CN106915764A - 一种镓酸盐及其制备方法 - Google Patents

一种镓酸盐及其制备方法 Download PDF

Info

Publication number
CN106915764A
CN106915764A CN201710222793.5A CN201710222793A CN106915764A CN 106915764 A CN106915764 A CN 106915764A CN 201710222793 A CN201710222793 A CN 201710222793A CN 106915764 A CN106915764 A CN 106915764A
Authority
CN
China
Prior art keywords
powder
gao
gallate
ball
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710222793.5A
Other languages
English (en)
Inventor
苏聪学
苏启武
方亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Technology
Original Assignee
Guilin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Technology filed Critical Guilin University of Technology
Priority to CN201710222793.5A priority Critical patent/CN106915764A/zh
Publication of CN106915764A publication Critical patent/CN106915764A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • C01G15/006Compounds containing, besides gallium, indium, or thallium, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种用于快离子导体的镓酸盐Na2Li3GaO4及其制备方法。所述制备方法为按Na2Li3GaO4的化学计量比称取相应的原料,然后通过球磨,高温预烧并快速取出冷却,再球磨,最后冷等静压后烧结得到Na2Li3GaO4。制备方法简单,适合大规模生产。该方法合成的Na2Li3GaO4在高温度下具有较高的离子导电性、具有较高的热稳定性及化学稳定性是一种优良的快离子导体材料。

Description

一种镓酸盐及其制备方法
技术领域
本发明属于无机材料技术领域,具体涉及一种镓酸盐快离子导体及其制备方法。
背景技术
随着人类社会的发展以及工业化程度的进一步提高,开发高效、清洁、安全及经济的新型绿色能源成为了未来能源发展的必然趋势。由于离子导体具有重要的理论和实际应用价值,已在很多应用领域发展成为很有价值的材料或器件。作为离子导体中的一种材料,快离子导体材料,也称固体电解质,在高性能储能装置、燃料电池新能源材料、钠硫电池及氧分析器等领域的应用备受关注。比如氧离子导体和氢离子导体都可用作燃料电池的电解质隔膜,从而使可燃气体与氧气经电化学方法发生反应转变为电能。用氧化锆和其它快离子导体制成的气体探测器,不仅可以控制汽车发动机和锅炉燃烧室的燃烧过程以节约燃料和减少污染,而且还可以监测一些有害气体从而对环境保护作出贡献。用Na-β-Al2O3作电解质的钠-硫电池具有比铅酸电池高4~5倍的能量密度,它既可用作车辆的动力源,也可作为贮能电池使用。用快离子导体制作的固体电池具有自放电小、贮存寿命长和抗振动等优点,已在心脏起搏器电子手表、计算器和一些军用设备上获得应用。
高温燃料电池作为快离子导体(固体电解质)中的一种应用,近年来备受关注。高温燃料电池也称固体氧化物燃料电池,它们大多为基于氧空位机理的高对称的八面体和立方结构,如萤石基、钙钛矿基、Bi2O3基等固体电解质材料,但近年来,人们在低对称结构体系(如四面体、立方体、单斜等)中也寻找到高电导率的电解质材料,如黄长石结构体系,磷灰石结构体系,白钨矿结构等体系材料,而且导电机理不局限于氧空位。另外,在已报道的固体电解质材料来看,普遍存在实用性能差的缺点,主要体现在:一、工作温度过高,启动时间长,器件各组分间化学和力学兼容性差;二、导电率低;只能在800-1000℃高温下使用;三、还原气氛下某些元素如Ce部分还原成Ce3+,致使产生电子导电,甚至某些固体电解质材料在还原气氛下易分解;四、某些元素如Ga的挥发,而且工艺复杂,组件间化学兼容性差。由此可见,在理论上,人们难以通过结构来判断化合物是否具备作为快离子导体的应用;在实际应用上,人们难以找到具有实用的快离子导体材料,即具备较高的离子导电性、较低的工作温度(500℃左右)、使用温度下较高的热稳定性及化学稳定性、大规模生产的可操作性等特点。
发明内容
本发明的目的是提供一种用于快离子导体的镓酸盐Na2Li3GaO4及其制备方法。
本发明涉及的用于快离子导体的镓酸盐的化学表示式为:Na2Li3GaO4
所述镓酸盐的制备方法具体步骤为:
(1)将Li2CO3、Na2CO3和Ga2O3的原始粉末按Na2Li3GaO4的组成称量配料并放入球磨罐中,加入直径为7mm的氧化锆球和去离子水,球磨2小时,混合均匀磨细,取出烘干得到粉末原料;
(2)将步骤(1)烘干后的粉末原料压成柱状样品,置于陶瓷承烧板上,用坩埚罩住样品,然后置于管式炉中,600℃煅烧,保温2小时,然后从600℃的管式炉中用钳子夹住承烧板并快速取出,使陶瓷承烧板上,坩埚内的样品快速冷却,冷却至室温后捣碎研磨成粉末;
(3)将步骤(2)研磨所得的粉末放入球磨罐中,加入直径分别为2mm和7mm的氧化锆球,粉末和氧化锆球在球磨罐里球磨15个小时,混合均匀磨细,得到粉末原料;
(4)将步骤(3)球磨后的粉末原料冷等静压20MPa成型为直径1.3cm,厚度0.3cm的圆片,然后在马弗炉中650-700℃烧结,保温4小时后,自然冷却至室温,得到镓酸盐Na2Li3GaO4
本发明的优点:通过本制备方法得到的镓酸盐Na2Li3GaO4具有较高的离子导电性、使用温度下具有较高的热稳定性及化学稳定性;在烧结温度下结构保持不变,在300-500℃时电导率为10-3~10-2S/cm,是一种优良的快离子导体材料。另外制备方法简单、合成温度低,绿色环保成本低,相对于其他固体电解质材料的湿化学法制备工艺,本方法更适合工业生产与应用。
具体实施方式
下面结合实施例对本发明作进一步的说明,但本领域的技术人员了解,下述实施例不是对发明保护范围的限制,任何在本发明基础上的改进和变化都在本发明的保护范围之内。
实施例1:
(1)将Li2CO3、Na2CO3和Ga2O3的原始粉末按Na2Li3GaO4的组成称量配料并放入球磨罐中,加入直径为7mm的氧化锆球和去离子水,球磨2小时,混合均匀磨细,取出烘干得到粉末原料;
(2)将步骤(1)烘干后的粉末原料压成柱状样品,置于陶瓷承烧板上,用坩埚罩住样品,然后置于管式炉中,600℃煅烧,保温2小时,然后从600℃的管式炉中用钳子夹住承烧板并快速取出,使陶瓷承烧板上,坩埚内的样品快速冷却,冷却至室温后捣碎研磨成粉末;
(3)将步骤(2)研磨所得的粉末放入球磨罐中,加入直径分别为2mm和7mm的氧化锆球,粉末和氧化锆球在球磨罐里球磨15个小时,混合均匀磨细,得到粉末原料;
(4)将步骤(3)球磨后的粉末原料冷等静压20MPa成型为直径1.3cm,厚度0.3cm的圆片,然后在马弗炉中650℃烧结,保温4小时后,自然冷却至室温,得到镓酸盐Na2Li3GaO4
本实施例所得到的镓酸盐Na2Li3GaO4,在两底面涂上金胶,在550℃下烧结1小时。使用Solartron1260(英国Solartron公司)阻抗分析仪在不同温度下测定其交流阻抗。测定结果为300℃时电导率达到2.77×10-3S/cm,在500℃时电导率快速升到2.29×10-2S/cm。
实施例2:
(1)将Li2CO3、Na2CO3和Ga2O3的原始粉末按Na2Li3GaO4的组成称量配料并放入球磨罐中,加入直径为7mm的氧化锆球和去离子水,球磨2小时,混合均匀磨细,取出烘干得到粉末原料;
(2)将步骤(1)烘干后的粉末原料压成柱状样品,置于陶瓷承烧板上,用坩埚罩住样品,然后置于管式炉中,600℃煅烧,保温2小时,然后从600℃的管式炉中用钳子夹住承烧板并快速取出,使陶瓷承烧板上,坩埚内的样品快速冷却,冷却至室温后捣碎研磨成粉末;
(3)将步骤(2)研磨所得的粉末放入球磨罐中,加入直径分别为2mm和7mm的氧化锆球,粉末和氧化锆球在球磨罐里球磨15个小时,混合均匀磨细,得到粉末原料;
(4)将步骤(3)球磨后的粉末原料冷等静压20MPa成型为直径1.3cm,厚度0.3cm的圆片,然后在马弗炉中680℃烧结,保温4小时后,自然冷却至室温,得到镓酸盐Na2Li3GaO4
本实施例所得到的镓酸盐Na2Li3GaO4,在两底面涂上金胶,在550℃下烧结1小时。使用Solartron1260(英国Solartron公司)阻抗分析仪在不同温度下测定其交流阻抗。测定结果为300℃时电导率达到2.94×10-3S/cm,在500℃时电导率快速升到2.66×10-2S/cm。
实施例3:
(1)将Li2CO3、Na2CO3和Ga2O3的原始粉末按Na2Li3GaO4的组成称量配料并放入球磨罐中,加入直径为7mm的氧化锆球和去离子水,球磨2小时,混合均匀磨细,取出烘干得到粉末原料;
(2)将步骤(1)烘干后的粉末原料压成柱状样品,置于陶瓷承烧板上,用坩埚罩住样品,然后置于管式炉中,600℃煅烧,保温2小时,然后从600℃的管式炉中用钳子夹住承烧板并快速取出,使陶瓷承烧板上,坩埚内的样品快速冷却,冷却至室温后捣碎研磨成粉末;
(3)将步骤(2)研磨所得的粉末放入球磨罐中,加入直径分别为2mm和7mm的氧化锆球,粉末和氧化锆球在球磨罐里球磨15个小时,混合均匀磨细,得到粉末原料;
(4)将步骤(3)球磨后的粉末原料冷等静压20MPa成型为直径1.3cm,厚度0.3cm的圆片,然后在马弗炉中700℃烧结,保温4小时后,自然冷却至室温,得到镓酸盐Na2Li3GaO4
本实施例所得到的镓酸盐Na2Li3GaO4,在两底面涂上金胶,在550℃下烧结1小时。使用Solartron1260(英国Solartron公司)阻抗分析仪在不同温度下测定其交流阻抗。测定结果为300℃时电导率达到2.81×10-3S/cm,在500℃时电导率快速升到2.49×10-2S/cm。
由于钠离子和锂离子在快离子导体中经常作为迁移离子,因此在本申请的实验条件下,制备Na3Li2GaO4、NaLi4GaO4和Na4LiGaO4陶瓷片,并在相同条件下测试其电导率,结果发现只有Na3Li2GaO4具有最高的电导率3.36×10-4S/cm,而NaLi4GaO4和Na4LiGaO4因热稳定性差而产生电子电导,无法作为快离子导体。

Claims (1)

1.一种镓酸盐作为快离子导体的应用,其特征在于所述镓酸盐具有如下化学表示式:Na2Li3GaO4
所述镓酸盐在300-500℃时电导率为10-3~10-2S/cm;
所述镓酸盐的制备方法具体步骤为:
(1)将Li2CO3、Na2CO3和Ga2O3的原始粉末按Na2Li3GaO4的组成称量配料并放入球磨罐中,加入直径为7mm的氧化锆球和去离子水,球磨2小时,混合均匀磨细,取出烘干得到粉末原料;
(2)将步骤(1)烘干后的粉末原料压成柱状样品,置于陶瓷承烧板上,用坩埚罩住样品,然后置于管式炉中,600℃煅烧,保温2小时,然后从600℃的管式炉中用钳子夹住承烧板并快速取出,使陶瓷承烧板上,坩埚内的样品快速冷却,冷却至室温后捣碎研磨成粉末;
(3)将步骤(2)研磨所得的粉末放入球磨罐中,加入直径分别为2mm和7mm的氧化锆球,粉末和氧化锆球在球磨罐里球磨15个小时,混合均匀磨细,得到粉末原料;
(4)将步骤(3)球磨后的粉末原料冷等静压20MPa成型为直径1.3cm,厚度0.3cm的圆片,然后在马弗炉中650-700℃烧结,保温4小时后,自然冷却至室温,得到镓酸盐Na2Li3GaO4
CN201710222793.5A 2017-04-07 2017-04-07 一种镓酸盐及其制备方法 Pending CN106915764A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710222793.5A CN106915764A (zh) 2017-04-07 2017-04-07 一种镓酸盐及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710222793.5A CN106915764A (zh) 2017-04-07 2017-04-07 一种镓酸盐及其制备方法

Publications (1)

Publication Number Publication Date
CN106915764A true CN106915764A (zh) 2017-07-04

Family

ID=59568564

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710222793.5A Pending CN106915764A (zh) 2017-04-07 2017-04-07 一种镓酸盐及其制备方法

Country Status (1)

Country Link
CN (1) CN106915764A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104650882A (zh) * 2013-11-18 2015-05-27 海洋王照明科技股份有限公司 铽镱共掺杂碱镓钨酸盐上转换发光材料、制备方法及其应用
CN106362728A (zh) * 2016-10-11 2017-02-01 周口师范学院 纳米片状Bi2Ga4O9的制备方法及应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104650882A (zh) * 2013-11-18 2015-05-27 海洋王照明科技股份有限公司 铽镱共掺杂碱镓钨酸盐上转换发光材料、制备方法及其应用
CN106362728A (zh) * 2016-10-11 2017-02-01 周口师范学院 纳米片状Bi2Ga4O9的制备方法及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
匡小军: "新型氧离子导体的合成、结构与性质", 《TEIM2015第六届无机材料结构、性能及测试表征技术研讨会》 *

Similar Documents

Publication Publication Date Title
Zhan et al. AC impedance investigation of samarium-doped ceria
CN103496740B (zh) 一种固体电解质材料的电场活化烧结方法
Zhang et al. Influence of ZnO addition on the properties of high temperature proton conductor Ba1. 03Ce0. 5Zr0. 4Y0. 1O3− δ synthesized via citrate–nitrate method
Yu et al. Enhancing the sinterability and electrical properties of BaZr0. 1Ce0. 7Y0. 2O3‐δ proton‐conducting ceramic electrolyte
Han et al. Fast ion-conducting high-entropy garnet solid-state electrolytes with excellent air stability.
CN102942364A (zh) 氧化锌—碳酸盐共掺杂铈锆酸钡质子导体材料及其制备方法
CN108511795B (zh) 一种o2-和f-协同掺杂的lisicon型固体电解质材料及其制备方法
Liu et al. Rapid synthesis of Li4Ti5O12 as lithium‐ion battery anode by reactive flash sintering
Chakraborty et al. Mg-doped NASICON-type electrolyte for rechargeable solid-state sodium-ion batteries
Wu et al. Fabrication and characterization of Ca2+, Sr2+, Ba2+, Sm3+, and La3+ co-doped ceria-based electrolyte powders for low-temperature anode-supported solid oxide fuel cells
CN109888376B (zh) 一种硫化物钠离子固体电解质及其制备方法
CN106927815A (zh) 钛酸盐固体电解质及其制备方法
Kolchugin et al. The effect of copper on the properties of La 1.7 Ca 0.3 NiO 4+ δ-based cathodes for solid oxide fuel cells
WO2024150916A1 (ko) 고체산화물 전해셀용 지르코니아 전해질 및 이의 제조방법
CN106910926A (zh) 一种固体电解质材料及其制备方法
Zhu et al. Engineering oxygen vacancy to accelerate proton conduction in Y-doped BaZrO3
CN103116046B (zh) 一种吸附混合熔盐碳毡电极的制备方法
CN106966723A (zh) 铌酸盐快离子导体及其制备方法
CN106977192A (zh) 铁酸锂钾及其制备方法
CN1937299A (zh) 一种用于二次锂电池的锂镧硅硫固体电解质材料及其制备方法
CN106915764A (zh) 一种镓酸盐及其制备方法
CN107082627A (zh) 一种硼酸盐快离子导体及其制备方法
CN106927793A (zh) 一种钴酸盐快离子导体及其制备方法
CN106927806A (zh) 一种铁酸盐及其制备方法
Wang et al. Electrical conduction in dense Mg2+-doped SnP2O7–SnO2 composite ceramic for intermediate temperature fuel cell

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170704

RJ01 Rejection of invention patent application after publication