CN106986650B - 一种铝碳化硅材质的微波及混合电路管壳的制备方法 - Google Patents

一种铝碳化硅材质的微波及混合电路管壳的制备方法 Download PDF

Info

Publication number
CN106986650B
CN106986650B CN201710225275.9A CN201710225275A CN106986650B CN 106986650 B CN106986650 B CN 106986650B CN 201710225275 A CN201710225275 A CN 201710225275A CN 106986650 B CN106986650 B CN 106986650B
Authority
CN
China
Prior art keywords
silicon carbide
aluminum
aluminum silicon
shell
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710225275.9A
Other languages
English (en)
Other versions
CN106986650A (zh
Inventor
刘波波
张伟
杨晓青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xi'an Mingke Microelectronic Material Co ltd
Original Assignee
Xi'an Mingke Microelectronic Material Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xi'an Mingke Microelectronic Material Co ltd filed Critical Xi'an Mingke Microelectronic Material Co ltd
Priority to CN201710225275.9A priority Critical patent/CN106986650B/zh
Publication of CN106986650A publication Critical patent/CN106986650A/zh
Application granted granted Critical
Publication of CN106986650B publication Critical patent/CN106986650B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • C04B41/90Coating or impregnation for obtaining at least two superposed coatings having different compositions at least one coating being a metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/121Metallic interlayers based on aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/365Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/402Aluminium

Abstract

本发明公开了一种铝碳化硅材质的微波及混合电路管壳的制备方法,先制备出铝碳化硅材质的壳体,铝碳化硅中按照体积百分数碳化硅占比70%,然后在铝碳化硅壳体上用电火花打孔,再在壳体孔径上烧结玻璃绝缘子,该玻璃绝缘子的封接温度为450~550℃,热膨胀系数为6~10,气密性可达10~8Pa m3/s~10~9Pa m3/s之间;之后用线切割和电火花加工出厚度1mm铝合金盖板,再用激光焊接管壳和铝合金盖板,最后表面镀金1~2μm得到铝碳化硅材质的微波及混合电路管壳;该管壳由于热导率高、热膨胀系数低及气密性高而在微波及混合电路中前景光明,可替代市场同类型金属管壳。

Description

一种铝碳化硅材质的微波及混合电路管壳的制备方法
技术领域
本发明属于铝碳化硅生产领域,具体地涉及一种铝碳化硅材质的微波及混合电路管壳的制备方法。
背景技术
随着大功率时代的到来,对电子元器件的稳定性要求越来越高。目前市场多用可伐合金或者铜合金等的金属类管壳产品,金属类产品的热导率虽然高,但是由于热膨胀系数与芯片存在较大差异而出现产品不稳定、使用寿命低等问题,这就大大制约了金属类管壳的使用范围。
发明内容
本发明所要解决的技术问题在于针对上述现有技术中的不足,提供一种铝碳化硅材质的微波及混合电路管壳的制备方法,目的是解决现有金属类管壳热膨胀系数高而使用不稳定、寿命低等技术问题。
本发明采用以下技术方案:
一种铝碳化硅材质的微波及混合电路管壳的制备方法,包括以下步骤:
S1、铸造铝碳化硅壳体,然后进行机械加工并研磨;
S2、采用电火花方式在步骤S1所述铝碳化硅壳体上打孔,然后在所述孔位处封接玻璃绝缘子,玻璃绝缘子的封接温度为450~550℃,热膨胀系数为8~10,玻璃绝缘子内的引线为可伐合金;
S3、采用线切割及电火花方式加工铝合金盖板,然后采用激光焊接方式将步骤S2所述铝碳化硅壳体和所述铝合金盖板制成一体式结构;
S4、对步骤S3封接及封焊后的一体式结构表面进行镀金处理。
优选的,步骤S1所述铝碳化硅壳体的铝碳化硅材料制备过程为:
S11、将碳化硅粉料和高岭土原料搅拌混合得到混合料,所述高岭土占原料总重量的1~10%;
S12、按质量比6:2将聚乙烯醇与羧甲基纤维素钠混合配制成胶体,所述胶体的体积浓度为10%;
S13、将步骤S11所述混合料和步骤S12所述胶体按照质量比5:2混合进行造粒;
S14、对步骤S13所述造粒进行干压处理,保压压力16MPa,保压3s加工成碳化硅;
S15、将步骤S14所述碳化硅放入高压烧结炉内烧结成碳化硅陶瓷,所述高压烧结炉的温度为300~1200℃;
S16、将步骤S15所述碳化硅陶瓷放入真空炉内,加压10MPa,将铝液压入碳化硅陶瓷基体内,制成所述铝碳化硅。
优选的,步骤S11中,所述碳化硅的体积分数为70%。
优选的,步骤S2中,沿所述铝碳化硅壳体的上下两边对称打内壁光滑的若干孔,每个所述孔的孔径为1.5mm。
优选的,步骤S2中,所述玻璃绝缘子的封接温度为480~520℃,热膨胀系数为9~10。
优选的,步骤S2中,所述可伐合金选用4j~29合金。
优选的,步骤S3中,所述铝合金盖板选用1060铝合金,厚度为0.5mm~1mm。
优选的,步骤S3中,所述铝碳化硅壳体和铝合金盖板焊接处设置有厚度0.2~0.5mm的铝层。
优选的,步骤S4中,所述镀金层的厚度为1.3~2μm。
优选的,步骤S4中,先在所述结构表面镀厚度为1~5μm的镍层。
与现有技术相比,本发明至少具有以下有益效果:
本发明的目的是实现和芯片和模块的更好适配,解决金属管壳使用寿命低等问题,并且降低成本,减轻重量。
进一步的,铝碳化硅材料作为第三代电子封装材料是现代高科技的杰作,是专业技术人员根据电子应用而有的放矢的新型复合材料,具有优异的性能和低廉的成本,在电子封装领域被誉为“封装之王”。
进一步的,铝碳化硅材料是由铝和碳化硅复合形成的,材料本身能耐受的温度不能超过600℃,所以这就要求绝缘子烧结的温度越低越好,现有的烧结工艺的温度四百多度是比较理想的参数。至于热膨胀系数而言,绝缘子的膨胀系数越接近材料的膨胀系数越好烧结。铝碳化硅材料的热膨胀系数在8~10之间,所以绝缘子的膨胀系数在9~10之间是相当理想的膨胀系数。
进一步的,铝层厚度是管壳和盖板焊接过程中至关重要的参数,铝层厚度小于0.2mm会导致激光焊接过程中焊缝太小而影响气密性;铝层厚度大于0.6mm可能会由于铝层和铝碳化硅热膨胀系数不同而在其接触处产生裂纹而影响焊接效果。
进一步的,不管是铝碳化硅壳体还是铝合金盖板都有铝的存在,铝元素在自然界是比较活泼的,所以在镀金之前会存在氧化而导致镀层结合力降低的情况,故一般在镀金之前都要对其产品做镀镍处理。
本发明方法制备的管壳,热导率高、热膨胀系数低、气密性高,力学性能优异,在微波及混合电路中有很大的应用前景,可替代市场同类型金属管壳。
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
附图说明
图1为本发明的铝碳化硅管壳的外形特征图;
图2为本发明的铝碳化硅管壳绝缘子和引线示意图。
其中,1.铝碳化硅壳体;2.铝层;3.铝合金盖板;4.可伐引线;5.玻璃绝缘子。
具体实施方式
请参阅图1,本发明公开了一种铝碳化硅材质的微波及混合电路管壳的制备方法,包括以下步骤:
S1、铸造铝碳化硅壳体1,然后机械加工,研磨至规定要求;
S2、采用电火花在铝碳化硅壳体1上打孔,然后在孔位处封接玻璃绝缘子5,封接温度为450℃~550℃,玻璃绝缘子5的热膨胀系数在8~10,玻璃绝缘子内的引线选用合金可伐引线4;
S3、采用线切割及电火花加工铝合金盖板3,然后将铝碳化硅壳体1和铝合金盖板3进行激光焊接,铝碳化硅壳体1和铝合金盖板3之前设置有铝层2;
S4、封接及封焊后的管壳表面镀金处理。
其中,铝碳化硅材料按如下步骤制备:
S11、混料:
将碳化硅粉料和高岭土原料搅拌混合,高岭重量占比原料重量的百分比为1%~10%,得到混合料;
S12、配胶:
按照PVA与CMC的质量比为6:2,最后配好的胶体的体积浓度为10%;
S13、造粒:
将步骤(1)得到的混合料和步骤(2)得到的胶体按照质量比为(5:2)混合在一起;
S14、干压:
压力为16MPa,保压3s加工出要求规格尺寸的碳化硅;
S15、烧结:
高压烧结炉内调节温度至300℃~1200℃,烧结出碳化硅陶瓷;
S16、浸渗:
将所述的碳化硅陶瓷放入真空炉内,加压10MPa,将铝液压入碳化硅陶瓷基体内,制成铝碳化硅。
本发明提供的方法,绝缘子封接过程中,首先要配制好合适的造粒粉,通过工装模具压制成玻璃管,然后放入加热炉中排胶排蜡,最后放入烧结炉中烧结成型。
更优选的是,在放入烧结炉中烧结时,先用氮气排干净炉内空气,再在氮气气氛保护下进行烧结绝缘子。
焊接过程中,通过在管壳上留一定的铝层和铝合金盖板进行激光焊接,避免了铝碳化硅的不可焊性同时得到了良好的气密性。
更优选的是,在管壳和铝合金盖板激光焊接之前,对其表面进行喷砂处理,可提高铝合金的可焊性。
镀金过程中,管壳表面除焊接处留有一定的铝层外,其他部位均无铝层,为净铝碳化硅材料。表面直接镀金附着力不够,所以要在镀金之前先镀镍打底1~5μm,再镀金1.3~2μm。
实施例
以下实施例中铝碳化硅制备均按照上述方法所得,在此不再赘述。
实施例1
在所得铝碳化硅管壳上留铝层厚度0.2mm,管壳打孔封接玻璃绝缘子,激光封焊铝合金盖板,铝合金盖板厚度选择0.5mm,镀镍3μm,镀金2μm,得到铝碳化硅微波及混合电路管壳,其结构如图1和图2所示。
实施例2
在所得铝碳化硅管壳上留铝层厚度0.5mm,管壳打孔封接绝缘子,激光封焊铝合金盖板,铝合金盖板厚度选择1mm,镀镍2.5μm,镀金1.5μm,得到铝碳化硅微波及混合电路管壳。
所得实施例1和实施例2得到的管壳进行绝缘子气密性检测结果10-8~10-9Pa m3/s,管壳封焊处气密性检测结果为10-7~10-8Pa m3/s。
以上内容仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明权利要求书的保护范围之内。

Claims (3)

1.一种铝碳化硅材质的微波及混合电路管壳的制备方法,其特征在于:包括以下步骤:
S1、铸造铝碳化硅壳体,然后进行机械加工并研磨,步骤S1所述铝碳化硅壳体的铝碳化硅材料制备过程为:
S11、将体积分数70%的碳化硅粉料和高岭土原料搅拌混合得到混合料,所述高岭土占原料总重量的1~10%;
S12、按质量比6:2将聚乙烯醇与羧甲基纤维素钠混合配制成胶体,所述胶体的体积浓度为10%;
S13、将步骤S11所述混合料和步骤S12所述胶体按照质量比5:2混合进行造粒;
S14、对步骤S13所述造粒进行干压处理,保压压力16MPa,保压3s加工成碳化硅;
S15、将步骤S14所述碳化硅放入高压烧结炉内烧结成碳化硅陶瓷,所述高压烧结炉的温度为300~1200℃;
S16、将步骤S15所述碳化硅陶瓷放入真空炉内,加压10MPa,将铝液压入碳化硅陶瓷基体内,制成所述铝碳化硅;
S2、采用电火花方式在步骤S1所述铝碳化硅壳体的上下两边对称打内壁光滑的若干孔,每个所述孔的孔径为1.5mm,然后在所述孔位处封接玻璃绝缘子,玻璃绝缘子的封接温度为450~550℃,热膨胀系数为8~10,玻璃绝缘子内的引线为4j~29可伐合金;
S3、采用线切割及电火花方式加工铝合金盖板,然后采用激光焊接方式将步骤S2所述铝碳化硅壳体和所述铝合金盖板制成一体式结构,所述铝碳化硅壳体和铝合金盖板焊接处设置有厚度0.2~0.5mm的铝层;
S4、对步骤S3封接及封焊后的一体式结构表面进行镀金处理,镀金层的厚度为1.3~2μm,其中, 先在所述结构表面镀厚度为1~5μm的镍层。
2.根据权利要求1所述的一种铝碳化硅材质的微波及混合电路管壳的制备方法,其特征在于:步骤S2中,所述玻璃绝缘子的封接温度为480~520℃,热膨胀系数为9~10。
3.根据权利要求1所述的一种铝碳化硅材质的微波及混合电路管壳的制备方法,其特征在于:步骤S3中,所述铝合金盖板选用1060铝合金,厚度为0.5mm~1mm。
CN201710225275.9A 2017-04-07 2017-04-07 一种铝碳化硅材质的微波及混合电路管壳的制备方法 Active CN106986650B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710225275.9A CN106986650B (zh) 2017-04-07 2017-04-07 一种铝碳化硅材质的微波及混合电路管壳的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710225275.9A CN106986650B (zh) 2017-04-07 2017-04-07 一种铝碳化硅材质的微波及混合电路管壳的制备方法

Publications (2)

Publication Number Publication Date
CN106986650A CN106986650A (zh) 2017-07-28
CN106986650B true CN106986650B (zh) 2020-06-30

Family

ID=59415618

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710225275.9A Active CN106986650B (zh) 2017-04-07 2017-04-07 一种铝碳化硅材质的微波及混合电路管壳的制备方法

Country Status (1)

Country Link
CN (1) CN106986650B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110272281A (zh) * 2019-01-21 2019-09-24 西安明科微电子材料有限公司 一种两相复合材料及其制备方法
CN110272280A (zh) * 2019-01-21 2019-09-24 西安明科微电子材料有限公司 一种AlSiC/AlSi两相材料及其制备方法
CN109704803B (zh) * 2019-02-25 2022-03-18 西安明科微电子材料有限公司 一种铝碳化硅管壳绝缘子及其烧结方法
CN113210609A (zh) * 2021-04-14 2021-08-06 中国电子科技集团公司第二十九研究所 一种热膨胀系数局部可调的一体化微波盒体封装方法
CN115348737B (zh) * 2022-08-12 2023-09-26 江苏迪飞达电子有限公司 一种双面厚铜铝基混压板的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101293294A (zh) * 2008-05-30 2008-10-29 北京科技大学 一种铝碳化硅封装外壳的封接方法
CN105924178A (zh) * 2016-04-18 2016-09-07 湖南浩威特科技发展有限公司 铝碳化硅复合材料的制备方法
CN205789919U (zh) * 2016-06-30 2016-12-07 西安赛尔电子材料科技有限公司 一种混合集成电路用铝碳化硅一体封装管壳

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100447867B1 (ko) * 2001-10-05 2004-09-08 삼성전자주식회사 반도체 패키지

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101293294A (zh) * 2008-05-30 2008-10-29 北京科技大学 一种铝碳化硅封装外壳的封接方法
CN105924178A (zh) * 2016-04-18 2016-09-07 湖南浩威特科技发展有限公司 铝碳化硅复合材料的制备方法
CN205789919U (zh) * 2016-06-30 2016-12-07 西安赛尔电子材料科技有限公司 一种混合集成电路用铝碳化硅一体封装管壳

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
铝碳化硅电子封装材料制备工艺研究;舒阳会等;《功能材料》;20101231;第424-427页 *

Also Published As

Publication number Publication date
CN106986650A (zh) 2017-07-28

Similar Documents

Publication Publication Date Title
CN106986650B (zh) 一种铝碳化硅材质的微波及混合电路管壳的制备方法
CN100350557C (zh) 半导体封装及其制造方法
US20160336253A1 (en) Heat dissipation substrate and method for producing heat dissipation substrate
CN105826458B (zh) 一种带金属围坝的dpc陶瓷基板制备方法
CN104704618A (zh) 半导体装置、陶瓷电路基板及半导体装置的制造方法
CN205303452U (zh) 金刚石铜热沉材料
CN113727543B (zh) 电子元器件用陶瓷金属封装外壳及陶瓷材料的制备方法
CN106457404A (zh) 用于制造金属粉末的方法
CN103441077A (zh) 一种微波大功率管外壳的制造方法
KR102328205B1 (ko) 알루미늄 복합재와 유리 절연 단자를 실링하는 데 사용되는 저온 글라스링의 제조 및 그 사용방법
JP3856640B2 (ja) 半導体搭載用放熱基板材料、その製造方法、及びそれを用いたセラミックパッケージ
CN103979995B (zh) 铝硅/铝碳化硅复合材料及其制备方法、电子封装装置
CN109384474A (zh) 陶瓷低温活性金属化用膏体、陶瓷金属化方法及依据该方法制备的真空电子器件
US10396002B2 (en) Electronic component storage substrate and housing package
CN102489896A (zh) 钎焊金属基复合封装材料的中温钎料薄带及其制备、钎焊
US7563646B2 (en) Molded ceramic surface mount package
CN113540001A (zh) 一种微电子封装用可伐/银合金复合材料及其制备方法
CN105336768A (zh) 高可靠表面贴装玻封二极管的封装工艺
CN213366582U (zh) 一种用于大功率芯片的to管壳
CN210403699U (zh) 一种降低引线根部裂纹的封装外壳
CN114988918A (zh) 一种氧化铝陶瓷的表面金属化方法
CN209626638U (zh) 一种400w激光器单泵源用陶瓷封装外壳
JP4220869B2 (ja) セラミックパッケージの製造方法
JP2006120973A (ja) 回路基板および回路基板の製造方法
CN108218463A (zh) 一种AlN陶瓷与无氧铜封接的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant