CN107082627A - 一种硼酸盐快离子导体及其制备方法 - Google Patents

一种硼酸盐快离子导体及其制备方法 Download PDF

Info

Publication number
CN107082627A
CN107082627A CN201710222970.XA CN201710222970A CN107082627A CN 107082627 A CN107082627 A CN 107082627A CN 201710222970 A CN201710222970 A CN 201710222970A CN 107082627 A CN107082627 A CN 107082627A
Authority
CN
China
Prior art keywords
borate
nabab
ball
powder
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201710222970.XA
Other languages
English (en)
Inventor
覃杏柳
苏聪学
方亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Technology
Original Assignee
Guilin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Technology filed Critical Guilin University of Technology
Priority to CN201710222970.XA priority Critical patent/CN107082627A/zh
Publication of CN107082627A publication Critical patent/CN107082627A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Conductive Materials (AREA)

Abstract

本发明公开了一种用于快离子导体的硼酸盐Li3NaBaB6O12及其制备方法。所述制备方法为按Li3NaBaB6O12的化学计量比称取相应的原料,然后通过球磨,高温预烧并快速取出冷却,再球磨,最后冷等静压后烧结得到Li3NaBaB6O12。制备方法简单,适合大规模生产。该方法合成的Li3NaBaB6O12具有较高的离子导电性、高温度下具有较高的热稳定性及化学稳定性;在300‑500℃时电导率为10‑4~10‑3S/cm,是一种优良的快离子导体材料。

Description

一种硼酸盐快离子导体及其制备方法
技术领域
本发明属于无机材料技术领域,具体涉及一种硼酸盐快离子导体及其制备方法。
背景技术
随着人类社会的发展以及工业化程度的进一步提高,开发高效、清洁、安全及经济的新型绿色能源成为了未来能源发展的必然趋势。由于离子导体具有重要的理论和实际应用价值,已在很多应用领域发展成为很有价值的材料或器件。作为离子导体中的一种材料,快离子导体材料,也称固体电解质,在高性能储能装置、燃料电池新能源材料、钠硫电池及氧分析器等领域的应用备受关注。比如氧离子导体和氢离子导体都可用作燃料电池的电解质隔膜,从而使可燃气体与氧气经电化学方法发生反应转变为电能。用氧化锆和其它快离子导体制成的气体探测器,不仅可以控制汽车发动机和锅炉燃烧室的燃烧过程以节约燃料和减少污染,而且还可以监测一些有害气体从而对环境保护作出贡献。用Na-β-Al2O3作电解质的钠-硫电池具有比铅酸电池高4~5倍的能量密度,它既可用作车辆的动力源,也可作为贮能电池使用。用快离子导体制作的固体电池具有自放电小、贮存寿命长和抗振动等优点,已在心脏起搏器电子手表、计算器和一些军用设备上获得应用。
高温燃料电池作为快离子导体(固体电解质)中的一种应用,近年来备受关注。高温燃料电池也称固体氧化物燃料电池,它们大多为基于氧空位机理的高对称的八面体和立方结构,如萤石基、钙钛矿基、Bi2O3基等固体电解质材料,但近年来,人们在低对称结构体系(如四面体、立方体、单斜等)中也寻找到高电导率的电解质材料,如黄长石结构体系,磷灰石结构体系,白钨矿结构等体系材料,而且导电机理不局限于氧空位。另外,在已报道的固体电解质材料来看,普遍存在实用性能差的缺点,主要体现在:一、工作温度过高,启动时间长,器件各组分间化学和力学兼容性差;二、导电率低;只能在800-1000℃高温下使用;三、还原气氛下某些元素如Ce部分还原成Ce3+,致使产生电子导电,甚至某些固体电解质材料在还原气氛下易分解;四、某些元素如Ga的挥发,而且工艺复杂,组件间化学兼容性差。由此可见,在理论上,人们难以通过结构来判断化合物是否具备作为快离子导体的应用;在实际应用上,人们难以找 到具有实用的快离子导体材料,即具备较高的离子导电性、较低的工作温度(500℃左右)、使用温度下较高的热稳定性及化学稳定性、大规模生产的可操作性等特点。目前硼酸盐作为快离子导体的报道并不多,《硼酸盐体系中新型固态锂快离子导体的探索》,范丽莎等,《第十届全国X射线衍射学术大会暨国际衍射数据中心(ICDD)研讨会论文摘要集》,2009年,采用的是往硼酸盐中掺入Na元素,以期增加该化合物的空位缺陷,增大离子通道的间距,有利于获得性能更好的快离子导体材料。但该文献披露了只能在x=0.5-1.0的范围内得到较纯的掺杂化合物,而且随Na掺杂量的增加,掺杂化合物的熔点逐渐下降,虽然分析认为向Li6NdB3O9进行Na掺杂确实有提高离子电导率的潜在可能性,但是也不排除是由于熔点下降造成熔融状态或者杂相等因素所引起的离子电导率的提高。因此向富含Li离子的硼酸盐掺杂Na元素不容易掌握掺杂量,而且产生的杂相以及熔点下降等因素不适宜工业上的规模生产。
发明内容
本发明的目的是提供一种用于快离子导体的硼酸盐Li3NaBaB6O12及其制备方法。
本发明涉及的用于快离子导体的硼酸盐的化学表示式为:Li3NaBaB6O12
所述硼酸盐的制备方法具体步骤为:
(1)将Li2CO3、Na2CO3、BaCO3和H3BO3的原始粉末按Li3NaBaB6O12的组成称量配料并放入球磨罐中,加入直径为7mm的氧化锆球和去离子水,球磨2小时,混合均匀磨细,取出烘干得到粉末原料;
(2)将步骤(1)烘干后的粉末原料压成柱状样品,置于陶瓷承烧板上,用坩埚罩住样品,然后置于管式炉中,550℃煅烧,保温2小时,然后从550℃的管式炉中用钳子夹住承烧板并快速取出,使陶瓷承烧板上,坩埚内的样品快速冷却,冷却至室温后捣碎研磨成粉末;
(3)将步骤(2)研磨所得的粉末放入球磨罐中,加入直径分别为2mm和7mm的氧化锆球,粉末和氧化锆球在球磨罐里球磨15个小时,混合均匀磨细,得到粉末原料;
(4)将步骤(3)球磨后的粉末原料冷等静压18MPa成型为直径1.3cm,厚度0.3cm的圆片,然后在马弗炉中600-650℃烧结,保温6小时后,自然冷却至室温,得到硼酸盐Li3NaBaB6O12
本发明的优点:通过本制备方法得到的硼酸盐Li3NaBaB6O12具有较高的离子导电性、使用温度下具有较高的热稳定性及化学稳定性;在烧结温度下结构保持不变,在300-500℃时电导率为10-4~10-2S/cm,是一种优良的快离子导体材料。另外制备方法简单、合成温度低,绿色环保成本低,相对于其他固体电解质材料的湿化学法制备工艺,本方法更适合工业生产与应用。
具体实施方式
下面结合实施例对本发明作进一步的说明,但本领域的技术人员了解,下述实施例不是对发明保护范围的限制,任何在本发明基础上的改进和变化都在本发明的保护范围之内。
实施例1:
(1)将Li2CO3、Na2CO3、BaCO3和H3BO3的原始粉末按Li3NaBaB6O12的组成称量配料并放入球磨罐中,加入直径为7mm的氧化锆球和去离子水,球磨2小时,混合均匀磨细,取出烘干得到粉末原料;
(2)将步骤(1)烘干后的粉末原料压成柱状样品,置于陶瓷承烧板上,用坩埚罩住样品,然后置于管式炉中,550℃煅烧,保温2小时,然后从550℃的管式炉中用钳子夹住承烧板并快速取出,使陶瓷承烧板上,坩埚内的样品快速冷却,冷却至室温后捣碎研磨成粉末;
(3)将步骤(2)研磨所得的粉末放入球磨罐中,加入直径分别为2mm和7mm的氧化锆球,粉末和氧化锆球在球磨罐里球磨15个小时,混合均匀磨细,得到粉末原料;
(4)将步骤(3)球磨后的粉末原料冷等静压18MPa成型为直径1.3cm,厚度0.3cm的圆片,然后在马弗炉中600℃烧结,保温6小时后,自然冷却至室温,得到硼酸盐Li3NaBaB6O12
本实施例所得到的硼酸盐Li3NaBaB6O12,在两底面涂上金胶,在550℃下烧结1小时。使用Solartron1260(英国Solartron公司)阻抗分析仪在不同温度下测定其交流阻抗。测定结果为300℃时电导率达到9.06×10-4S/cm,在500℃时电导率快速升到9.27×10-3S/cm。
实施例2:
(1)将Li2CO3、Na2CO3、BaCO3和H3BO3的原始粉末按Li3NaBaB6O12的组成称量配料并放入球磨罐中,加入直径为7mm的氧化锆球和去离子水,球磨 2小时,混合均匀磨细,取出烘干得到粉末原料;
(2)将步骤(1)烘干后的粉末原料压成柱状样品,置于陶瓷承烧板上,用坩埚罩住样品,然后置于管式炉中,550℃煅烧,保温2小时,然后从550℃的管式炉中用钳子夹住承烧板并快速取出,使陶瓷承烧板上,坩埚内的样品快速冷却,冷却至室温后捣碎研磨成粉末;
(3)将步骤(2)研磨所得的粉末放入球磨罐中,加入直径分别为2mm和7mm的氧化锆球,粉末和氧化锆球在球磨罐里球磨15个小时,混合均匀磨细,得到粉末原料;
(4)将步骤(3)球磨后的粉末原料冷等静压18MPa成型为直径1.3cm,厚度0.3cm的圆片,然后在马弗炉中630℃烧结,保温6小时后,自然冷却至室温,得到硼酸盐Li3NaBaB6O12
本实施例所得到的硼酸盐Li3NaBaB6O12,在两底面涂上金胶,在550℃下烧结1小时。使用Solartron1260(英国Solartron公司)阻抗分析仪在不同温度下测定其交流阻抗。测定结果为300℃时电导率达到9.82×10-4S/cm,在500℃时电导率快速升到1.26×10-2S/cm。
实施例3:
(1)将Li2CO3、Na2CO3、BaCO3和H3BO3的原始粉末按Li3NaBaB6O12的组成称量配料并放入球磨罐中,加入直径为7mm的氧化锆球和去离子水,球磨2小时,混合均匀磨细,取出烘干得到粉末原料;
(2)将步骤(1)烘干后的粉末原料压成柱状样品,置于陶瓷承烧板上,用坩埚罩住样品,然后置于管式炉中,550℃煅烧,保温2小时,然后从550℃的管式炉中用钳子夹住承烧板并快速取出,使陶瓷承烧板上,坩埚内的样品快速冷却,冷却至室温后捣碎研磨成粉末;
(3)将步骤(2)研磨所得的粉末放入球磨罐中,加入直径分别为2mm和7mm的氧化锆球,粉末和氧化锆球在球磨罐里球磨15个小时,混合均匀磨细,得到粉末原料;
(4)将步骤(3)球磨后的粉末原料冷等静压18MPa成型为直径1.3cm,厚度0.3cm的圆片,然后在马弗炉中650℃烧结,保温6小时后,自然冷却至室温,得到硼酸盐Li3NaBaB6O12
本实施例所得到的硼酸盐Li3NaBaB6O12,在两底面涂上金胶,在550℃下烧 结1小时。使用Solartron1260(英国Solartron公司)阻抗分析仪在不同温度下测定其交流阻抗。测定结果为300℃时电导率达到9.49×10-4S/cm,在500℃时电导率快速升到9.66×10-3S/cm。
受《硼酸盐体系中新型固态锂快离子导体的探索》,范丽莎等,《第十届全国X射线衍射学术大会暨国际衍射数据中心(ICDD)研讨会论文摘要集》,2009年的启示,往Li3NaBaB6O12掺入Na元素,看看是否能够获得性能更好的快离子导体材料。因此在本申请的实验条件下,制备Li3-xNa1+xBaB6O12(x=0.3,0.5,0.8,1.0,2.0)陶瓷片,并在相同条件下测试其电导率,结果发现Li3-xNa1+xBaB6O12(x=0.3,0.5,0.8,1.0,2.0)陶瓷片因热稳定性差而产生电子电导,而且产生了杂质而无法作为快离子导体。

Claims (1)

1.一种硼酸盐作为快离子导体的应用,其特征在于所述硼酸盐具有如下化学表示式:Li3NaBaB6O12
所述硼酸盐在300-500℃时电导率为10-4~10-2S/cm;
所述硼酸盐的制备方法具体步骤为:
(1)将Li2CO3、Na2CO3、BaCO3和H3BO3的原始粉末按Li3NaBaB6O12的组成称量配料并放入球磨罐中,加入直径为7mm的氧化锆球和去离子水,球磨2小时,混合均匀磨细,取出烘干得到粉末原料;
(2)将步骤(1)烘干后的粉末原料压成柱状样品,置于陶瓷承烧板上,用坩埚罩住样品,然后置于管式炉中,550℃煅烧,保温2小时,然后从550℃的管式炉中用钳子夹住承烧板并快速取出,使陶瓷承烧板上,坩埚内的样品快速冷却,冷却至室温后捣碎研磨成粉末;
(3)将步骤(2)研磨所得的粉末放入球磨罐中,加入直径分别为2mm和7mm的氧化锆球,粉末和氧化锆球在球磨罐里球磨15个小时,混合均匀磨细,得到粉末原料;
(4)将步骤(3)球磨后的粉末原料冷等静压18MPa成型为直径1.3cm,厚度0.3cm的圆片,然后在马弗炉中600-650℃烧结,保温6小时后,自然冷却至室温,得到硼酸盐Li3NaBaB6O12
CN201710222970.XA 2017-04-07 2017-04-07 一种硼酸盐快离子导体及其制备方法 Withdrawn CN107082627A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710222970.XA CN107082627A (zh) 2017-04-07 2017-04-07 一种硼酸盐快离子导体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710222970.XA CN107082627A (zh) 2017-04-07 2017-04-07 一种硼酸盐快离子导体及其制备方法

Publications (1)

Publication Number Publication Date
CN107082627A true CN107082627A (zh) 2017-08-22

Family

ID=59615249

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710222970.XA Withdrawn CN107082627A (zh) 2017-04-07 2017-04-07 一种硼酸盐快离子导体及其制备方法

Country Status (1)

Country Link
CN (1) CN107082627A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111564615A (zh) * 2020-05-11 2020-08-21 中国科学院化学研究所 非金属掺杂正极、二次掺杂正极及制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111564615A (zh) * 2020-05-11 2020-08-21 中国科学院化学研究所 非金属掺杂正极、二次掺杂正极及制备方法
CN111564615B (zh) * 2020-05-11 2021-04-27 中国科学院化学研究所 非金属掺杂正极、二次掺杂正极及制备方法

Similar Documents

Publication Publication Date Title
Huang et al. Two-step sintering strategy to prepare dense Li-Garnet electrolyte ceramics with high Li+ conductivity
Bai et al. Influence of LiBO2 addition on the microstructure and lithium-ion conductivity of Li1+ xAlxTi2− x (PO4) 3 (x= 0.3) ceramic electrolyte
Li et al. Influence of lithium oxide additives on densification and ionic conductivity of garnet-type Li6. 75La3Zr1. 75Ta0. 25O12 solid electrolytes
CN103496740B (zh) 一种固体电解质材料的电场活化烧结方法
Zhang et al. Influence of ZnO addition on the properties of high temperature proton conductor Ba1. 03Ce0. 5Zr0. 4Y0. 1O3− δ synthesized via citrate–nitrate method
Rosenberger et al. Field-assisted sintering of Li1. 3Al0. 3Ti1. 7 (PO4) 3 solid-state electrolyte
CN102942364A (zh) 氧化锌—碳酸盐共掺杂铈锆酸钡质子导体材料及其制备方法
Downs Mechanisms of flash sintering in cubic zirconia
Luo et al. Crystal structure refinement, microstructure and ionic conductivity of ATi2 (PO4) 3 (A= Li, Na, K) solid electrolytes
Luo et al. Influence of sintering aid on the microstructure and conductivity of the garnet-type W-doped Li 7 La 3 Zr 2 O 12 ceramic electrolyte
Xue et al. Spark plasma sintering plus heat-treatment of Ta-doped Li7La3Zr2O12 solid electrolyte and its ionic conductivity
Han et al. Fast ion-conducting high-entropy garnet solid-state electrolytes with excellent air stability.
Liu et al. Rapid synthesis of Li4Ti5O12 as lithium‐ion battery anode by reactive flash sintering
Chakraborty et al. Mg-doped NASICON-type electrolyte for rechargeable solid-state sodium-ion batteries
CN106927815A (zh) 钛酸盐固体电解质及其制备方法
CN106910926A (zh) 一种固体电解质材料及其制备方法
CN107082627A (zh) 一种硼酸盐快离子导体及其制备方法
CN108511795B (zh) 一种o2-和f-协同掺杂的lisicon型固体电解质材料及其制备方法
CN106966723A (zh) 铌酸盐快离子导体及其制备方法
CN106977192A (zh) 铁酸锂钾及其制备方法
CN106927793A (zh) 一种钴酸盐快离子导体及其制备方法
Kumar et al. Space Charge‐Mediated Ionic Transport in Yttria‐Stabilized Zirconia–Alumina Composite Membranes
CN106915764A (zh) 一种镓酸盐及其制备方法
CN114361578A (zh) 一种改性nasicon型氧化物陶瓷电解质及其制备方法和应用
CN106927806A (zh) 一种铁酸盐及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20170822