CN107017146A - 表面涂层处理 - Google Patents

表面涂层处理 Download PDF

Info

Publication number
CN107017146A
CN107017146A CN201610976836.4A CN201610976836A CN107017146A CN 107017146 A CN107017146 A CN 107017146A CN 201610976836 A CN201610976836 A CN 201610976836A CN 107017146 A CN107017146 A CN 107017146A
Authority
CN
China
Prior art keywords
ceramic layer
substrate
excimer laser
laser beam
pulsed excimer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610976836.4A
Other languages
English (en)
Inventor
丽华·李·黄
施洪
李斯文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lam Research Corp
Original Assignee
Lam Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lam Research Corp filed Critical Lam Research Corp
Publication of CN107017146A publication Critical patent/CN107017146A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32477Vessel characterised by the means for protecting vessels or internal parts, e.g. coatings
    • H01J37/32495Means for protecting the vessel against plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/0036Laser treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4404Coatings or surface treatment on the inside of the reaction chamber or on parts thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02269Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by thermal evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02307Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a liquid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02312Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour
    • H01L21/02315Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02343Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a liquid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4803Insulating or insulated parts, e.g. mountings, containers, diamond heatsinks
    • H01L21/4807Ceramic parts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Structural Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Drying Of Semiconductors (AREA)
  • Laser Beam Processing (AREA)

Abstract

本发明涉及表面涂层处理。提供了一种用于修整在衬底上的厚度小于150μm的陶瓷层的方法。清洁所述陶瓷层。用脉冲准分子激光束以3‑300Hz的重复频率扫描所述陶瓷层的区域。

Description

表面涂层处理
技术领域
本发明涉及半导体器件的制造。更具体地,本发明涉及表面涂层处理。
背景技术
在半导体晶片处理期间,等离子体处理室用于处理半导体器件。涂层被用于保护室表面。
发明内容
为了实现上述并根据本发明的目的,提供了一种用于修整在衬底上的厚度小于150μm的陶瓷层的方法。清洁所述陶瓷层。用脉冲准分子激光束以3-300Hz的重复频率扫描所述陶瓷层的区域。
在另一实现方式中,提供了一种用于修整在衬底上的厚度小于150μm的陶瓷层的方法,所述陶瓷层包括氟化物、氟氧化物或包含镧系III族或IV族元素的氧化物中的至少一种。清洁所述陶瓷层。所述清洁所述陶瓷层包括:冲洗所述陶瓷层;向所述陶瓷层施加超声能量;以及干燥所述陶瓷层。用具有200至8000mJ/cm2的激光能量密度的脉冲准分子激光束以3-300Hz的重复频率且以在157nm和351nm之间的波长扫描所述陶瓷层的区域,其中所述陶瓷层的区域中的每个点用10至500次激光照射处理,其中所述脉冲准分子激光束将所述陶瓷层局部加热至使所述陶瓷层熔融而不破坏衬底也不从衬底剥离的温度,其中所述熔融所述陶瓷层减少所述陶瓷层的松散颗粒以及降低其孔隙率。
具体而言,本发明的一些方面可以阐述如下:
1.一种用于修整在衬底上的厚度小于150μm的陶瓷层的方法,其包括:
清洁所述陶瓷层;
用脉冲准分子激光束以3-300Hz的重复频率扫描所述陶瓷层的区域。
2.根据条款1所述的方法,其中所述脉冲准分子激光束具有在所述陶瓷层的所述厚度上提供小于60%的透射率的波长。
3.根据条款2所述的方法,其中所述脉冲准分子激光器具有200至8000mJ/cm2的激光能量密度。
4.根据条款3所述的方法,其中所述脉冲准分子激光器提供波长在157nm和351nm之间的激光束。
5.根据条款4所述的方法,其中所述陶瓷层的所述区域中的每个点用10至500次激光照射处理,其中所述脉冲准分子激光束将所述陶瓷层局部加热至使所述陶瓷层熔融而不破坏所述衬底也不从所述衬底剥离的温度,其中所述熔融所述陶瓷层降低所述陶瓷层的孔隙率。
6.根据条款5所述的方法,其中所述清洁所述陶瓷层包括:
冲洗所述陶瓷层;
向所述陶瓷层施加超声能量;以及
干燥所述陶瓷层。
7.根据条款6所述的方法,其中所述陶瓷层包括氟化物、氟氧化物或含有镧系III族或IV族元素的氧化物中的至少一种。
8.根据条款7所述的方法,其还包括将所述衬底放置在等离子体处理室中。
9.根据条款8所述的方法,其还包括在所述衬底上沉积所述陶瓷层。
10.根据条款9所述的方法,其中所述沉积所述陶瓷层包括提供热喷涂层。
11.根据条款10所述的方法,其中重熔深度小于50μm。
12.根据条款1所述的方法,其中所述陶瓷层包括氧化钇、氟化钇、氟氧化钇或氧化钇稳定的氧化锆中的至少一种。
13.根据条款1所述的方法,其中所述脉冲准分子激光器具有200至8000mJ/cm2的激光能量密度。
14.根据条款1所述的方法,其中所述脉冲准分子激光器提供波长在157nm和351nm之间的激光束。
15.根据条款1所述的方法,其中所述陶瓷层的所述区域中的每个点用10至500次激光照射处理,其中所述脉冲准分子激光束将所述陶瓷层局部加热至使所述陶瓷层熔融而不破坏所述衬底也不从所述衬底剥离的温度,其中所述熔融所述陶瓷层降低所述陶瓷层的孔隙率。
16.根据条款1所述的方法,其中所述清洁所述陶瓷层包括:
冲洗所述陶瓷层;
向所述陶瓷层施加超声能量;以及
干燥所述陶瓷层。
17.根据条款1所述的方法,其中所述陶瓷层包括氟化物、氟氧化物或包含镧系III族或IV族元素的氧化物中的至少一种。
18.一种用于修整在衬底上的厚度小于150μm的包含氟化物、氟氧化物或包括镧系III族或IV族元素的氧化物中的至少一种的陶瓷层的方法,所述方法包括:
清洁所述陶瓷层,其中所述清洁所述陶瓷层包括:
冲洗所述陶瓷层;
向所述陶瓷层施加超声能量;以及
干燥所述陶瓷层;
用具有200至8000mJ/cm2的激光能量密度的脉冲准分子激光束以3-300Hz的重复频率且以在157nm和351nm之间的波长扫描所述陶瓷层的区域,其中所述陶瓷层的所述区域中的每个点用10至500次激光照射处理,其中所述脉冲准分子激光束将所述陶瓷层局部加热至使所述陶瓷层熔融而不破坏所述衬底也不从所述衬底剥离的温度,其中所述熔融所述陶瓷层降低所述陶瓷层的孔隙率。
19.根据条款18所述的方法,其还包括将所述衬底放置在等离子体处理室中。
本发明的这些和其他特征将在本发明的详细描述中并结合下面的附图在下面更详细地说明。
附图说明
本发明在附图的图中通过举例的方式示出,而不是通过限制的方式示出,并且在附图中类似的附图标记指代相似的元件,并且其中:
图1是本发明的实施方式的高级流程图。
图2A-B是根据本发明的实施方式处理的衬底的示意图。
图3是可以在本发明的实施方式中使用的局部加热系统的示意图。
图4是可以在本发明的实施方式中使用的蚀刻反应器的示意图。
具体实施方式
本发明现在将参考一些如在附图中所示的本发明的优选实施方式详细地说明。在以下的说明中,许多具体细节被阐述以便提供对本发明的透彻理解。然而,显而易见,对于本领域技术人员而言,本发明可以在没有这些具体细节中的一些或全部的情况下实施。在其他情况下,公知的工艺步骤和/或结构没有详细描述以免不必要地使本发明难以理解。
为了便于理解,图1是在本发明的实施方式中使用的工艺的高级流程图。陶瓷层沉积在衬底上,其中陶瓷层具有孔隙率(步骤104)。清洁陶瓷层(步骤106)。对陶瓷层进行处理过程(步骤108)。处理过程(步骤108)包括以下步骤:通过脉冲准分子激光器将陶瓷层的区域局部加热到使陶瓷层熔融而不损坏衬底的温度(步骤112),以及扫描陶瓷层的通过在陶瓷层上面的局部加热而被加热的区域(步骤116)。确定是否重复该处理过程(步骤120)。如果重复该处理过程,则重复孔隙率降低过程(步骤108)。如果不进一步重复该处理过程,则将衬底制成等离子体处理室中的部件(步骤124),例如衬里、窗和注入器、边缘环或另一个室部件的覆盖物,或通过使用衬底作为电极。然后将衬底用于等离子体处理室中(步骤128)。
实施例
在本发明的优选的实施方式的实施例中,在衬底上沉积陶瓷层(步骤104)。图2A是衬底204的示意性横截面图,在该衬底204上具有陶瓷层208。陶瓷层208具有由阴影表示的孔隙率。在该实施方式中,陶瓷层208通过热喷涂沉积来沉积。在其他实施方式中,陶瓷层可以通过等离子体喷涂、悬浮喷涂、PVD(等离子体气相沉积)、CVD(化学气相沉积)或气溶胶沉积来沉积。在该实施方式中,衬底是阳极氧化铝。在其他实施方式中,衬底是氧化铝、碳化硅、铝、氧化钇或AlN。在该实施方式中,陶瓷层208包括氧化钇(钇氧)。在其他实施方式中,陶瓷层208包括氟化物、氟氧化物或含有镧系III族或IV族元素的氧化物中的至少一种或陶瓷涂层的其他组合。优选地,陶瓷涂层包括氧化钇、氟化钇、氟氧化钇或氧化钇稳定的氧化锆中的至少一种。
热喷涂是用于描述各种涂覆工艺的通用术语,各种涂覆工艺如等离子体喷涂、电弧喷涂、火焰/燃烧喷涂和悬浮喷涂。所有热喷涂使用能量将固体加热至熔融或塑化状态。熔融或塑化的材料朝向衬底加速,使得熔融或塑化的材料涂覆衬底的表面并冷却。优选地,使用等离子体喷涂来提供氧化钇涂层。这些工艺不同于气相沉积工艺,气相沉积工艺使用气化材料而不是熔融材料。在该实施方式中,陶瓷涂层的厚度小于150μm。
清洁陶瓷层(步骤106)。在该实施方式中,清洁首先包括对陶瓷层的表面的去离子水冲洗。然后对陶瓷层的表面进行超声波清洗,该超声波清洗可以使用超声波振荡。然后将陶瓷层加热至100℃以干燥陶瓷层的表面。
使陶瓷层经受处理过程(步骤108)。在该处理过程中,通过脉冲准分子激光器将陶瓷层208的区域局部加热到使陶瓷层熔融而不损坏衬底的温度(步骤112)被提供,以将局部区域加热到使在局部区域熔融陶瓷涂层而不损坏衬底204的温度。能量主要消散在陶瓷涂层的顶部50μm或不到50μm的范围内,使得离表面大于50μm的材料不会熔融。更优选地,离表面大于30μm的材料不熔融。这需要选择由陶瓷涂层吸收的能量源。在该实施方式中,陶瓷层的熔融降低了孔隙率。陶瓷层的熔融还可以包括用多次暴露和变化的能量水平重熔融陶瓷以实现所需的材料性质(即熔融深度和表面光洁度)。
图3是用于给陶瓷层208提供局部准分子激光器加热的准分子激光器加热系统300的示意图(步骤112)。准分子激光器加热系统300包括准分子激光器304。准分子激光器304将脉冲激光束308提供到室302中。在一些实施方式中,准分子激光器304在室302内。在其他实施方式中,准分子激光器304在室302外,其中脉冲激光束308被引导到室302中。脉冲激光束308被引导到反射镜312。在该实施方式中,反射镜连接到反射镜致动器316。反射镜312朝向衬底208反射脉冲激光束308。
衬底支撑件340在室302内。衬底支撑件340可耦合到二维平移系统342,以独立地在x方向和y方向上移动衬底支撑件340。在该实施例中,平移系统342包括用于在x方向上移动衬底支撑件340的x台架343和用于在y方向上独立地移动衬底支撑件340的y台架344。二维平移系统342相对于脉冲激光束308移动衬底。衬底支撑件340还可包括加热元件350,诸如例如电阻加热器,和/或散热器(例如水冷却板)以在工艺期间控制衬底温度。
具有陶瓷层208的衬底204被放置在诸如N2、He或Ar等吹扫气体下在准分子激光器加热系统300中。陶瓷层208的局部区域由准分子激光器304加热至使陶瓷层熔融而不损坏衬底204的温度,其中熔融降低孔隙率以及减少松散颗粒(步骤112)。脉冲激光束在陶瓷层208上产生具有1-10mm2的面积的束场,使得由脉冲激光束直接加热的局部加热区域具有1-10mm2的面积。
在陶瓷层208上扫描陶瓷层208的加热的局部区域(步骤118)。在各种实施方式中,二维平移系统342或反射镜312由反射镜致动器316导致移动单独或组合地可用于提供扫描。在该实施方式中,扫描是沿x和y方向形成行和列的笛卡尔坐标。在其他实施方式中,扫描可以是在螺旋路径中旋转。局部加热将陶瓷层208加热到陶瓷层208的熔融温度,使得陶瓷层208熔融并再凝固。在一些实施方式中,陶瓷层已经预先熔融,使得熔融是重熔。在该实施例中,确定局部区域将在陶瓷层208上扫描两次(步骤120)。在该实施方式中,第二扫描将处于与第一扫描不同的处理条件下。在其他实施方式中,第二扫描将处于相同的处理条件。
图2B是在局部区域已经在陶瓷层208上扫描两次之后在衬底204上具有陶瓷层208的衬底204的示意性横截面图。该处理降低了孔隙率以及减少了表面颗粒,如减少的阴影所示的。可以提供其他处理步骤,例如额外的去离子水漂洗和陶瓷层表面的干燥。
然后将衬底204制成等离子体处理室的一部分(步骤124)。图4是其中已经安装了衬底的等离子体处理室400的示意图。等离子体处理室400包括约束环402、上电极404、下电极408、气体源410、衬里462和排放泵420。衬里462是由具有重熔的陶瓷层的衬底形成。在等离子体处理室400内,晶片466被定位在下电极108上。下电极408包含用于保持晶片466的合适的衬底夹持机构(例如,静电式、机械式夹持,等等)。反应器顶部428包括与下电极408正相对地布置的上电极404。上电极404、下电极408和约束环402限定约束等离子体体积440。
气体由气体源410通过气体入口443供给到约束等离子体体积440,并且由排放泵420通过约束环402和排放口从约束等离子体体积440排出。除了有助于排放气体,排放泵420还有助于调节压力。RF源448电连接到下电极408。
室壁452围绕衬里462、约束环402、上电极404和下电极408。衬里462有助于防止穿过约束环402的气体或等离子体接触室壁452。将RF功率连接到电极的不同组合是可能的。在一个优选实施方式中,27兆赫、60兆赫和2兆赫的功率源构成连接到下电极408的RF功率源448,并且上电极404接地。控制器435可控地连接到RF源448、排放泵420和气体源410。处理室400可以是CCP(电容耦合等离子体)反应器或ICP(感应耦合等离子体)反应器或可使用如表面波、微波或电子回旋共振ECR等其他源。
然后在等离子体处理室中使用衬底(步骤128)。在使用中,晶片466被放置在下电极408上。等离子体处理气体(例如蚀刻气体或沉积气体)从气体源410流入等离子体处理室400内。在该实施例中,等离子体处理气体具有包括氢和卤素的组分。等离子体处理气体形成为用于等离子体处理的等离子体。一些含卤素和氢的组分沉积在衬里462上。当室打开时,氢和卤素组分与水蒸气形成酸。在高孔隙率的情况下,陶瓷层将使衬底暴露于酸,这将导致衬底腐蚀。热处理使孔隙率降低,从而使得陶瓷层保护衬底不受酸的影响而得以改善。
优选地,陶瓷层的孔隙率在处理之前大于5%,在处理之后小于1%。在另一个实施方式中,陶瓷层的孔隙率在处理之前大于1%,在处理之后小于0.5%。在两种情况下,孔隙率减少至少50%。优选地,局部加热具有小于50μm的熔融深度。更优选地,熔融深度小于30μm。低熔融深度可以防止陶瓷层与衬底分层。这种低熔融深度允许陶瓷熔融以使陶瓷回流而不损坏或熔融衬底。在一些实施方式中,陶瓷层中的材料首次熔融。在其他实施方式中,陶瓷层中的材料被重熔。在其他实施方式中,一些材料首次熔融,而其他材料被重熔。在一些实施方式中,衬底是Al、阳极化Al或氧化铝,并且局部加热区域将陶瓷层加热到至少1800℃的温度。优选地,当使用脉冲准分子激光束时,熔融的局部区域具有小于5厘米的直径。
在一些实施方式中,熔融的陶瓷层具有改善的颗粒性能、均匀性、密度、纯度和表面光洁度,以提高化学和等离子体抗性。重熔也可以用于密封PVD或CVD工艺的柱状晶界。重熔还可以减少涂层坑和低密度区域气溶胶沉积、增大涂层硬度和断裂韧性。在一些实施方式中,将陶瓷层加热至高于2200℃的温度,而不损坏熔点为约660℃的下面的铝,也不损坏具有高得多的熔融温度的氧化铝衬底。
脉冲准分子激光器具有优选在157至351nm的波长范围内的频率。更优选地,脉冲准分子激光器具有在193至351nm范围内的波长。相对于陶瓷层选择来自准分子激光器的脉冲激光束的频率,使得优选小于60%的激光束在整个陶瓷层的厚度穿过陶瓷层。更优选地,小于50%的激光束在整个陶瓷层的厚度穿过陶瓷层。优选地,准分子激光器被以3-300Hz的重复频率施以脉冲。更优选地,准分子激光器以25-200Hz的脉冲重复频率提供脉冲。优选地,脉冲激光束在陶瓷层的表面上的面积在0.01mm2至100mm2之间。更优选地,脉冲激光束在陶瓷层的表面上的面积在1至10mm2之间。陶瓷层的由脉冲激光束加热的局部加热区域大致等于脉冲激光束的面积。束形状可以是方形束的形式。当需要时,可以实施圆形、菱形、希腊字母π或线形的束形状以进一步提高处理速度。优选地,脉冲激光束的平均激光能量的密度(能量密度)为200至8000mJ/cm2。更优选地,脉冲激光束的平均激光能量密度为500至3000mJ/cm2。优选地,每个区域被脉冲1至5000次。更优选地,每个区域暴露于10至500次激光照射。这种曝光可以是静态曝光,其为相同区域施以给定数量的脉冲,然后移动到另一非重叠区域,或者曝光可以缓慢地移动在脉冲之间被照射的区域,以产生重叠脉冲区域,其中重叠区域被照射规定的次数。这种脉冲消除或减少未熔融或悬浮的颗粒、裂纹和孔隙率。这种脉冲还可以使陶瓷层致密化,提高耐等离子体侵蚀性,减少颗粒形成,并改善陶瓷层的机械性能。
在另一实施方式中,不是在衬底上形成陶瓷层,而是在等离子体处理室使用陶瓷层之后将陶瓷层修复。从等离子体处理室移走衬底和陶瓷层。清洁陶瓷层的表面。在该实施例中,清洁陶瓷层的表面首先提供对陶瓷层的表面的抛光。这种抛光去除污染,但也对陶瓷层产生表面和表面下的损伤。然后使陶瓷层的表面经受提供超声波振动的超声波处理。然后对陶瓷层的表面进行去离子水冲洗。然后将陶瓷层加热至100℃以干燥陶瓷层的表面。然后对陶瓷层进行脉冲准分子激光处理以再熔融陶瓷层的至少一部分。然后可以提供随后的去离子水冲洗和干燥。在其他实施方式中,可以提供其他清洁步骤,例如擦洗或化学擦拭。将经修复的衬底放回等离子体处理室中,并且将等离子体处理室与安装的经修复的衬底一起使用。
虽然已经根据几个优选实施方式对本发明进行了描述,但仍有落入本发明的范围之内的变形、置换和各种替代等同方案。应当注意,存在实施本发明的方法和装置的许多替代方式。因此,意在将下面所附的权利要求解释为包括所有这些落入本发明的真实精神和范围内的变形、置换和各种替代等同方案。

Claims (10)

1.一种用于修整在衬底上的厚度小于150μm的陶瓷层的方法,其包括:
清洁所述陶瓷层;
用脉冲准分子激光束以3-300Hz的重复频率扫描所述陶瓷层的区域。
2.根据权利要求1所述的方法,其中所述脉冲准分子激光束具有在所述陶瓷层的所述厚度上提供小于60%的透射率的波长。
3.根据权利要求2所述的方法,其中所述脉冲准分子激光器具有200至8000mJ/cm2的激光能量密度。
4.根据权利要求3所述的方法,其中所述脉冲准分子激光器提供波长在157nm和351nm之间的激光束。
5.根据权利要求4所述的方法,其中所述陶瓷层的所述区域中的每个点用10至500次激光照射处理,其中所述脉冲准分子激光束将所述陶瓷层局部加热至使所述陶瓷层熔融而不破坏所述衬底也不从所述衬底剥离的温度,其中所述熔融所述陶瓷层降低所述陶瓷层的孔隙率。
6.根据权利要求5所述的方法,其中所述清洁所述陶瓷层包括:
冲洗所述陶瓷层;
向所述陶瓷层施加超声能量;以及
干燥所述陶瓷层。
7.根据权利要求6所述的方法,其中所述陶瓷层包括氟化物、氟氧化物或含有镧系III族或IV族元素的氧化物中的至少一种。
8.根据权利要求7所述的方法,其还包括将所述衬底放置在等离子体处理室中。
9.根据权利要求8所述的方法,其还包括在所述衬底上沉积所述陶瓷层。
10.一种用于修整在衬底上的厚度小于150μm的包含氟化物、氟氧化物或包括镧系III族或IV族元素的氧化物中的至少一种的陶瓷层的方法,所述方法包括:
清洁所述陶瓷层,其中所述清洁所述陶瓷层包括:
冲洗所述陶瓷层;
向所述陶瓷层施加超声能量;以及
干燥所述陶瓷层;
用具有200至8000mJ/cm2的激光能量密度的脉冲准分子激光束以3-300Hz的重复频率且以在157nm和351nm之间的波长扫描所述陶瓷层的区域,其中所述陶瓷层的所述区域中的每个点用10至500次激光照射处理,其中所述脉冲准分子激光束将所述陶瓷层局部加热至使所述陶瓷层熔融而不破坏所述衬底也不从所述衬底剥离的温度,其中所述熔融所述陶瓷层降低所述陶瓷层的孔隙率。
CN201610976836.4A 2015-12-07 2016-11-07 表面涂层处理 Pending CN107017146A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/961,707 US10422028B2 (en) 2015-12-07 2015-12-07 Surface coating treatment
US14/961,707 2015-12-07

Publications (1)

Publication Number Publication Date
CN107017146A true CN107017146A (zh) 2017-08-04

Family

ID=58798921

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610976836.4A Pending CN107017146A (zh) 2015-12-07 2016-11-07 表面涂层处理

Country Status (4)

Country Link
US (1) US10422028B2 (zh)
KR (1) KR20170070814A (zh)
CN (1) CN107017146A (zh)
TW (1) TWI752925B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111066123A (zh) * 2017-08-25 2020-04-24 株式会社日本制钢所 激光照射装置、激光照射方法以及半导体器件制造方法
CN111902917A (zh) * 2018-03-22 2020-11-06 应用材料公司 对用于半导体器件制造的处理部件的陶瓷表面进行激光抛光
CN115488074A (zh) * 2022-09-29 2022-12-20 西安微电子技术研究所 一种管壳封装植球植柱前处理方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018045484A1 (en) * 2016-09-06 2018-03-15 Apple Inc. Laser bleach marking of an anodized surface
US10668511B2 (en) * 2018-03-20 2020-06-02 Taiwan Semiconductor Manufacturing Co., Ltd. Method of cleaning process chamber
US11384430B2 (en) 2018-07-03 2022-07-12 Lam Research Corporation Method for conditioning a ceramic coating
EP3636794A1 (en) * 2018-10-12 2020-04-15 Siemens Aktiengesellschaft A method to increase the thermal stress capability of a porous ceramic coating and a layer system
KR102497053B1 (ko) * 2020-09-25 2023-02-08 한국과학기술연구원 레이저 소결을 이용한 내플라즈마 코팅막 치밀화 방법
KR20230153130A (ko) * 2022-04-28 2023-11-06 아주대학교산학협력단 지르코니아 표면 처리방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5362523A (en) * 1991-09-05 1994-11-08 Technalum Research, Inc. Method for the production of compositionally graded coatings by plasma spraying powders
US5391841A (en) * 1992-12-08 1995-02-21 Quick; Nathaniel R. Laser processed coatings on electronic circuit substrates
CN1522457A (zh) * 2001-06-27 2004-08-18 应用材料公司 具有有纹理的内表面的处理室部件和制造方法
CN101074473A (zh) * 2006-03-20 2007-11-21 东京毅力科创株式会社 半导体加工装置用陶瓷覆盖部件
CN101218191A (zh) * 2005-07-13 2008-07-09 应用材料股份有限公司 基材处理腔室的构件的局部表面退火
US20110017659A1 (en) * 2007-11-05 2011-01-27 Oral Cenk Aktas Oxide Compounds as a Coating Composition
CN103890223A (zh) * 2011-11-02 2014-06-25 东华隆株式会社 喷涂覆膜中的致密化层的形成方法、和喷涂覆膜被覆构件

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3932328A1 (de) 1989-09-28 1991-04-11 Opel Adam Ag Verfahren zur bearbeitung von durch reibung hochbeanspruchten flaechen in brennkraftmaschinen und vorrichtung zur durchfuehrung des verfahrens
US7648782B2 (en) * 2006-03-20 2010-01-19 Tokyo Electron Limited Ceramic coating member for semiconductor processing apparatus
CN104364887B (zh) * 2012-05-22 2017-09-22 株式会社东芝 等离子体处理装置用部件和等离子体处理装置用部件的制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5362523A (en) * 1991-09-05 1994-11-08 Technalum Research, Inc. Method for the production of compositionally graded coatings by plasma spraying powders
US5391841A (en) * 1992-12-08 1995-02-21 Quick; Nathaniel R. Laser processed coatings on electronic circuit substrates
CN1522457A (zh) * 2001-06-27 2004-08-18 应用材料公司 具有有纹理的内表面的处理室部件和制造方法
CN101218191A (zh) * 2005-07-13 2008-07-09 应用材料股份有限公司 基材处理腔室的构件的局部表面退火
CN101074473A (zh) * 2006-03-20 2007-11-21 东京毅力科创株式会社 半导体加工装置用陶瓷覆盖部件
US20110017659A1 (en) * 2007-11-05 2011-01-27 Oral Cenk Aktas Oxide Compounds as a Coating Composition
CN103890223A (zh) * 2011-11-02 2014-06-25 东华隆株式会社 喷涂覆膜中的致密化层的形成方法、和喷涂覆膜被覆构件

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111066123A (zh) * 2017-08-25 2020-04-24 株式会社日本制钢所 激光照射装置、激光照射方法以及半导体器件制造方法
CN111066123B (zh) * 2017-08-25 2023-10-20 Jsw阿克迪纳系统有限公司 激光照射装置、激光照射方法以及半导体器件制造方法
CN111902917A (zh) * 2018-03-22 2020-11-06 应用材料公司 对用于半导体器件制造的处理部件的陶瓷表面进行激光抛光
CN115488074A (zh) * 2022-09-29 2022-12-20 西安微电子技术研究所 一种管壳封装植球植柱前处理方法
CN115488074B (zh) * 2022-09-29 2023-11-03 西安微电子技术研究所 一种管壳封装植球植柱前处理方法

Also Published As

Publication number Publication date
US10422028B2 (en) 2019-09-24
KR20170070814A (ko) 2017-06-22
TW201731132A (zh) 2017-09-01
TWI752925B (zh) 2022-01-21
US20170159164A1 (en) 2017-06-08

Similar Documents

Publication Publication Date Title
CN107017146A (zh) 表面涂层处理
JP6261974B2 (ja) 基板処理構成部品からの残留物の除去
CN105474363B (zh) 抗等离子体的陶瓷涂层的浆料等离子体喷涂
JP5237124B2 (ja) 窒化炭素を用いたコーティングおよび窒化炭素をコーティングした製品
JP6639584B2 (ja) プラズマ処理装置用の部品の製造方法
CN102157425B (zh) 用于衬底处理腔室的环组件
TW201704504A (zh) 塗佈表面之方法
US20080044568A1 (en) Anti-clogging nozzle for semiconductor processing
JPH1070112A (ja) 半導体処理チャンバ表面を洗浄する装置及び方法
TW202018127A (zh) 用於電漿處理腔室元件的表面塗層
TWI342582B (en) Method of surface texturizing
TW201944498A (zh) 對用於半導體元件製造之處理部件的陶瓷表面進行雷射拋光
JP2023106380A (ja) チャンバ部品を製造するための方法
KR101559112B1 (ko) 공정부품 표면의 세라믹 코팅막 및 이의 형성방법
KR20130010557A (ko) 반도체 제조장비용 핫플레이트
TW202208074A (zh) 耐電漿腐蝕部件及其製備方法,及電漿處理設備
TW202219308A (zh) 利用低溫氟化的金屬氧化物
JP4407111B2 (ja) 石英ガラス溶射部品及びその製造方法
JP2004143583A (ja) 石英ガラス部品及びその製造方法並びにそれを用いた装置
KR102371547B1 (ko) 에어로졸 증착 장치
JPH0119467B2 (zh)
KR20060031136A (ko) 진공 플라즈마 챔버용 열용사 코팅막 및 그 제조방법
TW202102720A (zh) 用於鋁電漿處理腔室元件的表面塗層
TW202216637A (zh) 用於半導體處理腔室之匹配化學性的元件本體及塗層
JP2007067033A (ja) 基板処理装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170804