (zh) * 2013-07-11 2013-10-09 湘潭大学 一种d-a-a型c∧n配体化合物及其c∧n环金属铂配合物和应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
-.RN 1695520-77-4,RN 1622455-74-6.《STN REGISTRY》.2015, *
A novel near-infrared-emitting cyclometalated platinum (II) complex with donoreacceptoreacceptor chromophores;Junting Yu et al.;《Dyes and Pigments》;20140405;第107卷;第146-152页 *
Benzochalcogenodiazole-Based Donor–Acceptor–Acceptor Molecular Donors for Organic Solar Cells;Hao-Chun Ting et al.;《ChemSusChem》;20140113;第7卷;第457-465页 *
Dye-Sensitized Solar Cells Based on Functionally Separated D-π-A Dyes with 2-Cyanopyridine as an Electron-Accepting and Anchoring Group;Jiangyi Mao et al.;《Asian J. Org. Chem.》;20131018;第3卷;第153-160页 *
RN 1695520-77-4,RN 1622455-74-6;-;《STN REGISTRY》;20150430 *

Also Published As

Publication number Publication date
CN107021939A (zh) 2017-08-08

Similar Documents

Publication Publication Date Title
CN105503766B (zh) 一种热活化延迟荧光材料及有机电致发光器件
TWI238018B (en) Organic electroluminescent device
CN107021939B (zh) 基于苯并噻二唑的d-a-a型近红外发光化合物及其应用
CN104892578B (zh) 芴螺三苯胺衍生物及其用途
CN108250214B (zh) 氧杂螺芴三苯胺衍生物、制备方法及其用途
Huo et al. Design and Development of Highly Efficient Light‐Emitting Layers in OLEDs with Dimesitylboranes: An Updated Review
CN110128403A (zh) 化合物、显示面板以及显示装置
KR101098612B1 (ko) 벤조[a]플루오란텐 화합물 및 그것을 이용한 유기 발광 소자
CN106898709B (zh) 一种红色磷光有机电致发光器件
CN108137632A (zh) 有机金属配合物、发光元件、发光装置、电子设备及照明装置
CN109721540A (zh) 二氢苯并吲唑类化合物、有机电致发光器件及显示装置
CN108047130A (zh) 苯并蒽类有机电致发光材料、发光器件及显示器
CN102311303A (zh) 有机el元件
CN104860884B (zh) 类三苯基乙烯衍生物及其用途
CN109293583B (zh) 一种含喹唑啉杂环化合物及其在有机光电器件中的应用
CN112110895A (zh) 一种化合物及其应用以及采用该化合物的有机电致发光器件
CN105777628A (zh) 一种化合物、有机电致发光器件及显示装置
CN109678851A (zh) 热激活延迟荧光材料、有机电致发光器件及显示面板
CN100505373C (zh) 一种性能稳定的有机电致发光器件
CN112310292B (zh) 一种顶发射有机电致发光装置及其应用
CN107383029B (zh) 一种六氮非那烯类化合物及其应用
CN112047930A (zh) 一种化合物及其应用、包含其的有机电致发光器件
CN106170477B (zh) 2-氨基嘧啶类化合物、有机电致发光器件及显示装置
CN108997318A (zh) 联吲哚类有机电致发光材料
CN109053687A (zh) 一种联吲哚类显示材料

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant