CN107001100A - 用于引导玻璃切割和防止裂开的热阻隔 - Google Patents

用于引导玻璃切割和防止裂开的热阻隔 Download PDF

Info

Publication number
CN107001100A
CN107001100A CN201580066400.5A CN201580066400A CN107001100A CN 107001100 A CN107001100 A CN 107001100A CN 201580066400 A CN201580066400 A CN 201580066400A CN 107001100 A CN107001100 A CN 107001100A
Authority
CN
China
Prior art keywords
pearl
glass tape
equipment
glass
thermal source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201580066400.5A
Other languages
English (en)
Inventor
A·A·阿布拉莫夫
S·R·伯德特
P·P·简
张静茹
张锐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Inc
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Publication of CN107001100A publication Critical patent/CN107001100A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/064Forming glass sheets by the overflow downdraw fusion process; Isopipes therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/067Forming glass sheets combined with thermal conditioning of the sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B21/00Severing glass sheets, tubes or rods while still plastic
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/0215Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor the ribbon being in a substantially vertical plane
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/09Severing cooled glass by thermal shock
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/09Severing cooled glass by thermal shock
    • C03B33/091Severing cooled glass by thermal shock using at least one focussed radiation beam, e.g. laser beam
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B29/00Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins
    • C03B29/04Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins in a continuous way
    • C03B29/06Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins in a continuous way with horizontal displacement of the products
    • C03B29/08Glass sheets
    • C03B29/12Glass sheets being in a horizontal position on a fluid support, e.g. a gas or molten metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Toxicology (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

形成玻璃制品的方法包括:从拉制外壳以下游方向拉制玻璃带,仅对玻璃带的珠的部分进行加热从而在珠中形成压缩应力区域,对玻璃带进行划刻以形成划线,玻璃带在划线上破裂。在划线的上游位置对珠进行加热。用于制造玻璃制品的设备包括:用于形成具有珠的玻璃带的拉制外壳;加热设备,所述加热设备具有热源,所述热源用于仅在玻璃带的珠的部分中形成压缩应力区域;以及划刻设备,所述划刻设备形成划线,在所述划线上,使玻璃带破裂形成玻璃制品。热源与玻璃带同时向下游移动。

Description

用于引导玻璃切割和防止裂开的热阻隔
本申请根据35U.S.C.§120,要求2014年10月10日提交的美国申请系列号第14/511,633号的优先权,本文以该申请为基础并将其全文通过引用结合于此。
技术背景
技术领域
本说明书一般地涉及用于制造玻璃带的方法和设备,更具体地,涉及用于引导玻璃切割和防止切割过程中玻璃带发生裂开的方法和设备。
技术背景
可以通过诸如熔合拉制工艺、狭缝拉制工艺或者其他类似下拉工艺之类的工艺形成玻璃带。相比于通过其他方法生产的玻璃带,熔合拉制工艺生产的玻璃带的表面具有优异的平坦度和光滑度。可以将从熔合拉制工艺形成的玻璃带切片出来的单块玻璃片用于各种装置,包括平板显示器、触摸传感器、光伏器件和其他电子应用。
通过熔合拉制工艺形成的玻璃带在玻璃带的边缘处具有珠。珠倾向于比玻璃带的中心部分更厚,因而相比于玻璃带的其他部分冷却较为缓慢和较不均匀,这导致在玻璃中建立起残留应力,这会引起裂纹。具体来说,当在拉制底部从玻璃带以水平方式分离玻璃片时,可能在珠区域内存在裂纹,并垂直向上扩展过拉制到达熔合拉制机器。该裂纹还导致破裂和裂开,这导致加工时间的损失以及可能的产品损失。在层叠熔合工艺中,裂开特别普遍,在所述层叠熔合工艺中,双珠特征和复杂残留应力会加剧在从带材以水平方式分离玻璃片之后导致裂纹的应力。
因此,本文揭示了用于防止在从带材以水平方式分离玻璃片的过程中发生裂开的替代性方法和设备。
发明内容
在一些实施方式中,揭示了形成玻璃制品的方法。在该方法中,通过以下游方向从拉制外壳拉制玻璃带形成玻璃带,所述玻璃带包括珠。仅对玻璃带的珠的一个或多个部分进行加热,从而在珠中形成一个或多个压缩应力区域。然后,对玻璃带进行划刻以形成划线,在所述划线上将玻璃带破裂形成玻璃制品。在划线的上游位置对珠进行加热。
在另一个实施方式中,揭示了用于制造玻璃制品的设备。设备包括拉制外壳,所述拉制外壳通过以下游方向拉制玻璃带从而形成玻璃带,所述玻璃带包括珠。设备还包括加热设备和划刻设备,所述加热设备包括热源,所述热源用于仅在玻璃带的珠的一个或多个部分中形成一个或多个压缩应力区域,以及所述划刻设备形成划线,在所述划线上,使玻璃带破裂形成玻璃制品。在一些实施方式中,热源与玻璃带同时向下游移动。
在以下的详细描述中给出了附加特征和优点,通过所作的描述,其中的部分特征和优点对于本领域的技术人员而言是显而易见的,或者通过实施包括以下详细描述、权利要求书以及附图在内的本文所描述的实施方式而被认识。
应理解,前面的一般性描述和以下的详细描述都描述了各种实施方式且都旨在提供用于理解所要求保护的主题的性质和特性的总体评述或框架。包括的附图提供了对各种实施方式的进一步理解,附图并入本说明书中并构成说明书的一部分。附图例示了本文所描述的各种实施方式,且与描述一起用于解释所要求保护的主题的原理和操作。
附图说明
图1示意性显示根据本文提供的实施方式的玻璃带;
图2示意性显示根据本文提供的实施方式的形成下拉玻璃的设备;
图3A-3D示意性显示根据本文提供的实施方式的具有压缩应力区域的玻璃带;
图4示意性显示根据本文提供的实施方式的玻璃带的冷却分布;以及
图5示意性显示根据本文提供的实施方式的热通量分布。
具体实施方式
下面将详细参考用于制造玻璃制品的方法和设备的各个实施方式,这些实施方式的例子在附图中示出。只要有可能,在所有附图中使用相同的附图标记来表示相同或类似的部分。图2示意性显示通过以拉制方向拉制玻璃带来制造玻璃带的设备的一个实施方式。设备通常包括拉制外壳、划刻设备和加热设备。拉制外壳包括底部开口,通过所述底部开口拉制玻璃带。加热设备可以置于拉制外壳的底部开口的下游。在一些实施方式中,加热设备可以安装在划刻设备上。加热设备仅加热了玻璃带的珠的一部分,从而在玻璃带的珠中形成压缩应力区域。压缩应力区域的压缩应力足以防止裂纹向上扩展超过拉制并回到FDM中。在一些实施方式中,压缩应力区域可以布置成基本平行于划线,以及在其他实施方式中,压缩应力区域可以布置成与划线呈斜线。下面将具体参考附图,更加详细地描述用于制造玻璃制品的方法和设备的各种实施方式。
在附图中包含坐标轴来提供对于本文所述玻璃带制造设备和方法的各个组件的参考框架。如本文所用,“横向”或“横跨拉制”的方向定义为附图所示的坐标轴的x轴正向或x轴负向。“下游”或“拉制”方向定义为附图所示的坐标轴y轴的负向。“上游”方向定义为附图所示的坐标轴y轴的正向。
图1显示示例性玻璃带104的一部分。玻璃带104在横向方向上被以沿拉制方向延伸的第一边缘104a和以沿拉制方向延伸的第二边缘104b所限定。玻璃带104还包括以拉制方向延伸的中心线401。玻璃带104还包括第一珠部分402、中心区域410(也称作“质量区域”)和第二珠部分408。当玻璃带104从成形体下倾落下来时形成珠408、402,并且带材104的珠部分变厚。已经证明跨过珠408、402分离玻璃带104是困难的,并且可能导致大的能量释放,这会形成以上游和/或下游方向在带材104中扩展的裂纹,潜在地对玻璃带和/或从玻璃带分离的玻璃片造成损坏。在极端情况下,从玻璃带扩展的裂纹可能引起玻璃带在目标分离线上不合乎希望的分离,这可能打断玻璃带制造工艺。
仍参见图1,第一珠部分402以拉制方向延伸并且在横向上受到玻璃带104的第一边缘104a和第一珠边缘402a的限定,所述第一珠边缘402a在横向方向上位于第一边缘104a和中心线401之间。第二珠部分4028以拉制方向延伸并且在横向上受到玻璃带104的第二边缘104b和第二珠边缘408a的限定,所述第二珠边缘408a在横向方向上位于第二边缘104b和中心线401之间。虽然在图1中所示的第一珠部分402、第一珠边缘402a、第二珠部分408和第二珠边缘408a处在特定横向位置,但是应理解的是,在其他实施方式中,第一珠部分402、第一珠边缘402a、第二珠部分408和第二珠边缘408a可以不同于图1所示的情况。
现参见图2,示意性显示用于制造图1的玻璃带的示例性玻璃制造设备100。作为初始情况,虽然下文所述的示例性玻璃制造设备100通过熔合拉制工艺形成玻璃带,但是应理解的是,本文所述的方法和设备可与其他下拉工艺结合使用,包括但不限于狭缝拉制工艺等。
图2所示的玻璃制造设备100包括熔融容器110、澄清容器115、混合容器120、传递容器125、熔合拉制机器(“FDM”)141、移动式砧机(“TAM”)180,以及至少一个加热设备150。熔融容器110与澄清容器115流体连接。澄清容器115通过连接管122与混合容器120流体连接。混合容器120进而通过连接管127与传递容器125流体连接。传递容器125通过下导管130与FDM 141流体连接。FDM 141包括:拉制外壳142、入口132、与入口132流体连接的成形容器135以及牵拉辊组件140。成形容器135包括与入口132流体连接的开口136以及与开口136流体连接的凹槽137。凹槽137包括两侧138a和138b。牵拉辊组件140布置在靠近FDM 141的拉制外壳142的底部。
TAM 180布置在拉制的底部开口的下游,并且其通过对玻璃带104进行横向划刻或者横跨拉制划刻,从玻璃带104分离玻璃片。用于对玻璃带104进行划刻的机制没有限制,在一些实施方式中,可以包括激光器或者划刻轮。无论采用何种机制从玻璃带104切割玻璃片,在玻璃带104中形成划线,其有助于从玻璃带104分离玻璃片。为了制造精确且笔直的划线,TAM 180可以在其对玻璃带104进行横向划刻的同时与玻璃带104同时向下游移动。TAM下方的常规自动化设备(未示出)用吸盘保持片材,并沿着划线使片材弯曲和断裂。TAM 180循环操作,循环从第一位置开始,第一位置位于玻璃会发生弯曲和分离的位置的上游。划刻机制沿着划线从玻璃带104的第一边缘104a朝向第二边缘104b横向移动,同时玻璃带104和TAM 108以相同速率持续向下游运动。然后,一旦完成划刻过程,TAM 180抵达其位于第二位置的行程(stroke)端部。沿着划线进行玻璃的弯曲,自动化设备位于靠近划线但是处于划线的下游,从玻璃带104分离单独的玻璃片。TAM 180向上游移动,返回到处于第一位置的行程开始处。在一些实施方式中,划刻的持续时间(因而是TAM 180的向下游移动的持续时间)可以小于或等于约7秒,例如小于或等于约6秒或者甚至小于或等于约5秒。
对玻璃带104进行划刻导致大的能量释放,这会在珠408、402中形成裂纹,其可能朝向FDM 141向上游扩展并导致玻璃带的完全意外分离,称作裂开(crackout)。但是,在珠408、402中形成压缩应力区域可以阻止裂纹和/或可用于引导裂纹使其方向不会影响玻璃带104的质量区域410,例如,使裂纹的方向朝向玻璃带104的边缘104a、104b而不是上游方向或者横向朝向玻璃带104的质量区域。在本文所述的实施方式中,可以通过在待形成压缩应力区域的珠408、402的一部分与围绕珠的部分之间产生温差,来形成压缩应力区域。该温差导致压缩应力区域内的玻璃发生膨胀,而珠408、402围绕压缩应力区域的部分中的玻璃冷却和收缩。玻璃的这些部分的膨胀和收缩差异会导致形成压缩应力区域。因此,在一些实施方式中,可以通过将珠408、402的部分暴露于(可通过加热设备150形成的)热源,从而在珠408、402中形成压缩应力区域。
加热设备150置于拉制外壳142的底部开口的下游。在一些实施方式中,加热设备包括热源,所述热源对玻璃带104的一个或多个珠408、402的至少一个部分进行照射。为了提供在珠408、402中产生会防止裂纹扩展进入FDM141的压缩应力所需要的加热,将一个或多个珠408、402的所述部分暴露于热源持续一段时间。因此,在一些实施方式中,热源与玻璃带104一起向下游移动,从而提供足够的加热来产生压缩应力区域。在一些实施方式中,加热设备150包括固定热源,并且加热设备150与玻璃带104同时向下游移动。在其他实施方式中,加热设备150是固定的,以及热源是可移动的,例如通过提供安装在固定加热设备150中的可移动激光器或红外热源。
在一些实施方式中,加热设备150可以与TAM 180附连。在此类实施方式中,热源可以是固定的,以及整个加热设备150与TAM 180上的玻璃带104一起向下游移动。在其他实施方式中,包括固定热源的加热设备150可以与TAM 180是分开的,并且安装在可移动平台上,所述可移动平台类似于TAM 180,与玻璃带104同时向下游移动。在其他实施方式中,加热设备150可以是固定的并且包括可移动热源(例如激光器或红外灯),对其进行编程从而移动的速度使得从热源施加到玻璃带的热同时与玻璃带104向下游移动。
参见图1和2,在一些实施方式中,加热设备150可以包括第一热源和第二热源,所述第一热源布置成在划线的上游侧向珠408、402施加热,以及第二热源布置成在划线的下游侧向珠408、402施加热。在其他实施方式中,加热设备150可以包括一个热源,其布置成在划线的上游侧向珠408、402施加热。在一些实施方式中,热源可以布置成基本平行于划线,或者热源可以布置成与划线呈斜线。在一些实施方式中,热源配置成使得施加的热没有超过珠408、402的边缘408a、402b和进入玻璃带104的中心部分410。应理解的是,也考虑热源的其他构造并且也是可以的。采用上文所述热源在珠408中形成的示例性压缩应力区域如图3B-3D所示。
在一些实施方式中,加热设备150可以包括红外热源。但是,应理解的是,在其他实施方式中,加热设备150可以包括除了红外热源之外的热源。在加热设备150包括红外热源的实施方式中,红外热源可以配置成以大于或等于约2.5微米至小于或等于约6.5微米波长范围来发射辐射。在其他实施方式中,红外热源可以配置成以大于或等于约2.5微米至小于或等于约4.0微米波长范围或者以大于或等于约2.5微米至小于或等于约3.0微米波长范围来发射辐射。在采用红外热源的实施方式中,可以采用一个或多个凹面镜将热集中到珠408、402的特定部分并且与玻璃带104同时向下游移动,所述一个或多个凹面镜可以是固定或者可以是可移动的,从而将红外辐射反射和导向到玻璃带104的所需位置上。
在替代实施方式中,加热设备150可以包括激光器作为热源。在加热设备150包括激光器热源的一些实施方式中,激光器热源可以是CO2激光器、CO激光器或者UV激光器。在使用CO2激光器的实施方式中,CO2激光器可以配置成以大于或等于约9.0微米至小于或等于约11.0微米波长范围,例如以大于或等于约9.4微米至小于或等于约10.6微米波长范围来发射辐射。在使用CO激光器的实施方式中,CO激光器可以配置成以大于或等于约2.0微米至小于或等于约8.5微米波长范围,例如以大于或等于约2.6微米至小于或等于约8.3微米波长范围来发射辐射。在使用UV激光器的实施方式中,UV激光器可以配置成以大于或等于约260纳米至小于或等于约380纳米波长范围,例如以大于或等于约262纳米至小于或等于约375纳米波长范围来发射辐射。在一些实施方式中,激光器可以配置成以大于或等于约20W至小于或等于约100W的功率范围,例如大于或等于约30W至小于或等于约90W的功率范围来发射辐射。在一些实施方式中,激光器可以配置成反射约50W的辐射。在使用激光器的实施方式中,激光器可以是扫描激光器,对其进行编程从而以与玻璃带104相同的速度向下游移动。
参见图2,在玻璃制造设备100的运行过程中,将玻璃批料按照箭头112所示引入熔融容器110中。在熔融容器110中熔化批料,以形成熔融玻璃126。熔融玻璃126从熔融容器110流向澄清容器115。澄清容器115在高温加工区域中接收熔融玻璃126,在该高温加工区域中,从熔融玻璃126去除气泡。在澄清容器115中进行加工之后,熔融玻璃126经由连接管道122流到混合容器120,在其中,对熔融玻璃126进行混合。在混合容器120中进行混合之后,熔融玻璃126经由连接管道127流入传递容器125。
传递容器125将熔融玻璃126供给通过下导管130进入FDM 141的入口132,通过其将熔融玻璃126供给到成形容器135。通过成形容器135的开口136接收熔融玻璃126,并使其流入凹槽137。在进入凹槽137之后,熔融玻璃126溢流并流过凹槽137的两侧138a和138b,之后在根部139处熔合到一起。根部139是两个侧面138a和138b汇合的位置,在此处,熔融玻璃126的两个溢流壁重新结合(例如重新熔合),之后通过牵拉辊组件140向下游拉制,形成玻璃带104。
在成形并通过牵拉辊组件140向下游拉制之后,玻璃带104离开拉制外壳142的底部开口。在离开拉制外壳142之后,玻璃带104开始冷却(如上文所述),并且与玻璃带104的较厚珠区域408、402中的冷却相关的复杂残留应力可能导致玻璃带104沿着珠408、402的裂纹。当通过TAM 180对玻璃带104进行划刻时,玻璃带104可能是特别倾向于发生裂纹扩展的。裂纹可能向上游扩展并进入FDM 141,导致裂开。作为替代或补充,裂纹可能向下游扩展远离FDM 141。在任一情况下,所得到的裂纹可能导致加工时间的损失以及可能的产品损失。不希望受限于任何特定理论,相信在珠408、402处引入局部化压缩应力,例如通过上文所述的至少在划线的上游侧的局部加热,防止了形成的裂纹以朝向上游方向发生扩张,并且可用于引导裂纹扩展远离玻璃带104的中心410。
参见图3A,示意性显示根据常规方法,通过TAM 180对玻璃带104进行划刻以产生划线310。裂纹330a、330b可形成在玻璃带104的珠408中,从划线310开始并朝向FDM 141向上游扩展(显示为裂纹330b)或者远离FDM 141向下游扩展(显示为裂纹330a)。裂纹不是可容易控制的,并且裂纹扩展可最终朝向玻璃带104的中心410移动,这会对玻璃带或者由其分离的玻璃片造成损坏。
现参见图3B,为了解决裂纹,(未示出的)加热设备用划线310的上游位置的热源对玻璃带104的珠408的表面进行照射。热源同时与玻璃带向下游移动,从而照射玻璃带104的珠408的相同部分,持续的时间足以形成压缩应力区域320。这之后,可以形成裂纹330,其从划线310向上游扩展,但是由于压缩应力区域320防止其扩展进入FDM 141。
参见图3C,在另一个实施方式中,(未示出的)加热设备包括第一热源,其布置成使得其照射珠408在划线310上游的部分。加热设备还包括第二热源,所述第二热源布置成使其照射位于划线310下游的珠408的一部分。第一和第二热源同时与玻璃带104一起向下游移动,从而照射玻璃带104的珠408的相同部分,持续的时间足以在珠408中形成压缩应力区域320a、320b。第一热源用于形成位置位于划线310上游的压缩应力区域320b。可以形成第一裂纹330b,其从划线310向上游扩展,但是由于压缩应力区域320b防止其向上游扩展进入FDM 141。第二热源用于形成位置位于划线310下游的压缩应力区域320a。可以形成第二裂纹330a,其从划线310向下游扩展,但是由于压缩应力区域320a使其被中断而没有向下游行进太远。
参见图3D,在另一个实施方式中,(未示出的)加热设备包括第一热源,其布置成使得其照射珠408与划线310呈斜线的部分。热源同时与玻璃带向下游移动,从而照射珠408的相同部分,持续的时间足以形成与划线310呈斜线的压缩应力区域320。呈斜线的压缩应力区域320相对于带材的中心发生倾斜,从而压缩应力区域320最靠近带材中心的部分也最靠近划线310,以及压缩应力区域最靠近玻璃带的边缘104b的部分最远离划线310。可以形成从划线310向上游扩展的裂纹330,但是由于呈斜线的压缩应力区域320的倾斜特性使得裂纹330朝向玻璃带104的边缘104b受到阻碍或重新导向,从而防止裂纹330向上游扩展和进入FDM 141。
在一些实施方式中,压缩应力区域仅形成在玻璃带的一部分的珠408、402中,没有形成在玻璃带的中心410中或者在整个珠408、402中。如上文所述,在玻璃带的中心(或质量区域)410中形成压缩应力区域在玻璃片的质量区域410中引入不希望的不一致性,这可能对从玻璃带形成的玻璃制品的性能造成阻碍。相反地,如上文所述,在珠408、402中形成压缩应力区域不会对待从玻璃带104形成的玻璃制品的性能造成影响,因为珠408、402通常不包含在玻璃制品的可用部分中。此外,对于防止裂纹扩展而言,在整个珠中形成压缩应力区域是不必要的。因此,在一些实施方式中,仅在玻璃带的部分的珠408、402中形成压缩应力区域320。
通过热源在压缩应力区域320中形成的压缩应力足以阻碍或重新导向裂纹扩展。在一些实施方式中,压缩应力区域320中的压缩应力大于或等于约8MPa,例如大于或等于约10MPa。在一些实施方式中,压缩应力区域320中的压缩应力小于或等于约20MPa,例如小于或等于约16MPa。如果通过热源引入的压缩应力的量低于8MPa,则压缩应力区域320可能不足以防止裂纹330向上扩展到拉制处和进入FDM。但是,如果通过热源引入的压缩应力高于20MPa,则压缩应力区域可能干扰玻璃带的进一步加工,这会导致生产时间损失。
如上文所述,通过向玻璃带104的表面施加热源(例如红外辐射或激光束),形成了压缩应力区域320。热源在珠的压缩应力区域与围绕珠的部分之间产生温差。该温差导致珠的压缩应力区域内的玻璃发生膨胀,而围绕珠的部分发生冷却和收缩。这种膨胀和收缩导致的作用力差异在玻璃带的珠中形成压缩应力区域。因此,在一些实施方式中,当被热源加热时,珠的压缩应力区域与珠的围绕部分之间的温差大于或等于约50℃至小于或等于约200℃,例如大于或等于约75℃至小于或等于约175℃。在其他实施方式中,当被热源加热时,珠的压缩应力区域与珠的围绕部分之间的温差大于或等于约100℃至小于或等于约150℃,例如大于或等于约110℃至小于或等于约125℃。图4图示性显示根据一个实施方式的玻璃带的温度分布。图中的x轴表示从拉制处开始往下的距离(单位,米),以及y轴表示温度(单位,摄氏度)。图4所示的实施方式提供两个热源,它们的位置在从拉制处开始往下0.5m至1.0m之间。在图4所示的实施方式中,随着玻璃带从拉制处开始向下移动,其以指数发生冷却,除了提供热源的区域之外。图4所示的热源提供了当被热源加热时的珠的压缩应力区域与珠的围绕部分之间约为100℃的温差。在图4所示的实施方式中,用功率约为50W的单模CO2激光加热玻璃带。
当被热源加热时的珠的压缩应力区域与珠的围绕部分之间的温差与正在进行拉制的玻璃组合物的热膨胀系数(CTE)负相关。例如,玻璃组合物的CTE越高,则实现所需的压缩应力所需要的温差会越低。因此,在一些实施方式中,珠的压缩应力区域与珠的围绕部分之间所需的温差可以采用如下等式计算,其中,ΔT是温差,α是CTE,E是弹性模量,以及σ是停止裂纹扩展或改变裂纹扩展方向所需的压缩应力水平。
在一些实施方式中,玻璃制品的温度小于玻璃组合物的应变点(即,玻璃的粘度为1014.5泊的温度)。因此,当计算实现压缩应力区域中所需的压缩应力所需要的温差时,必须考虑从拉制处出来的玻璃带的温度,从而没有将压缩应力区域加热至高于玻璃组合物的应变点。
为了在合理的时间量内产生所需的温差,热源会需要足够的热通量。珠能够暴露于热源的持续时间越长,则热源所需要的热通量越低。产生压缩应力区域所需的热通量会根据正在进行加热的玻璃组合物发生变化。在一些实施方式中,施加到玻璃带表面的峰值热通量大于或等于约10kW/m2至小于或等于约30kW/m2,例如,大于或等于约12.5kW/m2至小于或等于约25kW/m2。如果热通量低于10kW/m2,则会难以在裂纹扩展之前的过程中所提供的时间量内(例如,TAM对玻璃带进行划刻的时间量内)在玻璃中形成压缩应力区域。如果热通量大于约30kW/m2,则热源可能使得玻璃熔化,这不仅会无法产生所需的压缩应力区域,还会阻碍玻璃带的加工。因此,在一些实施方式中,对热通量进行控制从而提供的加热产生压缩应力区域而不造成玻璃的熔化。
可以通过如下等式计算热通量,其中,ρ是密度,h是厚度,Cp是比热,t是热源在玻璃表面上的停留时间/持续时间,ΔT是所需的温差。
H
ρhCpΔT
图5图示性显示根据一个实施方式,用于形成压缩应力区域的热通量。在图5中,x轴表示横跨拉制的距离(单位,米),y轴表示通量(单位,w/m2),以及z轴表示距离拉制往下的距离(单位,米)。如图5所示,用于在该实施方式中产生压缩应力区域的热通量的最大值约为25kw/m2,并且聚焦在珠的非常精确的部分上。
暴露于热源的持续时间取决于工艺限制,例如划刻工艺的持续时间。如上文所述,不需要具体的持续时间,以及热通量可以取决于珠暴露于热源的持续时间发生改变。在一些实施方式中,珠暴露于热源的持续时间可以小于或等于约10秒,例如小于或等于约9秒。在其他实施方式中,珠暴露于热源的持续时间可以小于或等于约8秒,例如小于或等于约7秒。在一些实施方式中,珠暴露于热源的持续时间可以大于或等于约3秒,例如大于或等于约4秒。在其他实施方式中,珠暴露于热源的持续时间可以大于或等于约5秒,例如大于或等于约6秒。
在珠408、402中的压缩应力区域320的尺寸没有特别的限制,并且会取决于所使用的热源类型以及玻璃带104上的珠408、402的尺寸发生变化。在一些实施方式中,压缩应力区域在横跨拉制方向上足够宽,其至少伸展成如同玻璃带的珠那样长。例如,参见珠408,如果玻璃带的珠408横跨拉制方向从玻璃带104的最靠近边缘104b延伸300mm,则压缩应力区域320也可横跨拉制方向从玻璃带104的最靠近边缘104b延伸300mm。在一些实施方式中,压缩应力区域横跨拉制从玻璃带的最靠近边缘延伸小于或等于约300mm,例如,横跨拉制从玻璃带的最靠近边缘延伸小于或等于约250mm。在其他实施方式中,压缩应力区域横跨拉制从玻璃带的最靠近边缘延伸小于或等于约200mm,例如,横跨拉制从玻璃带的最靠近边缘延伸小于或等于约150mm。压缩应力区域从拉制处往下的高度与所使用的热源的尺寸成比例。例如,如图5所示,压缩应力区域的高度可以薄至用于形成压缩应力区域的激光的尺寸。在一些实施方式中,压缩应力区域的高度小于或等于约50mm,例如小于或等于约25mm。在一些实施方式中,应力区域的深度可以大于或等于约1.0英寸至小于或等于约2.0英寸,例如1.5英寸。
在一些实施方式中,如图3B-3D所示,可以在划线310的上游形成压缩应力区域320,以及任选地,可以在划线310的下游形成压缩应力区域320。如果形成的压缩应力区域320过于靠近划线,则压缩应力区域可能影响玻璃带的划刻。但是,如果形成的压缩应力区域过于远离划线,则它们对于防止裂纹扩展而言可能是不够的。因此,在一些实施方式中,形成的压缩应力区域的位置位于划线的上游或下游大于约25mm处,例如,位置位于划线的上游或下游大于约50mm处。在一些实施方式中,形成的压缩应力区域的位置位于划线的上游或下游小于约75mm处,例如,位置位于划线的上游或下游小于约60mm处。
应理解的是,虽然上文公开了将压缩应力区域热引入到玻璃带的珠中,但是可以通过在玻璃制品中产生精确压缩应力区域的任意工艺来形成压缩应力区域。
应注意,本文可用术语“基本上”和“约”表示可由任何定量比较、数值、测量或其它表示方法造成的内在不确定性程度。在本文中还使用这些术语表示数量的表示值可以与所述的参比值有一定的偏离程度,但是不会导致审议的主题的基本功能改变。
在第一个方面,一种形成玻璃制品的方法,该方法包括:通过以下游方向从拉制外壳拉制玻璃带来形成玻璃带,所述玻璃带包括珠;仅对玻璃带的珠的一个或多个部分进行加热,从而在珠中形成一个或多个压缩应力区域;以及对玻璃带进行划刻以形成划线,在所述划线上,使玻璃带破裂形成玻璃制品,其中,在划线的上游位置对珠进行加热。
第二个方面包括第一个方面的方法,其中,加热包括基本平行于划线对玻璃带进行加热。
第三个方面包括第一个方面的方法,其中,加热包括与划线呈斜线对玻璃带进行加热。
第四个方面包括第一个方面的方法,该方法还包括在划线的下游位置对一部分的珠进行加热。
第五个方面包括第四个方面的方法,其中,珠在划线的下游位置加热的部分是以基本平行于划线的方式进行加热的。
第六个方面包括第一个方面的方法,其中,所述一个或多个压缩应力区域的宽度在横跨拉制方向从玻璃带的最靠近边缘延伸小于约300mm。
第七个方面包括第一个方面的方法,其中,所述一个或多个压缩应力区域的高度向上游延伸小于或等于约50mm。
第八个方面包括第一个方面的方法,其中,珠加热的位置是位于划线的上游大于或等于约50mm处。
第九个方面包括第一个方面的方法,其中,加热包括对珠的所述一个或多个部分进行加热,从而在所述一个或多个压缩应力区域和珠的围绕部分之间的温差大于或等于约50℃至小于或等于约200℃。
第十个方面包括第一个方面的方法,其中,加热包括仅将珠的一个或多个部分暴露于峰值热通量小于或等于约25kw/m2的热源。
第十一个方面包括第一个方面的方法,其中,加热包括将珠的所述一个或多个部分加热至小于形成玻璃带的玻璃组合物的应变点的温度。
第十二个方面包括第一个方面的方法,其中,压缩应力区域的压缩应力大于或等于约16MPa。
在第十三个方面,一种用于制造玻璃制品的设备,该设备包括:拉制外壳,所述拉制外壳用于通过以下游方向拉制玻璃带来形成玻璃带,所述玻璃带包括珠;加热设备,所述加热设备包括热源,其用于仅在玻璃带的珠的一个或多个部分中形成一个或多个压缩应力区域;以及划刻设备,其形成划线,玻璃带在所述划线上破裂形成玻璃制品,其中,热源与玻璃带同时向下游移动。
第十四个方面包括第十三个方面的设备,其中,热源是固定的,以及加热设备同时与玻璃带向下游移动。
第十五个方面包括第十四个方面的设备,其中,划刻设备是移动式砧机,以及加热设备安装在移动式砧机上。
第十六个方面包括第十三个方面的设备,其中,加热设备是固定的,以及热源同时与玻璃带向下游移动。
第十七个方面包括第十三个方面的设备,其中,热源是基于激光的热源。
第十八个方面包括第十七个方面的设备,其中,基于激光的热源选自:CO2激光、CO激光和UV激光。
第十九个方面包括第十三个方面的设备,其中,热源是基于红外的热源。
第二十个方面包括第十九个方面的设备,其中,基于红外的热源以波长范围大于或等于约2.5微米的光来照射玻璃带。
可以在不偏离要求保护的主题的范围的情况下,对本文所述的实施方式进行各种修改和变动。因此,本说明书旨在涵盖本文所述的各种实施方式的修改和变化形式,且这些修改和变化形式落入所附权利要求及其等同内容的范围之内。

Claims (20)

1.一种形成玻璃制品的方法,该方法包括:
通过以下游方向从拉制外壳拉制玻璃带形成玻璃带,所述玻璃带包括珠;
仅对所述玻璃带的珠的一个或多个部分进行加热,从而在所述珠中形成一个或多个压缩应力区域;以及
对所述玻璃带进行划刻以形成划线,在所述划线上使所述玻璃带破裂形成玻璃制品,
其中,在所述划线的上游位置对所述珠进行加热。
2.如权利要求1所述的方法,其特征在于,加热包括基本平行于所述划线对所述玻璃带进行加热。
3.如权利要求1所述的方法,其特征在于,加热包括以与所述划线呈斜线的方式对所述玻璃带进行加热。
4.如权利要求1所述的方法,该方法还包括在所述划线的下游位置对一部分的珠进行加热。
5.如权利要求4所述的方法,其特征在于,所述珠在划线的下游位置加热的部分是以基本平行于所述划线的方式进行加热的。
6.如权利要求1所述的方法,其特征在于,所述一个或多个压缩应力区域的宽度在横跨拉制方向上从所述玻璃带的最靠近边缘延伸小于约300mm。
7.如权利要求1所述的方法,其特征在于,所述一个或多个压缩应力区域的高度向上游延伸小于或等于约50mm。
8.如权利要求1所述的方法,其特征在于,所述珠加热的位置是位于所述划线的上游大于或等于约50mm处。
9.如权利要求1所述的方法,其特征在于,加热包括对珠的所述一个或多个部分进行加热,从而在所述一个或多个压缩应力区域和珠的围绕部分之间的温差大于或等于约50℃至小于或等于约200℃。
10.如权利要求1所述的方法,其特征在于,加热包括仅将珠的一个或多个部分暴露于峰值热通量小于或等于约25kw/m2的热源。
11.如权利要求1所述的方法,其特征在于,加热包括将珠的所述一个或多个部分加热至小于形成所述玻璃带的玻璃组合物的应变点的温度。
12.如权利要求1所述的方法,其特征在于,所述压缩应力区域的压缩应力大于或等于约16MPa。
13.一种用于制造玻璃制品的设备,该设备包括:
拉制外壳,所述拉制外壳通过以下游方向拉制玻璃带从而形成玻璃带,所述玻璃带包括珠;
加热设备,所述加热设备包括用于仅在所述玻璃带的珠的一个或多个部分中形成一个或多个压缩应力区域的热源;以及
划刻设备,所述划刻设备形成划线,玻璃带在所述划线上破裂形成玻璃制品,
其中,所述热源与所述玻璃带同时向下游移动。
14.如权利要求13所述的设备,其特征在于,所述热源是固定的,以及所述加热设备同时与所述玻璃带向下游移动。
15.如权利要求14所述的设备,其特征在于,
所述划刻设备是移动式砧机,以及
所述加热设备安装在所述移动式砧机上。
16.如权利要求13所述的设备,其特征在于,所述加热设备是固定的,以及所述热源同时与所述玻璃带向下游移动。
17.如权利要求13所述的设备,其特征在于,所述热源是基于激光的热源。
18.如权利要求17所述的设备,其特征在于,所述基于激光的热源选自:CO2激光、CO激光和UV激光。
19.如权利要求13所述的设备,其特征在于,所述热源是基于红外的热源。
20.如权利要求19所述的设备,其特征在于,所述基于红外的热源以波长范围大于或等于约2.5微米的光来照射所述玻璃带。
CN201580066400.5A 2014-10-10 2015-10-09 用于引导玻璃切割和防止裂开的热阻隔 Pending CN107001100A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/511,633 US9399593B2 (en) 2014-10-10 2014-10-10 Thermal barriers to guide glass cutting and prevent crackout
US14/511,633 2014-10-10
PCT/US2015/054915 WO2016057904A1 (en) 2014-10-10 2015-10-09 Thermal barriers to guide glass cutting and prevent crackout

Publications (1)

Publication Number Publication Date
CN107001100A true CN107001100A (zh) 2017-08-01

Family

ID=55653845

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580066400.5A Pending CN107001100A (zh) 2014-10-10 2015-10-09 用于引导玻璃切割和防止裂开的热阻隔

Country Status (6)

Country Link
US (1) US9399593B2 (zh)
JP (1) JP2017534557A (zh)
KR (1) KR20170066564A (zh)
CN (1) CN107001100A (zh)
TW (1) TW201619078A (zh)
WO (1) WO2016057904A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014119064A1 (de) * 2014-12-18 2016-06-23 Schott Ag Glasfilm mit speziell ausgebildeter Kante, Verfahren zu dessen Herstellung sowie dessen Verwendung
TWI774715B (zh) * 2016-12-21 2022-08-21 美商康寧公司 用於管理玻璃帶冷卻之方法及設備
TW201922640A (zh) 2017-11-20 2019-06-16 美商康寧公司 增加玻璃帶之斷裂韌性的方法
WO2019199933A1 (en) * 2018-04-12 2019-10-17 Corning Incorporated Apparatus and method for engaging a moving glass ribbon
US11613498B2 (en) 2019-08-12 2023-03-28 Corning Incorporated Coated glasses with high effective fracture toughness

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10233356B4 (de) * 2002-07-23 2005-11-10 Schott Ag Verwendung von Strahlungs-Einrichtungen zur Bortenrückerwärmung eines Glasbandes bei der Herstellung von Flachglas
US20070151962A1 (en) * 2004-03-22 2007-07-05 Walter Doll Method for laser-induced thermal separation of plate glass
US20110289967A1 (en) * 2010-05-26 2011-12-01 Burdette Steven R Radiation collimator for infrared heating and/or cooling of a moving glass sheet
US20130133367A1 (en) * 2011-11-28 2013-05-30 Anatoli A. Abramov Method for low energy separation of a glass ribbon
WO2013085117A1 (ko) * 2011-12-09 2013-06-13 로체 시스템즈(주) 강화유리 기판 절단방법
WO2014082000A1 (en) * 2012-11-26 2014-05-30 Corning Incorporated Thermal control of the bead portion of a glass ribbon

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101687686A (zh) * 2007-04-30 2010-03-31 康宁股份有限公司 用于刻划移动玻璃带的装置、系统和方法
US7895861B2 (en) 2007-05-09 2011-03-01 Corning Incorporated Conformable nosing device for reducing motion and stress within a glass sheet while manufacturing the glass sheet
US8051681B2 (en) 2007-05-09 2011-11-08 Corning Incorporated Constant force scoring device and method for using same
US8895892B2 (en) * 2008-10-23 2014-11-25 Corning Incorporated Non-contact glass shearing device and method for scribing or cutting a moving glass sheet
US8037716B2 (en) 2009-02-27 2011-10-18 Corning Incorporated Thermal control of the bead portion of a glass ribbon
US8245539B2 (en) 2010-05-13 2012-08-21 Corning Incorporated Methods of producing glass sheets
US8756817B2 (en) * 2011-11-30 2014-06-24 Corning Incorporated Method and apparatus for removing peripheral portion of a glass sheet
US9315408B2 (en) 2012-11-16 2016-04-19 Corning Incorporated Methods and apparatuses for fabricating continuous glass ribbons

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10233356B4 (de) * 2002-07-23 2005-11-10 Schott Ag Verwendung von Strahlungs-Einrichtungen zur Bortenrückerwärmung eines Glasbandes bei der Herstellung von Flachglas
US20070151962A1 (en) * 2004-03-22 2007-07-05 Walter Doll Method for laser-induced thermal separation of plate glass
US20110289967A1 (en) * 2010-05-26 2011-12-01 Burdette Steven R Radiation collimator for infrared heating and/or cooling of a moving glass sheet
US20130133367A1 (en) * 2011-11-28 2013-05-30 Anatoli A. Abramov Method for low energy separation of a glass ribbon
WO2013085117A1 (ko) * 2011-12-09 2013-06-13 로체 시스템즈(주) 강화유리 기판 절단방법
WO2014082000A1 (en) * 2012-11-26 2014-05-30 Corning Incorporated Thermal control of the bead portion of a glass ribbon

Also Published As

Publication number Publication date
WO2016057904A1 (en) 2016-04-14
TW201619078A (zh) 2016-06-01
JP2017534557A (ja) 2017-11-24
US9399593B2 (en) 2016-07-26
KR20170066564A (ko) 2017-06-14
US20160102008A1 (en) 2016-04-14

Similar Documents

Publication Publication Date Title
CN107001100A (zh) 用于引导玻璃切割和防止裂开的热阻隔
JP5756574B2 (ja) ガラスリボンを低エネルギーで分割する方法
KR102154261B1 (ko) 적층식 강화 유리 기판의 컷팅 방법
TWI430969B (zh) 分離加勁玻璃之方法
KR101581992B1 (ko) 취성 재료의 시트 분리 방법
KR101223490B1 (ko) 취성 재료 기판의 할단 방법
JP5563430B2 (ja) 脆性材料を切断する方法
CN105271689A (zh) 刻划脆性材料板的方法
CN103764576A (zh) 用于形成玻璃板的设备和方法
TW201536460A (zh) 顯示玻璃成分的雷射切割
KR20140105801A (ko) 연속 이동의 유리 리본으로부터 에지부를 제거하기 위한 장치 및 방법
CN103781734A (zh) 强化玻璃板的切断方法及强化玻璃板切断装置
CN102414134A (zh) 对玻璃带上的区域成形的方法
CN107001106A (zh) 玻璃板材的分离方法
JP4445419B2 (ja) ガラス成形体の製造方法、プレス成形用ガラス素材の製造方法、および光学素子の製造方法
CN107182210A (zh) 切割层压玻璃物件的方法
KR20180121672A (ko) 유리 제조 방법들 및 장치
Park et al. Damage-free cutting of chemically strengthened glass by creation of sub-surface cracks using femtosecond laser pulses
CN108067751A (zh) 板级材料异形加工方法
JPWO2015053167A1 (ja) 板ガラスのレーザー切断方法および板ガラス
JP7210910B2 (ja) ガラス物品の製造方法及びガラス物品の製造装置
CN108698902A (zh) 用于玻璃片分离的方法
WO2016208248A1 (ja) 管ガラスの切断方法及び切断装置、並びに管ガラス製品の製造方法
KR102022102B1 (ko) 레이저 빔을 이용한 절단 장치
JP6431686B2 (ja) 板ガラスの切断方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170801