CN106977192A - 铁酸锂钾及其制备方法 - Google Patents

铁酸锂钾及其制备方法 Download PDF

Info

Publication number
CN106977192A
CN106977192A CN201710222542.7A CN201710222542A CN106977192A CN 106977192 A CN106977192 A CN 106977192A CN 201710222542 A CN201710222542 A CN 201710222542A CN 106977192 A CN106977192 A CN 106977192A
Authority
CN
China
Prior art keywords
powder
acid lithium
kfe
ball
ferrous acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201710222542.7A
Other languages
English (en)
Inventor
苏聪学
覃杏柳
方亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Technology
Original Assignee
Guilin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Technology filed Critical Guilin University of Technology
Priority to CN201710222542.7A priority Critical patent/CN106977192A/zh
Publication of CN106977192A publication Critical patent/CN106977192A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2691Other ferrites containing alkaline metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

本发明公开了一种铁酸锂钾Li3KFe4O8及其制备方法。所述制备方法为按Li3KFe4O8的化学计量比称取相应的原料,然后通过球磨,高温预烧,再球磨,最后冷等静压后烧结得到Li3KFe4O8。制备方法简单,适合大规模生产。该方法合成的Li3KFe4O8具有较高的离子导电性、高温度下具有较高的热稳定性及化学稳定性;在300‑700℃时电导率为10‑3~10‑2S/cm,是一种优良的快离子导体材料。

Description

铁酸锂钾及其制备方法
技术领域
本发明属于无机材料技术领域,具体涉及一种铁酸锂钾快离子导体及其制备方法。
背景技术
随着人类社会的发展以及工业化程度的进一步提高,开发高效、清洁、安全及经济的新型绿色能源成为了未来能源发展的必然趋势。由于离子导体具有重要的理论和实际应用价值,已在很多应用领域发展成为很有价值的材料或器件。作为离子导体中的一种材料,快离子导体材料,也称固体电解质,在高性能储能装置、燃料电池新能源材料、钠硫电池及氧分析器等领域的应用备受关注。比如氧离子导体和氢离子导体都可用作燃料电池的电解质隔膜,从而使可燃气体与氧气经电化学方法发生反应转变为电能。用氧化锆和其它快离子导体制成的气体探测器,不仅可以控制汽车发动机和锅炉燃烧室的燃烧过程以节约燃料和减少污染,而且还可以监测一些有害气体从而对环境保护作出贡献。用Na-β-Al2O3作电解质的钠-硫电池具有比铅酸电池高4~5倍的能量密度,它既可用作车辆的动力源,也可作为贮能电池使用。用快离子导体制作的固体电池具有自放电小、贮存寿命长和抗振动等优点,已在心脏起搏器电子手表、计算器和一些军用设备上获得应用。
高温燃料电池作为快离子导体(固体电解质)中的一种应用,近年来备受关注。高温燃料电池也称固体氧化物燃料电池,它们大多为基于氧空位机理的高对称的八面体和立方结构,如萤石基、钙钛矿基、Bi2O3基等固体电解质材料,但近年来,人们在低对称结构体系(如四面体、立方体、单斜等)中也寻找到高电导率的电解质材料,如黄长石结构体系,磷灰石结构体系,白钨矿结构等体系材料,而且导电机理不局限于氧空位。另外,在已报道的固体电解质材料来看,普遍存在实用性能差的缺点,主要体现在:一、工作温度过高,启动时间长,器件各组分间化学和力学兼容性差;二、导电率低;只能在800-1000℃高温下使用;三、还原气氛下某些元素如Ce部分还原成Ce3+,致使产生电子导电,甚至某些固体电解质材料在还原气氛下易分解;四、某些元素如Ga的挥发,而且工艺复杂,组件间化学兼容性差。由此可见,在理论上,人们难以通过结构来判断化合物是否具备作为快离子导体的应用;在实际应用上,人们难以找到具有实用的快离子导体材料,即具备较高的离子导电性、较低的工作温度(500℃左右)、使用温度下较高的热稳定性及化学稳定性、大规模生产的可操作性等特点。目前所报道的铁酸钾盐普遍是利用湿化学法制备,虽然制备温度较低(250℃以下),但是反应时间过长,而且程序复杂,甚至部分原料不属于绿色环保材料,不适合工业生产。
发明内容
本发明的目的是提供一种用于快离子导体的铁酸锂钾及其制备方法。
本发明涉及的用于快离子导体的铁酸锂钾的化学表示式为:Li3KFe4O8
所述铁酸锂钾的制备方法具体步骤为:
(1)将Li2CO3、K2CO3和Fe2O3的原始粉末按Li3KFe4O8的组成称量配料并放入球磨罐中,加入直径为7mm的氧化锆球和去离子水,球磨2小时,混合均匀磨细,取出烘干得到粉末原料;
(2)将步骤(1)烘干后的粉末原料压成柱状样品,置于陶瓷承烧板上,用坩埚罩住样品,然后置于马弗炉中,650℃煅烧,保温1小时,然后随炉冷却至室温后捣碎研磨成粉末;
(3)将步骤(2)研磨所得的粉末放入球磨罐中,加入直径分别为2mm和7mm的氧化锆球,粉末和氧化锆球在球磨罐里球磨8个小时,混合均匀磨细,得到粉末原料;
(4)将步骤(3)球磨后的粉末原料冷等静压18MPa成型为直径1.3cm,厚度0.3cm的圆片,然后在马弗炉中700-750℃烧结,保温4小时后,自然冷却至室温,得到铁酸锂钾Li3KFe4O8
本发明的优点:通过本制备方法得到的铁酸锂钾Li3KFe4O8具有较高的离子导电性、使用温度下具有较高的热稳定性及化学稳定性;在烧结温度下结构保持不变,在300-500℃时电导率为10-3~10-2S/cm,是一种优良的快离子导体材料。另外制备方法简单、合成温度低,绿色环保成本低,相对于其他固体电解质材料的湿化学法制备工艺,本方法更适合工业生产与应用。
具体实施方式
下面结合实施例对本发明作进一步的说明,但本领域的技术人员了解,下述实施例不是对发明保护范围的限制,任何在本发明基础上的改进和变化都在本发明的保护范围之内。
实施例1:
(1)将Li2CO3、K2CO3和Fe2O3的原始粉末按Li3KFe4O8的组成称量配料并放入球磨罐中,加入直径为7mm的氧化锆球和去离子水,球磨2小时,混合均匀磨细,取出烘干得到粉末原料;
(2)将步骤(1)烘干后的粉末原料压成柱状样品,置于陶瓷承烧板上,用坩埚罩住样品,然后置于马弗炉中,650℃煅烧,保温1小时,然后随炉冷却至室温后捣碎研磨成粉末;
(3)将步骤(2)研磨所得的粉末放入球磨罐中,加入直径分别为2mm和7mm的氧化锆球,粉末和氧化锆球在球磨罐里球磨8个小时,混合均匀磨细,得到粉末原料;
(4)将步骤(3)球磨后的粉末原料冷等静压18MPa成型为直径1.3cm,厚度0.3cm的圆片,然后在马弗炉中700℃烧结,保温4小时后,自然冷却至室温,得到铁酸锂钾Li3KFe4O8
本实施例所得到的铁酸锂钾Li3KFe4O8,在两底面涂上金胶,在550℃下烧结1小时。使用Solartron1260(英国Solartron公司)阻抗分析仪在不同温度下测定其交流阻抗。测定结果为300℃时电导率达到0.76×10-3S/cm,在700℃时电导率快速升到1.02×10-2S/cm。
实施例2:
(1)将Li2CO3、K2CO3和Fe2O3的原始粉末按Li3KFe4O8的组成称量配料并放入球磨罐中,加入直径为7mm的氧化锆球和去离子水,球磨2小时,混合均匀磨细,取出烘干得到粉末原料;
(2)将步骤(1)烘干后的粉末原料压成柱状样品,置于陶瓷承烧板上,用坩埚罩住样品,然后置于马弗炉中,650℃煅烧,保温1小时,然后随炉冷却至室温后捣碎研磨成粉末;
(3)将步骤(2)研磨所得的粉末放入球磨罐中,加入直径分别为2mm和7mm的氧化锆球,粉末和氧化锆球在球磨罐里球磨8个小时,混合均匀磨细,得到粉末原料;
(4)将步骤(3)球磨后的粉末原料冷等静压18MPa成型为直径1.3cm,厚度0.3cm的圆片,然后在马弗炉中730℃烧结,保温4小时后,自然冷却至室温,得到铁酸锂钾Li3KFe4O8
本实施例所得到的铁酸锂钾Li3KFe4O8,在两底面涂上金胶,在550℃下烧结1小时。使用Solartron1260(英国Solartron公司)阻抗分析仪在不同温度下测定其交流阻抗。测定结果为300℃时电导率达到1.28×10-3S/cm,在700℃时电导率快速升到1.78×10-2S/cm。
实施例3:
(1)将Li2CO3、K2CO3和Fe2O3的原始粉末按Li3KFe4O8的组成称量配料并放入球磨罐中,加入直径为7mm的氧化锆球和去离子水,球磨2小时,混合均匀磨细,取出烘干得到粉末原料;
(2)将步骤(1)烘干后的粉末原料压成柱状样品,置于陶瓷承烧板上,用坩埚罩住样品,然后置于马弗炉中,650℃煅烧,保温1小时,然后随炉冷却至室温后捣碎研磨成粉末;
(3)将步骤(2)研磨所得的粉末放入球磨罐中,加入直径分别为2mm和7mm的氧化锆球,粉末和氧化锆球在球磨罐里球磨8个小时,混合均匀磨细,得到粉末原料;
(4)将步骤(3)球磨后的粉末原料冷等静压18MPa成型为直径1.3cm,厚度0.3cm的圆片,然后在马弗炉中750℃烧结,保温4小时后,自然冷却至室温,得到铁酸锂钾Li3KFe4O8
本实施例所得到的铁酸锂钾Li3KFe4O8,在两底面涂上金胶,在550℃下烧结1小时。使用Solartron1260(英国Solartron公司)阻抗分析仪在不同温度下测定其交流阻抗。测定结果为300℃时电导率达到1.14×10-3S/cm,在700℃时电导率快速升到1.50×10-2S/cm。

Claims (1)

1.一种铁酸锂钾,其特征在于所述铁酸锂钾具有如下化学表示式:Li3KFe4O8
所述铁酸锂钾在300-500℃时电导率为10-3~10-2S/cm;
所述铁酸锂钾的制备方法具体步骤为:
(1)将Li2CO3、K2CO3和Fe2O3的原始粉末按Li3KFe4O8的组成称量配料并放入球磨罐中,加入直径为7mm的氧化锆球和去离子水,球磨2小时,混合均匀磨细,取出烘干得到粉末原料;
(2)将步骤(1)烘干后的粉末原料压成柱状样品,置于陶瓷承烧板上,用坩埚罩住样品,然后置于马弗炉中,650℃煅烧,保温1小时,然后随炉冷却至室温后捣碎研磨成粉末;
(3)将步骤(2)研磨所得的粉末放入球磨罐中,加入直径分别为2mm和7mm的氧化锆球,粉末和氧化锆球在球磨罐里球磨8个小时,混合均匀磨细,得到粉末原料;
(4)将步骤(3)球磨后的粉末原料冷等静压18MPa成型为直径1.3cm,厚度0.3cm的圆片,然后在马弗炉中700-750℃烧结,保温4小时后,自然冷却至室温,得到铁酸锂钾Li3KFe4O8
CN201710222542.7A 2017-04-07 2017-04-07 铁酸锂钾及其制备方法 Withdrawn CN106977192A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710222542.7A CN106977192A (zh) 2017-04-07 2017-04-07 铁酸锂钾及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710222542.7A CN106977192A (zh) 2017-04-07 2017-04-07 铁酸锂钾及其制备方法

Publications (1)

Publication Number Publication Date
CN106977192A true CN106977192A (zh) 2017-07-25

Family

ID=59345626

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710222542.7A Withdrawn CN106977192A (zh) 2017-04-07 2017-04-07 铁酸锂钾及其制备方法

Country Status (1)

Country Link
CN (1) CN106977192A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110526697A (zh) * 2019-06-27 2019-12-03 宁波大学 一种液相合成K6.25Be0.1Al0.1P0.05Ti0.05Si1.7O7钾快离子导体及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110526697A (zh) * 2019-06-27 2019-12-03 宁波大学 一种液相合成K6.25Be0.1Al0.1P0.05Ti0.05Si1.7O7钾快离子导体及其制备方法
CN110526697B (zh) * 2019-06-27 2021-12-03 宁波大学 一种液相合成K6.25Be0.1Al0.1P0.05Ti0.05Si1.7O7钾快离子导体及其制备方法

Similar Documents

Publication Publication Date Title
Zhang et al. Water-stable lithium ion conducting solid electrolyte of the Li1. 4Al0. 4Ti1. 6− xGex (PO4) 3 system (x= 0–1.0) with NASICON-type structure
CN103496740B (zh) 一种固体电解质材料的电场活化烧结方法
CN108258303A (zh) 一种硫化物固体电解质、其制备方法及全固态锂二次电池
CN102942364A (zh) 氧化锌—碳酸盐共掺杂铈锆酸钡质子导体材料及其制备方法
Han et al. Fast ion-conducting high-entropy garnet solid-state electrolytes with excellent air stability.
Liu et al. Rapid synthesis of Li4Ti5O12 as lithium‐ion battery anode by reactive flash sintering
Fujita et al. Amorphous Li2O–LiI solid electrolytes compatible to Li metal
CN109888376B (zh) 一种硫化物钠离子固体电解质及其制备方法
Lai et al. Rapid sintering of ceramic solid electrolytes LiZr2 (PO4) 3 and Li1. 2Ca0. 1Zr1. 9 (PO4) 3 using a microwave sintering process at low temperatures
Chakraborty et al. Mg-doped NASICON-type electrolyte for rechargeable solid-state sodium-ion batteries
Kolchugin et al. The effect of copper on the properties of La 1.7 Ca 0.3 NiO 4+ δ-based cathodes for solid oxide fuel cells
CN106927815A (zh) 钛酸盐固体电解质及其制备方法
JP2011079707A (ja) セラミックス材料及びその製造方法
CN106910926A (zh) 一种固体电解质材料及其制备方法
CN106977192A (zh) 铁酸锂钾及其制备方法
CN100486024C (zh) 一种用于二次锂电池的锂镧硅硫固体电解质材料及其制备方法
CN108511795B (zh) 一种o2-和f-协同掺杂的lisicon型固体电解质材料及其制备方法
CN106966723A (zh) 铌酸盐快离子导体及其制备方法
CN109560313B (zh) 一种焦磷酸锡与相应磷酸盐组成的复合电解质及其制备方法
Machida et al. A new amorphous lithium-ion conductor in the system Li2S–P2S3
CN107082627A (zh) 一种硼酸盐快离子导体及其制备方法
CN106927806A (zh) 一种铁酸盐及其制备方法
CN106927793A (zh) 一种钴酸盐快离子导体及其制备方法
CN106915764A (zh) 一种镓酸盐及其制备方法
CN106920980A (zh) 一种钒酸盐快离子导体及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20170725