CN106981506A - 纳米线GaN高电子迁移率晶体管 - Google Patents

纳米线GaN高电子迁移率晶体管 Download PDF

Info

Publication number
CN106981506A
CN106981506A CN201710258506.6A CN201710258506A CN106981506A CN 106981506 A CN106981506 A CN 106981506A CN 201710258506 A CN201710258506 A CN 201710258506A CN 106981506 A CN106981506 A CN 106981506A
Authority
CN
China
Prior art keywords
gan
nano wire
algan
film
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710258506.6A
Other languages
English (en)
Other versions
CN106981506B (zh
Inventor
李国强
刘智崑
李媛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201710258506.6A priority Critical patent/CN106981506B/zh
Publication of CN106981506A publication Critical patent/CN106981506A/zh
Priority to PCT/CN2017/111110 priority patent/WO2018192214A1/zh
Application granted granted Critical
Publication of CN106981506B publication Critical patent/CN106981506B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Nanotechnology (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明公开了一种纳米线GaN高电子迁移率晶体管,由下至上依次包括衬底、GaN薄膜、AlGaN纳米线、绝缘层薄膜;所述AlGaN纳米线的上方设有源极和漏极;所述绝缘层薄膜的上方设有栅极。本发明利用纳米线具有超强韧性的物理性质,达到抑制高压下材料内部产生缺陷的效果;利用纳米线中位错容易移动到表面而湮灭的原理,从而实现在高压工作时的自修复的效果,是一种能够避免或大幅度延迟器件在高电压工作时产生的不可逆失效现象的有效结构。

Description

纳米线GaN高电子迁移率晶体管
技术领域
本发明涉及高电子迁移率晶体管,特别涉及一种纳米线GaN高电子迁移率晶体管。
背景技术
电力电子器件广泛应用于家用电器、工业设备、电动汽车等众多领域。新一代电力电子器件面临着巨大的挑战,要求其具有更高效率、更高功率密度和可在高温环境下可靠工作。目前,电力电子器件中普遍采用硅基的功率器件,如MOSFET和IGBT。但是硅电力电子器件经过长期的发展,性能已经趋近其材料的理论极限,逐渐不能满足新一代电力电子器件对高压、高频、高效和小体积的要求。第三代宽禁带半导体材料GaN具有禁带宽度大、饱和电子漂移速度高、化学性质稳定等特点。因此,基于GaN材料的电力电子器件具有通态电阻小、开关速度快、耐压高、耐高温性能好等优点。另一方面,GaN可以生长在Si,SiC及蓝宝石上。在价格低、工艺成熟、直径大的Si衬底上生长的GaN器件具有低成本的优点。GaN高电子迁移率晶体管(HEMT)是一种基于GaN材料的电力电子器件。通过形成外延的AlGaN/GaN异质结,极化电场有效的调制了GaN的能带结构以及电荷的分布。这导致高电子迁移率晶体管在未人为掺杂的情况下,也能够形成面密度达1013cm-2的二维电子器。因为在材料中没有掺杂,电子在GaN的迁移率超过2000cm2/Vs。这就使得GaN HEMT具有低导通电阻和高工作频率的特点。能够满足新一代电力电子器件对更大功率、更高频率、更小体积和高温工作条件的要求,可应用于AC/DC,DC/DC变换器,DC/AC电动机驱动器和光伏发电等。
目前,现有二维薄膜结构的GaN HEMT器件在长时间高压工作后,会发生不可逆的电退化,例如源漏电流和电导率减小,栅极泄露电流增大等,最终导致GaN HEMT失效。研究表明电退化效应是由GaN在工作时的逆压电效应导致的。GaN是压电材料。当GaN晶体受到电场的作用是,会产生晶格应力,这就是逆压电效应。在高压长时间工作下,逆压电效应使AlGaN二维薄膜晶格膨胀。当由电压导致的弹性形变超过一定值,引起晶格弛豫,产生新的晶格缺陷。透射电子显微镜研究显示,二维薄膜器件在经历长时间高电压作用后,材料因逆压电效应被拉伸直至断裂,在栅极靠近漏极的一侧出线裂缝。
发明内容
为了克服现有技术的上述缺点与不足,本发明的目的在于提供一种纳米线GaN高电子迁移率晶体管,解决了现有二维薄膜结构的GaN HEMT在高压下会容易发生不可逆电退化问题,从而实现GaN HEMT在高压下的长时间稳定工作。
本发明的目的通过以下技术方案实现:
纳米线GaN高电子迁移率晶体管,由下至上依次包括衬底、GaN薄膜、AlGaN纳米线、绝缘层薄膜;所述AlGaN纳米线的上方设有源极和漏极;所述绝缘层薄膜的上方设有栅极。
所述AlGaN纳米线的高度为100-200nm。
所述AlGaN纳米线的直径为30-80nm。
所述GaN薄膜的厚度为2-10μm。
本发明的原理如下:
本发明的纳米线结构具有超强韧性的特点,纳米线材料能够承受特大的弹性形变,例如,通常的半导体硅材料的断裂应变不超过5%。而直径为100纳米的硅纳米线的弹性形变可达到16%。纳米线的超强韧性是由于在很小的尺寸下,材料内的缺陷很少,即使原本存在一定量的位错,因为纳米线的小尺寸,位错只要移动很小的距离就可以到达表面而湮灭。
相对于现有技术,本发明具有以下优点和有益效果:
(1)本发明采用了AlGaN纳米线结构,纳米线的韧性高,能够有效抑制AlGaN在高压下产生的材料缺陷,从而避免电退化的发生。
(2)本发明采用了AlGaN纳米线结构,在高压下偶然产生的位错在纳米线中更容易移动到表面而湮灭,恢复了AlGaN高质量的晶体结构,从而大幅度延迟了器件的失效现象。
附图说明
图1为本发明的实施例的的纳米线GaN高电子迁移率晶体管的结构示意图。
图2为本发明的实施例的纳米线GaN高电子迁移率晶体管的异质结结构的电镜图。
具体实施方式
下面结合实施例及附图,对本发明作进一步地详细说明,但本发明的实施方式不限于此。
实施例
如图1所示,本实施例的纳米线GaN高电子迁移率晶体管,由下至上依次包括衬底17、GaN薄膜16、AlGaN纳米线15、绝缘层薄膜12;所述AlGaN纳米线15的上方设有源极11和漏极14;所述绝缘层薄膜12的上方设有栅极13。
所述AlGaN纳米线的高度为100-200nm。
所述AlGaN纳米线的直径为30-80nm。
所述GaN薄膜的厚度为2-10μm。
本发明的纳米线GaN高电子迁移率晶体管的制造过程如下:
(1)在衬底上生长GaN薄膜;GaN薄膜(通过缓冲层)外延生长在衬底之上;
(2)在GaN薄膜上生长高度100-200nm,直径30-80nm的AlGaN纳米线。
(3)在AlGaN纳米线上沉积源极、漏极、绝缘层薄膜,在绝缘层薄膜上沉积栅极,形成横向的GaN HEMT器件。
图2为本发明的纳米线GaN高电子迁移率晶体管的异质结结构的电镜图。图中:AlGaN纳米线21;GaN薄膜22,由该结构制成的GaN高电子迁移率晶管通过功率测试仪测试在600V高电压偏压下连续工作,漏极的饱和电流在250小时后,衰退小于10%。电退化失效现象得到明显的抑制。
本发明采用了AlGaN纳米线结构,纳米线的韧性明显高,能够有效抑制AlGaN在高压下产生的材料缺陷,从而避免电退化的发生;同时在高压下偶然产生的位错在纳米线中更容易移动到表面而湮灭,恢复了AlGaN高质量的晶体结构,从而大幅度延迟了器件的失效现象。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受所述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (4)

1.纳米线GaN高电子迁移率晶体管,其特征在于,由下至上依次包括衬底、GaN薄膜、AlGaN纳米线、绝缘层薄膜;所述AlGaN纳米线的上方设有源极和漏极;所述绝缘层薄膜的上方设有栅极。
2.根据权利要求1所述的纳米线GaN高电子迁移率晶体管,其特征在于,所述AlGaN纳米线的高度为100-200nm。
3.根据权利要求1或2所述的纳米线GaN高电子迁移率晶体管,其特征在于,所述AlGaN纳米线的直径为30-80nm。
4.根据权利要求1所述的纳米线GaN高电子迁移率晶体管,其特征在于,所述GaN薄膜的厚度为2-10μm。
CN201710258506.6A 2017-04-19 2017-04-19 纳米线GaN高电子迁移率晶体管 Active CN106981506B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201710258506.6A CN106981506B (zh) 2017-04-19 2017-04-19 纳米线GaN高电子迁移率晶体管
PCT/CN2017/111110 WO2018192214A1 (zh) 2017-04-19 2017-11-15 纳米线GaN高电子迁移率晶体管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710258506.6A CN106981506B (zh) 2017-04-19 2017-04-19 纳米线GaN高电子迁移率晶体管

Publications (2)

Publication Number Publication Date
CN106981506A true CN106981506A (zh) 2017-07-25
CN106981506B CN106981506B (zh) 2023-09-29

Family

ID=59345341

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710258506.6A Active CN106981506B (zh) 2017-04-19 2017-04-19 纳米线GaN高电子迁移率晶体管

Country Status (2)

Country Link
CN (1) CN106981506B (zh)
WO (1) WO2018192214A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107978628A (zh) * 2017-11-14 2018-05-01 厦门市三安集成电路有限公司 一种覆盖纳米柱势垒的GaN晶体管及其制备方法
CN108470768A (zh) * 2018-03-02 2018-08-31 华南理工大学 一种hemt器件纳米栅极的制备方法
WO2018192214A1 (zh) * 2017-04-19 2018-10-25 华南理工大学 纳米线GaN高电子迁移率晶体管
CN113212805A (zh) * 2021-06-10 2021-08-06 中国科学院微小卫星创新研究院 可在轨自主修复的纳米线阵列电推进系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080036038A1 (en) * 2006-03-10 2008-02-14 Hersee Stephen D PULSED GROWTH OF CATALYST-FREE GROWITH OF GaN NANOWIRES AND APPLICATION IN GROUP III NITRIDE SEMICONDUCTOR BULK MATERIAL
US20100188069A1 (en) * 2007-09-18 2010-07-29 Fan Ren Sensors using high electron mobility transistors
US20130200391A1 (en) * 2010-09-28 2013-08-08 North Carolina State University Gallium nitride based structures with embedded voids and methods for their fabrication
CN103928503A (zh) * 2014-04-23 2014-07-16 西安电子科技大学 基于m面GaN上的极性AlGaN纳米线材料及其制作方法
CN104124272A (zh) * 2014-07-14 2014-10-29 华南师范大学 集成非极性GaN纳米线高电子迁移率晶体管及其制备方法
US20150014631A1 (en) * 2012-02-14 2015-01-15 Qunano Ab Gallium nitride nanowire based electronics
CN105118860A (zh) * 2015-08-18 2015-12-02 华南师范大学 一种集成有序GaN基纳米线阵列HEMT及其制备方法
CN207038526U (zh) * 2017-04-19 2018-02-23 华南理工大学 纳米线GaN高电子迁移率晶体管

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106601804B (zh) * 2015-10-15 2018-06-01 上海新昇半导体科技有限公司 场效应晶体管及其制备方法
CN106981506B (zh) * 2017-04-19 2023-09-29 华南理工大学 纳米线GaN高电子迁移率晶体管

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080036038A1 (en) * 2006-03-10 2008-02-14 Hersee Stephen D PULSED GROWTH OF CATALYST-FREE GROWITH OF GaN NANOWIRES AND APPLICATION IN GROUP III NITRIDE SEMICONDUCTOR BULK MATERIAL
US20100188069A1 (en) * 2007-09-18 2010-07-29 Fan Ren Sensors using high electron mobility transistors
US20130200391A1 (en) * 2010-09-28 2013-08-08 North Carolina State University Gallium nitride based structures with embedded voids and methods for their fabrication
US20150014631A1 (en) * 2012-02-14 2015-01-15 Qunano Ab Gallium nitride nanowire based electronics
CN103928503A (zh) * 2014-04-23 2014-07-16 西安电子科技大学 基于m面GaN上的极性AlGaN纳米线材料及其制作方法
CN104124272A (zh) * 2014-07-14 2014-10-29 华南师范大学 集成非极性GaN纳米线高电子迁移率晶体管及其制备方法
CN105118860A (zh) * 2015-08-18 2015-12-02 华南师范大学 一种集成有序GaN基纳米线阵列HEMT及其制备方法
CN207038526U (zh) * 2017-04-19 2018-02-23 华南理工大学 纳米线GaN高电子迁移率晶体管

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BERTNESS, K.A.等: "Spontaneously grown GaN and AlGaN nanowire", vol. 287, no. 287, pages 522 - 527 *
LI, YAT等: "Dopant-Free GaN/AlN/AlGaN Radial Nanowire Heterostructures as High Electron Mobility Transistors", vol. 6, no. 7, pages 1468 - 1473, XP055543122, DOI: 10.1021/nl060849z *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018192214A1 (zh) * 2017-04-19 2018-10-25 华南理工大学 纳米线GaN高电子迁移率晶体管
CN107978628A (zh) * 2017-11-14 2018-05-01 厦门市三安集成电路有限公司 一种覆盖纳米柱势垒的GaN晶体管及其制备方法
WO2019095923A1 (zh) * 2017-11-14 2019-05-23 厦门市三安集成电路有限公司 一种覆盖纳米柱势垒的GaN晶体管及其制备方法
CN107978628B (zh) * 2017-11-14 2020-11-06 厦门市三安集成电路有限公司 一种覆盖纳米柱势垒的GaN晶体管及其制备方法
CN108470768A (zh) * 2018-03-02 2018-08-31 华南理工大学 一种hemt器件纳米栅极的制备方法
CN108470768B (zh) * 2018-03-02 2020-12-22 华南理工大学 一种hemt器件纳米栅极的制备方法
CN113212805A (zh) * 2021-06-10 2021-08-06 中国科学院微小卫星创新研究院 可在轨自主修复的纳米线阵列电推进系统
CN113212805B (zh) * 2021-06-10 2023-03-03 中国科学院微小卫星创新研究院 可在轨自主修复的纳米线阵列电推进系统

Also Published As

Publication number Publication date
CN106981506B (zh) 2023-09-29
WO2018192214A1 (zh) 2018-10-25

Similar Documents

Publication Publication Date Title
Umezawa et al. 1 Ω on-resistance diamond vertical-Schottky barrier diode operated at 250° C
CN103413824B (zh) 一种rc-ligbt器件及其制作方法
CN102947921B (zh) 半导体器件
CN104521000B (zh) 具有可调的高栅极‑源极额定电压的iii族氮化物增强型晶体管
CN102856373B (zh) 高电子迁移率晶体管
CN103367356B (zh) 具有氮化物层的半导体元件
CN105870164B (zh) 一种氮化镓基高电子迁移率晶体管
CN106981506A (zh) 纳米线GaN高电子迁移率晶体管
CN105226093B (zh) GaN HEMT器件及其制作方法
CN104916633A (zh) 半导体装置
CN104900689A (zh) 降低基区电阻率的GaN基HBT外延结构及生长方法
CN104916679A (zh) 半导体装置
CN103811542A (zh) 一种锡化物超晶格势垒半导体晶体管
CN105762183B (zh) 具有场板的AlGaN/GaN极化掺杂场效应晶体管及制造方法
CN106206708A (zh) 半导体装置
CN103745989A (zh) 高电子迁移率晶体管
US20220102540A1 (en) Gan-hemt device with sandwich structure and method for preparing the same
CN105957881A (zh) 具有背势垒的AlGaN/GaN极化掺杂场效应晶体管及制造方法
CN207038526U (zh) 纳米线GaN高电子迁移率晶体管
TW201428965A (zh) 具有補償摻雜以減少漏電流的偏極效應載子產生裝置結構
Guo et al. Effect of GaN cap layer on the electrical properties of AlGaN/GaN HEMT
CN105140280B (zh) 一种具有常关沟道的高压多异质结器件
CN205723544U (zh) 一种氮化镓基高电子迁移率晶体管
CN113380877A (zh) 一种双结型场板的功率器件
Zhao et al. AlGaN/GaN HEMTs with a magnetron-sputtered AlN buffer layer

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant