CN110526697A - 一种液相合成K6.25Be0.1Al0.1P0.05Ti0.05Si1.7O7钾快离子导体及其制备方法 - Google Patents

一种液相合成K6.25Be0.1Al0.1P0.05Ti0.05Si1.7O7钾快离子导体及其制备方法 Download PDF

Info

Publication number
CN110526697A
CN110526697A CN201910617433.4A CN201910617433A CN110526697A CN 110526697 A CN110526697 A CN 110526697A CN 201910617433 A CN201910617433 A CN 201910617433A CN 110526697 A CN110526697 A CN 110526697A
Authority
CN
China
Prior art keywords
solution
fast
potassium
deionized water
ionic conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910617433.4A
Other languages
English (en)
Other versions
CN110526697B (zh
Inventor
水淼
舒杰
任元龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo University
Original Assignee
Ningbo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo University filed Critical Ningbo University
Priority to CN201910617433.4A priority Critical patent/CN110526697B/zh
Publication of CN110526697A publication Critical patent/CN110526697A/zh
Application granted granted Critical
Publication of CN110526697B publication Critical patent/CN110526697B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/447Phosphates or phosphites, e.g. orthophosphate, hypophosphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Conductive Materials (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)

Abstract

一种液相合成K6.25Be0.1Al0.1P0.05Ti0.05Si1.7O7钾快离子导体及其制备方法,其特征为:采用Al3+、Be2+部分取代Si4+离子,在晶体中产生间隙钾离子而降低钾离子迁移活化能;通过P5+掺杂进一步降低快离子导体的电子导电性;通过小离子半径的Be2+掺杂调节钾离子的迁移通道的大小以适应钾离子的快速迁移;通过Ti4+部分掺杂形成畸变的晶格结构增加晶格缺陷有利于钾离子传导;并在制备过程中在K6Si2O7颗粒的表面进行修饰,形成易烧结特性。这些协同作用使得该钾快离子导体的常温钾离子电导率超过5·10 4S/cm,更加接近液态电解质的钾离子电导率。

Description

一种液相合成K6.25Be0.1Al0.1P0.05Ti0.05Si1.7O7钾快离子导体及 其制备方法
技术领域
本发明涉及一种固体钾快离子导体制造领域。
背景技术
锂离子电池具有体积、重量能量比高、电压高、自放电率低、无记忆效应、循环寿命长、功率密度高等绝对优点,在全球移动电源市场拥有逾300亿美元/年份额并远超过其他电池的市场占有率,是最具有市场发展前景的化学电源[吴宇平,万春荣,姜长印,锂离子二次电池,北京:化学工业出版社,2002.]。目前国内外锂离子二次电池大部分采用的是液态电解质,液态锂离子电池具有一些不利因素,如:液态有机电解质可能泄露,在过高的温度下发生爆炸从而造成安全事故,无法应用在一些对安全性要求高的场合;液态电解质锂离子电池普遍存在循环容量衰减问题,使用一段时间后由于电极活性物质在电解质中的溶解、反应而逐步失效[Z.R.Zhang,Z.L.Gong,and Y.Yang,J.Phys.Chem.B,108,2004,17546.]。而全固态电池安全性高、基本没有循环容量衰减,其中作为电解质使用的固体快离子导体还起到了隔膜的作用,简化了电池的结构;此外,由于无需隔绝空气,也简化了生产过程中对设备的要求,电池的外形设计也更加方便、灵活[温兆银,朱修剑,许晓雄等,全固态二次电池的研究,第十二届中国固态离子学学术会议论文集,2004。]。
全固态锂离子电池中,载流子在快离子导体中的迁移速率往往远远小于电极表面的电荷转移及正极材料中的离子扩散速率而成为整个电极反应动力学中的速率控制步骤,因此研制具有较高锂离子电导率的无机快离子导体是构建高性能锂离子电池的核心关键所在。从目前的锂快离子导体研发现状来看:LLTO(Li,La)TiO3快离子导体具有很高的晶内电导率(在10-3S/cm左右)及比较高的常温总电导率(10-4S/cm-10-5S/cm),但是LLTO分解电压低,无法构成放电电压3.7V以上全固态电池并且对金属锂负极不稳定;具有NASICON型多晶的LiM2(PO4)3(M=Ti,Ge,Zr)是由四面体PO4和八面体MO6共同组成的网架结构,产生了结构上的空穴及可填充的配位,使得可以调控大量的Li离子,是一种很有前途的高锂离子电导率快离子导体。通过异价离子的取代,在结构中引入空穴或填隙锂离子可进一步提高离子导电性[Xiaoxiong Xu,Zhaoyin Wen,ZhonghuaGu,et al.,Solid State Ionics,171,2004,207-212.]。如林祖纕、李世椿等[林祖纕,李世椿,硅酸盐学报,9(3),1981,253-257.]发现的Li1+xTi2-xGaxP3O12,Li1+2xTi2-xMgxP3O12,Li1+xGe2-xCrxP3012,Li1+xGe2-xAlxP3O12,Li1+ xTi2-xInxP3O12等体系或其他如Li1+2x+2yAlxMgyTi2-x-ySixP3-xO12,Li1+x+yAlxTi2-xSiyP3-yO12,Li1+ xAlxTi2-xP3O12等体系均具有较高的锂离子电导率。但这些体系的常温锂离子电导率通常在10-4S/cm-10-6S/cm之间,还不能很好满足非薄膜锂离子电池对电解质电导率的要求。另外NASICON体系同样对金属锂负极不稳定。Ramaswamy Murugan等于2007年在德国应用化学期刊上报导了一种新型的锂离子快离子导体Li7La3Zr2O12其在常温下的锂离子电导率超过1×10-4S·cm-1,分解电压超过5.5V,能使用金属锂作为负极,对空气和水分稳定,是一种很有应用潜力的锂快离子固体电解质材料(Ramaswamy Murugan,Venkataraman Thangadurai,Werner Weppner,(2007).″Fast lithium ion conduction in garnet-typeLi7La3Zr2O12.″Angewandte Chemie-International Edition 46(41):7778-7781.)。然而在对电流要求较高的场合电导率往往要达到5.0×10-4S/cm左右才可以满足电池正常工作的需要,另外该固态电解质合成温度在1350℃左右,温度高,能耗大。
另外需要指出的是随着二次电池快速应用在动力电池中,锂的消耗量迅速上升,锂元素在地壳中的储量很低只有PPM级,稀缺的锂资源使得未来的锂离子电池成本不断上升。寻求一种可替代低成本的电化学储能器件成为亟待解决的问题。钠和钾元素在地球中的丰度很高且与锂的电化学性质有一定类似,是未来有望取代锂离子全固态电池的最有希望的选择。然而目前构建钾离子全固态电池必不可少的钾离子导体还基本处于空白状态。因此筛选具有较高电导率的钾快离子导体材料对构建低成本钾离子电池及全固态钾离子电池具有重要的意义。
发明内容
本发明所要解决的技术问题是针对现有背景技术而提供的一种液相合成K6.25Be0.1Al0.1P0.05Ti0.05Si1.7O7钾快离子导体及其制备方法。采用Al3+、Be2+部分取代Si4+离子,在晶体中产生高浓度间隙钾离子,从而产生近距离的多钾离子协同迁移,有助于降低钾离子迁移活化能;通过P5+掺杂进一步降低快离子导体的电子导电性;通过小离子半径的Be2+掺杂调节钾离子的迁移通道的大小以适应钾离子的快速迁移;通过Ti4+部分掺杂形成畸变的晶格结构增加晶格缺陷有利于钾离子传导;并在制备过程中在K6Si2O7颗粒的表面进行修饰,形成易烧结特性,有利于提高该钾快离子导体在制备块体器件时减少晶界空隙、增加致密度从而提高块体钾快离子导体的钾离子电导率。这些协同作用使得该钾快离子导体的常温钾离子电导率超过5·10-4S/cm,更加接近液态电解质的钾离子电导率。
本发明通过如下的技术方案达到,该技术方案提供一种常温钾离子电导率超过5·10-4S/cm的钾快离子导体,其化学计量式为K6.25Be0.1Al0.1P0.05Ti0.05Si1.7O7
在该技术方案中,将固体KNO3∶Al(NO3)3·9H2O∶NH4H2PO4按照K6.25Be0.1Al0.1P0.05Ti0.05Si1.7O7中相应元素的化学计量摩尔比的比例均匀混合,在强烈搅拌的同时加入去离子水至所有的固体物质溶解,记下所加入的去离子水的质量,其后继续加入所记录的去离子水质量1.0-1.5倍质量的去离子水并搅拌均匀,此时继续搅拌并加入35wt%硝酸铍水溶液至溶液体系中铍的物质的量符合K6.25Be0.1Al0.1P0.05Ti0.05Si1.7O7的化学计量比,并加入物质的量为所有金属离子总量1.5-2.5倍的酒石酸充分搅拌均匀至完全溶解;记此溶液为溶液A;将符合K6.25Be0.1Al0.1P0.05Ti0.05Si1.7O7化学计量比的正硅酸四乙酯及钛酸四丁酯溶解在体积为正硅酸四乙酯及钛酸四丁酯体积之和1.0-1.5倍的无水乙醇中,记此溶液为溶液B;而后在搅拌下将溶液A逐滴加入溶液B中至全部加完,而后将溶液体系的温度上升到40-50℃并保持此温度及搅拌的条件下以3-5滴/分钟的速度继续加入去离子水,至溶液逐渐变得粘稠并形成胶冻状。将胶冻状物质在130-200℃的烘箱中干燥20-48小时后在研钵中研磨10-30分钟;研磨后的粉体在空气气氛中以5-30℃/分钟的速率升温到400-500℃保温3-10小时后随炉冷却;将冷却后的粉体在玛瑙碾钵中再次研磨10-30分钟,研磨后的粉体在空气气氛中以5-15℃/分钟的速率升温到600-700℃保温10-20小时后随炉冷却;取出研磨后在0.1-0.3M的氢氧化钠溶液中浸泡5-15分钟后过滤、烘干并在压力机中在1×107Pa-8×107Pa的压力下压成薄片,将制得的薄片放入管式炉中在10-60Pa的氧气气氛中以5-10℃/分钟的速率升温到700-850℃保温20-45小时后随炉冷却;制成该钾离子快离子导体薄片。如图1是K6.25Be0.1Al0.1P0.05Ti0.05Si1.7O7钾快离子导体的XRD图谱,其谱线符合PDF卡片72-1518K6Si2O7相无杂相,经LCR821阻抗分析仪测定电导率为6.2·10-4S/cm。
与现有技术相比,本发明的优点在于:采用Al3+、Be2+部分取代Si4+离子,在晶体中产生高浓度间隙钾离子,从而产生近距离的多钾离子协同迁移,有助于降低钾离子迁移活化能;通过P5+掺杂进一步降低快离子导体的电子导电性;通过小离子半径的Be2+掺杂调节钾离子的迁移通道的大小以适应钾离子的快速迁移;通过Ti4+部分掺杂形成畸变的晶格结构增加晶格缺陷有利于钾离子传导;也别有益的是在制备过程中在K6Si2O7颗粒的表面进行修饰,形成易烧结特性,有利于提高该钾快离子导体在制备块体器件时减少晶界空隙、增加致密度从而提高块体钾快离子导体的钾离子电导率。这些协同作用使得该钾快离子导体的常温钾离子电导率超过5·10-4S/cm,非常有利于全固态钾离子电池的构建。
附图说明
图1为K6.25Be0.1Al0.1P0.05Ti0.05Si1.7O7钾快离子导体的XRD图谱。
具体实施方式
以下结合实施实例对本发明作进一步详细描述。
实施例1:将固体KNO3∶Al(NO3)3·9H2O∶NH4H2PO4按照K6.25Be0.1Al0.1P0.05Ti0.05Si1.7O7中相应元素的化学计量摩尔比的比例均匀混合,在强烈搅拌的同时加入去离子水至所有的固体物质溶解,记下所加入的去离子水的质量,其后继续加入所记录的去离子水质量1.0倍质量的去离子水并搅拌均匀,此时继续搅拌并加入35wt%硝酸铍水溶液至溶液体系中铍的物质的量符合K6.25Be0.1Al0.1P0.05Ti0.05Si1.7O7的化学计量比,并加入物质的量为所有金属离子总量1.5倍的酒石酸充分搅拌均匀至完全溶解;记此溶液为溶液A;将符合K6.25Be0.1Al0. 1P0.05Ti0.05Si1.7O7化学计量比的正硅酸四乙酯及钛酸四丁酯溶解在体积为正硅酸四乙酯及钛酸四丁酯体积之和1.0倍的无水乙醇中,记此溶液为溶液B;而后在搅拌下将溶液A逐滴加入溶液B中至全部加完,而后将溶液体系的温度上升到40℃并保持此温度及搅拌的条件下以3滴/分钟的速度继续加入去离子水,至溶液逐渐变得粘稠并形成胶冻状。将胶冻状物质在130℃的烘箱中干燥20小时后在研钵中研磨10分钟;研磨后的粉体在空气气氛中以5℃/分钟的速率升温到420℃保温3小时后随炉冷却;将冷却后的粉体在玛瑙碾钵中再次研磨10分钟,研磨后的粉体在空气气氛中以5℃/分钟的速率升温到600℃保温10小时后随炉冷却;取出研磨后在0.12M的氢氧化钠溶液中浸泡6分钟后过滤、烘干并在压力机中在1×107Pa的压力下压成薄片,将制得的薄片放入管式炉中在12Pa的氧气气氛中以5℃/分钟的速率升温到720℃保温20小时后随炉冷却;制成该钾离子快离子导体薄片。
实施例2:将固体KNO3∶Al(NO3)3·9H2O∶NH4H2PO4按照K6.25Be0.1Al0.1P0.05Ti0.05Si1.7O7中相应元素的化学计量摩尔比的比例均匀混合,在强烈搅拌的同时加入去离子水至所有的固体物质溶解,记下所加入的去离子水的质量,其后继续加入所记录的去离子水质量1.5倍质量的去离子水并搅拌均匀,此时继续搅拌并加入35wt%硝酸铍水溶液至溶液体系中铍的物质的量符合K6.25Be0.1Al0.1P0.05Ti0.05Si1.7O7的化学计量比,并加入物质的量为所有金属离子总量2.4倍的酒石酸充分搅拌均匀至完全溶解;记此溶液为溶液A;将符合K6.25Be0.1Al0. 1P0.05Ti0.05Si1.7O7化学计量比的正硅酸四乙酯及钛酸四丁酯溶解在体积为正硅酸四乙酯及钛酸四丁酯体积之和1.5倍的无水乙醇中,记此溶液为溶液B;而后在搅拌下将溶液A逐滴加入溶液B中至全部加完,而后将溶液体系的温度上升到50℃并保持此温度及搅拌的条件下以5滴/分钟的速度继续加入去离子水,至溶液逐渐变得粘稠并形成胶冻状。将胶冻状物质在200℃的烘箱中干燥45小时后在研钵中研磨30分钟;研磨后的粉体在空气气氛中以30℃/分钟的速率升温到480℃保温9小时后随炉冷却;将冷却后的粉体在玛瑙碾钵中再次研磨28分钟,研磨后的粉体在空气气氛中以15℃/分钟的速率升温到700℃保温20小时后随炉冷却;取出研磨后在0.3M的氢氧化钠溶液中浸泡13分钟后过滤、烘干并在压力机中在8×107Pa的压力下压成薄片,将制得的薄片放入管式炉中在50Pa的氧气气氛中以10℃/分钟的速率升温到830℃保温40小时后随炉冷却;制成该钾离子快离子导体薄片。
实施例3:将固体KNO3∶Al(NO3)3·9H2O∶NH4H2PO4按照K6.25Be0.1Al0.1P0.05Ti0.05Si1.7O7中相应元素的化学计量摩尔比的比例均匀混合,在强烈搅拌的同时加入去离子水至所有的固体物质溶解,记下所加入的去离子水的质量,其后继续加入所记录的去离子水质量1.2倍质量的去离子水并搅拌均匀,此时继续搅拌并加入35wt%硝酸铍水溶液至溶液体系中铍的物质的量符合K6.25Be0.1Al0.1P0.05Ti0.05Si1.7O7的化学计量比,并加入物质的量为所有金属离子总量2.0倍的酒石酸充分搅拌均匀至完全溶解;记此溶液为溶液A;将符合K6.25Be0.1Al0. 1P0.05Ti0.05Si1.7O7化学计量比的正硅酸四乙酯及钛酸四丁酯溶解在体积为正硅酸四乙酯及钛酸四丁酯体积之和1.2倍的无水乙醇中,记此溶液为溶液B;而后在搅拌下将溶液A逐滴加入溶液B中至全部加完,而后将溶液体系的温度上升到45℃并保持此温度及搅拌的条件下以4滴/分钟的速度继续加入去离子水,至溶液逐渐变得粘稠并形成胶冻状。将胶冻状物质在160℃的烘箱中干燥32小时后在研钵中研磨30分钟;研磨后的粉体在空气气氛中以20℃/分钟的速率升温到450℃保温7小时后随炉冷却;将冷却后的粉体在玛瑙碾钵中再次研磨20分钟,研磨后的粉体在空气气氛中以10℃/分钟的速率升温到650℃保温15小时后随炉冷却;取出研磨后在0.2M的氢氧化钠溶液中浸泡10分钟后过滤、烘干并在压力机中在5×107Pa的压力下压成薄片,将制得的薄片放入管式炉中在30Pa的氧气气氛中以7℃/分钟的速率升温到750℃保温25小时后随炉冷却;制成该钾离子快离子导体薄片。
实施例4:将固体KNO3∶Al(NO3)3·9H2O∶NH4H2PO4按照K6.25Be0.1Al0.1P0.05Ti0.05Si1.7O7中相应元素的化学计量摩尔比的比例均匀混合,在强烈搅拌的同时加入去离子水至所有的固体物质溶解,记下所加入的去离子水的质量,其后继续加入所记录的去离子水质量1.0倍质量的去离子水并搅拌均匀,此时继续搅拌并加入35wt%硝酸铍水溶液至溶液体系中铍的物质的量符合K6.25Be0.1Al0.1P0.05Ti0.05Si1.7O7的化学计量比,并加入物质的量为所有金属离子总量2.0倍的酒石酸充分搅拌均匀至完全溶解;记此溶液为溶液A;将符合K6.25Be0.1Al0. 1P0.05Ti0.05Si1.7O7化学计量比的正硅酸四乙酯及钛酸四丁酯溶解在体积为正硅酸四乙酯及钛酸四丁酯体积之和1.5倍的无水乙醇中,记此溶液为溶液B;而后在搅拌下将溶液A逐滴加入溶液B中至全部加完,而后将溶液体系的温度上升到45℃并保持此温度及搅拌的条件下以4滴/分钟的速度继续加入去离子水,至溶液逐渐变得粘稠并形成胶冻状。将胶冻状物质在150℃的烘箱中干燥30小时后在研钵中研磨20分钟;研磨后的粉体在空气气氛中以20℃/分钟的速率升温到450℃保温7小时后随炉冷却;将冷却后的粉体在玛瑙碾钵中再次研磨20分钟,研磨后的粉体在空气气氛中以15℃/分钟的速率升温到700℃保温20小时后随炉冷却;取出研磨后在0.3M的氢氧化钠溶液中浸泡10分钟后过滤、烘干并在压力机中在5×107Pa的压力下压成薄片,将制得的薄片放入管式炉中在50Pa的氧气气氛中以10℃/分钟的速率升温到850℃保温30小时后随炉冷却;制成该钾离子快离子导体薄片。
实施例5:将固体KNO3∶Al(NO3)3·9H2O∶NH4H2PO4按照K6.25Be0.1Al0.1P0.05Ti0.05Si1.7O7中相应元素的化学计量摩尔比的比例均匀混合,在强烈搅拌的同时加入去离子水至所有的固体物质溶解,记下所加入的去离子水的质量,其后继续加入所记录的去离子水质量1.0倍质量的去离子水并搅拌均匀,此时继续搅拌并加入35wt%硝酸铍水溶液至溶液体系中铍的物质的量符合K6.25Be0.1Al0.1P0.05Ti0.05Si1.7O7的化学计量比,并加入物质的量为所有金属离子总量1.5倍的酒石酸充分搅拌均匀至完全溶解;记此溶液为溶液A;将符合K6.25Be0.1Al0. 1P0.05Ti0.05Si1.7O7化学计量比的正硅酸四乙酯及钛酸四丁酯溶解在体积为正硅酸四乙酯及钛酸四丁酯体积之和1.0倍的无水乙醇中,记此溶液为溶液B;而后在搅拌下将溶液A逐滴加入溶液B中至全部加完,而后将溶液体系的温度上升到40℃并保持此温度及搅拌的条件下以4滴/分钟的速度继续加入去离子水,至溶液逐渐变得粘稠并形成胶冻状。将胶冻状物质在130℃的烘箱中干燥45小时后在研钵中研磨10分钟;研磨后的粉体在空气气氛中以30℃/分钟的速率升温到400℃保温5小时后随炉冷却;将冷却后的粉体在玛瑙碾钵中再次研磨20分钟,研磨后的粉体在空气气氛中以10℃/分钟的速率升温到650℃保温10小时后随炉冷却;取出研磨后在0.2M的氢氧化钠溶液中浸泡10分钟后过滤、烘干并在压力机中在7×107Pa的压力下压成薄片,将制得的薄片放入管式炉中在50Pa的氧气气氛中以10℃/分钟的速率升温到800℃保温30小时后随炉冷却;制成该钾离子快离子导体薄片。

Claims (1)

1.一种液相合成K6.25Be0.1Al0.1P0.05Ti0.05Si1.7O7钾快离子导体,其特征为:常温钾离子电导率超过5·10-4S/cm;其制备过程为将固体KNO3∶Al(NO3)3·9H2O∶NH4H2PO4按照K6.25Be0.1Al0.1P0.05Ti0.05Si1.7O7中相应元素的化学计量摩尔比的比例均匀混合,在强烈搅拌的同时加入去离子水至所有的固体物质溶解,记下所加入的去离子水的质量,其后继续加入所记录的去离子水质量1.0-1.5倍质量的去离子水并搅拌均匀,此时继续搅拌并加入35wt%硝酸铍水溶液至溶液体系中铍的物质的量符合K6.25Be0.1Al0.1P0.05Ti0.05Si1.7O7的化学计量比,并加入物质的量为所有金属离子总量1.5-2.5倍的酒石酸充分搅拌均匀至完全溶解;记此溶液为溶液A;将符合K6.25Be0.1Al0.1P0.05Ti0.05Si1.7O7化学计量比的正硅酸四乙酯及钛酸四丁酯溶解在体积为正硅酸四乙酯及钛酸四丁酯体积之和1.0-1.5倍的无水乙醇中,记此溶液为溶液B;而后在搅拌下将溶液A逐滴加入溶液B中至全部加完,而后将溶液体系的温度上升到40-50℃并保持此温度及搅拌的条件下以3-5滴/分钟的速度继续加入去离子水,至溶液逐渐变得粘稠并形成胶冻状;将胶冻状物质在130-200℃的烘箱中干燥20-48小时后在研钵中研磨10-30分钟;研磨后的粉体在空气气氛中以5-30℃/分钟的速率升温到400-500℃保温3-10小时后随炉冷却;将冷却后的粉体在玛瑙碾钵中再次研磨10-30分钟,研磨后的粉体在空气气氛中以5-15℃/分钟的速率升温到600-700℃保温10-20小时后随炉冷却;取出研磨后在0.1-0.3M的氢氧化钠溶液中浸泡5-15分钟后过滤、烘干并在压力机中在1×107Pa-8×107Pa的压力下压成薄片,将制得的薄片放入管式炉中在10-60Pa的氧气气氛中以5-10℃/分钟的速率升温到700-850℃保温20-45小时后随炉冷却即制成该钾快离子导体。
CN201910617433.4A 2019-06-27 2019-06-27 一种液相合成K6.25Be0.1Al0.1P0.05Ti0.05Si1.7O7钾快离子导体及其制备方法 Active CN110526697B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910617433.4A CN110526697B (zh) 2019-06-27 2019-06-27 一种液相合成K6.25Be0.1Al0.1P0.05Ti0.05Si1.7O7钾快离子导体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910617433.4A CN110526697B (zh) 2019-06-27 2019-06-27 一种液相合成K6.25Be0.1Al0.1P0.05Ti0.05Si1.7O7钾快离子导体及其制备方法

Publications (2)

Publication Number Publication Date
CN110526697A true CN110526697A (zh) 2019-12-03
CN110526697B CN110526697B (zh) 2021-12-03

Family

ID=68659592

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910617433.4A Active CN110526697B (zh) 2019-06-27 2019-06-27 一种液相合成K6.25Be0.1Al0.1P0.05Ti0.05Si1.7O7钾快离子导体及其制备方法

Country Status (1)

Country Link
CN (1) CN110526697B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112408955A (zh) * 2020-11-24 2021-02-26 梅河口市跃兴砂轮特耐有限责任公司 一种铁铝镁氧化物合成材料制品及其制造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0160127A2 (en) * 1984-05-02 1985-11-06 The Minister of Energy, Mines and Resources Hydronium (H3O+) polycrystalline superionic conductors and method (ion exchange) of making same
CN2087819U (zh) * 1991-04-01 1991-10-30 浙江天一光电厂 可重复充放电的干电池
CN102456919A (zh) * 2011-07-20 2012-05-16 宁波大学 一种Zn2+、B3+离子协同掺杂的NASICON型固体锂离子电解质
CN103441255A (zh) * 2013-09-16 2013-12-11 宁德新能源科技有限公司 锂离子电池正极材料及其制备方法
CN104466238A (zh) * 2014-11-28 2015-03-25 深圳华中科技大学研究院 一种掺杂型固体陶瓷电解质、其制备方法及应用
CN105655630A (zh) * 2016-02-05 2016-06-08 中国科学院西安光学精密机械研究所 一种nasicon型镁离子固体电解质及其制备方法
CN106977192A (zh) * 2017-04-07 2017-07-25 桂林理工大学 铁酸锂钾及其制备方法
WO2018081808A1 (en) * 2016-10-31 2018-05-03 The Regents Of The University Of California Lithium and sodium superionic conductors
CN108172899A (zh) * 2016-12-07 2018-06-15 松下知识产权经营株式会社 固体电解质以及使用该固体电解质的二次电池
CN108461712A (zh) * 2018-01-19 2018-08-28 吉林大学 一种钾/铁酸钾/普鲁士蓝固态电池及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0160127A2 (en) * 1984-05-02 1985-11-06 The Minister of Energy, Mines and Resources Hydronium (H3O+) polycrystalline superionic conductors and method (ion exchange) of making same
CN2087819U (zh) * 1991-04-01 1991-10-30 浙江天一光电厂 可重复充放电的干电池
CN102456919A (zh) * 2011-07-20 2012-05-16 宁波大学 一种Zn2+、B3+离子协同掺杂的NASICON型固体锂离子电解质
CN103441255A (zh) * 2013-09-16 2013-12-11 宁德新能源科技有限公司 锂离子电池正极材料及其制备方法
CN104466238A (zh) * 2014-11-28 2015-03-25 深圳华中科技大学研究院 一种掺杂型固体陶瓷电解质、其制备方法及应用
CN105655630A (zh) * 2016-02-05 2016-06-08 中国科学院西安光学精密机械研究所 一种nasicon型镁离子固体电解质及其制备方法
WO2018081808A1 (en) * 2016-10-31 2018-05-03 The Regents Of The University Of California Lithium and sodium superionic conductors
CN108172899A (zh) * 2016-12-07 2018-06-15 松下知识产权经营株式会社 固体电解质以及使用该固体电解质的二次电池
CN106977192A (zh) * 2017-04-07 2017-07-25 桂林理工大学 铁酸锂钾及其制备方法
CN108461712A (zh) * 2018-01-19 2018-08-28 吉林大学 一种钾/铁酸钾/普鲁士蓝固态电池及其制备方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
C.R. MARIAPPAN 等: "Lithium and potassium ion conduction in A3TiB′P3O12 (A=Li, K; B′=Zn, Cd) NASICON-type glasses", 《SOLID STATE IONICS》 *
RAMASWAMY MURUGAN 等: "Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12", 《ANGEWANDTE CHEMIE-INTERNATIONAL EDITION》 *
TOMOOKI HOSAKA 等: "Research Development on K‑Ion Batteries", 《CHEMICAL REVIEWS》 *
YANG JING 等: "NASICON-structured Na3.1Zr1.95Mg0.05Si2PO12 solid electrolyte for solid-state sodium batteries", 《RARE METALS》 *
冯守华 等: "微波诱导合成固体快离子导电材料", 《高等学校化学学报》 *
郑卫东 等: "高岭土掺杂NASICON固体电解质及全固态电池性能", 《浙江大学学报(工学版)》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112408955A (zh) * 2020-11-24 2021-02-26 梅河口市跃兴砂轮特耐有限责任公司 一种铁铝镁氧化物合成材料制品及其制造方法

Also Published As

Publication number Publication date
CN110526697B (zh) 2021-12-03

Similar Documents

Publication Publication Date Title
CN102780031B (zh) 一种Mg2+,Al3+,Zr4+,F-离子共掺杂石榴石型固体电解质
CN102867988B (zh) 一种B3+,Al3+,Ti4+,Y3+,F-共掺杂固体电解质Li7La3Zr2O12
CN102867987B (zh) 一种B3+,Al3+,Mg2+,Y3+,F-共掺杂固体电解质Li7La3Zr2O12
CN102769147B (zh) 一种Mg2+,Al3+,Zr4+,S2-离子共掺杂石榴石型固体电解质
CN110372350A (zh) 一种B3+、Al3+离子协同掺杂的K6Si2O7钾快离子导体及制备方法
CN102867985B (zh) 一种B3+,Al3+,Mg2+,Y3+,S2-共掺杂固体电解质Li7La3Zr2O12
CN110526697A (zh) 一种液相合成K6.25Be0.1Al0.1P0.05Ti0.05Si1.7O7钾快离子导体及其制备方法
CN110372348A (zh) 一种电场诱导结晶K6.15Zn0.05B0.2Al0.1P0.05Zr0.05Si1.6O7钾快离子导体及制备方法
CN102780029B (zh) 一种三组份阳离子共掺杂石榴石型固体锂离子电解质
CN110265706A (zh) 一种电场诱导结晶P5+、Al3+、B3+离子协同掺杂的K6Si2O7钾快离子导体及其制备方法
CN110372357A (zh) 一种P5+、Al3+、B3+离子协同掺杂的K2MgSi5O12钾快离子导体及其制备方法
CN110330057A (zh) 一种液相合成K6.4Fe0.05Be0.2Al0.15Ti0.05Si1.6O7钾快离子导体及其制备方法
CN110371981A (zh) 一种电场诱导结晶K6.25Be0.1Al0.1P0.05Zr0.05Si1.7O7钾快离子导体及其制备方法
CN110342920A (zh) 一种液相合成K6.25Fe0.05Mg0.05Be0.2Al0.1Ti0.02Si1.68O7钾快离子导体及其制备方法
CN110364763A (zh) 一种液相合成K6.4Fe0.05Cu0.05Be0.2Al0.1B0.15Ti0.02Si1.53O7钾快离子导体及制备方法
CN110372352A (zh) 一种液相合成多重离子掺杂钾快离子导体及其制备方法
CN110350242A (zh) 一种液相合成K2.41MgBa0.05Cu0.02Be0.2B0.15Ti0.05Si4.6O12钾快离子导体及其制备方法
CN110372361A (zh) 一种液相合成K2.4MgFe0.05Be0.2Al0.15Ti0.05Si4.6O12钾快离子导体及其制备方法
CN110526699A (zh) 一种液相合成K2.25MgBe0.1Al0.1P0.05Ti0.05Si4.7O12钾快离子导体及其制备方法
CN110336009A (zh) 一种液相合成多重离子掺杂K2MgSi5O12钾快离子导体及其制备方法
CN110265710A (zh) 一种电场诱导结晶K2.15MgCu0.05Be0.15P0.05Zr0.03Si4.77O12钾快离子导体及制备方法
CN110372359A (zh) 一种电场诱导结晶K2.26Ba0.05Cu0.02MgBe0.2Zr0.05Si4.75O12钾快离子导体及制备方法
CN110371999A (zh) 一种液相合成K2.15MgFe0.05Cu0.05Al0.2B0.2Ti0.02Si4.58O12钾快离子导体及制备方法
CN110372360A (zh) 一种电场诱导结晶K2.23MgBe0.15P0.07Ti0.03Si4.75O12钾快离子导体及制备方法
CN102867986B (zh) 一种B3+,Al3+,Ti4+,Y3+四组份阳离子共掺杂固体电解质Li7La3Zr2O12

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant