CN106972064A - 复合薄膜结构光伏器件及制备方法 - Google Patents

复合薄膜结构光伏器件及制备方法 Download PDF

Info

Publication number
CN106972064A
CN106972064A CN201710057584.XA CN201710057584A CN106972064A CN 106972064 A CN106972064 A CN 106972064A CN 201710057584 A CN201710057584 A CN 201710057584A CN 106972064 A CN106972064 A CN 106972064A
Authority
CN
China
Prior art keywords
electrode
thin film
photovoltaic device
film structure
cushion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710057584.XA
Other languages
English (en)
Inventor
朱俊
周云霞
刘兴鹏
吴智鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201710057584.XA priority Critical patent/CN106972064A/zh
Publication of CN106972064A publication Critical patent/CN106972064A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0324Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIVBVI or AIIBIVCVI chalcogenide compounds, e.g. Pb Sn Te
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

复合薄膜结构光伏器件及制备方法,涉及光电转换技术和复合薄膜太阳能技术领域。本发明的复合薄膜结构光伏器件包括铁电功能层、半导体衬底、透明电极和下电极,其特征在于,在铁电层和半导体衬底之间设置有缓冲层,所述缓冲层的材料为钛酸锶或氧化钛,缓冲层厚度为10~30nm。本发明有益效果为:1、将铁电材料和半导体材料相结合,从而拓宽了复合薄膜结构光伏器件的光谱吸收范围,实现了更光谱的吸收波段。2、通过插入钛酸锶(STO)缓冲层,解决了功能层和衬底之间的晶格失配问题,减少了光生载流子在界面缺陷中的复合,显著提高了光电转换效率。

Description

复合薄膜结构光伏器件及制备方法
技术领域
本发明涉及光电转换技术和复合薄膜太阳能技术领域,特别是涉及一种复合薄膜结构光伏器件及制备方法。
背景技术
具有钙钛矿结构的甲胺铅碘类(CH3NH3PbI3)材料目前在与染敏材料复合形成薄膜太阳能电池取得重大突破,电池效率可达10%以上。这些突破为钙钛矿材料与现有太阳能制备技术复合而获得新型高效的太阳能薄膜电池看到了希望。作为同为钙钛矿结构的铁电氧化物因其具有巨大的光生电压,也一直倍受关注。特别是近期在新型的铁电材料BiFeO3(BFO)上观察到高达16伏的光生电压和强紫外光吸收特性,使钙钛矿类材料在清洁能源获取的应用中有了更多的选择。由于两者同为钙钛矿结构,在能带、价键电子结构、电荷输运以及电荷随外场的响应等物理特性有诸多相似之处。相对于甲胺铅碘类材料,钙钛矿铁电氧化物的晶体结构更加稳定,较容易与现有的半导体工艺集成生长在一起,形成高效复合薄膜太阳能电池。以PZT/GaAs外延异质结为例,GaAs本身是一种重要的光伏材料,单结的GaAs能吸收可见光,产生约0.7伏光生电压。若能与钙钛矿铁电材料形成异质结,则两者吸收波段可互补,实现宽波段、更广谱的光能吸收转化,获得具有高开路电压的新型薄膜太阳能电池。
本发明以插入STO缓冲层为例,说明一种新的复合薄膜太阳能电池结构和制备方法。为了得到更大的短路电流,实现宽波段、更光谱的光能吸收转化,获得具有高开路电压的新型复合薄膜太阳能电池,那么获得晶格完美、高光电转化效率的钙钛矿铁电薄膜显得尤为重要。然而,大多数报道中,钙钛矿铁电材料薄膜化后,相对于单晶或者陶瓷材料,光电转化能力偏低。列如溅射制备的多晶BTO薄膜能观察到随极化变化的光伏效应,但是薄膜结构缺陷太多且极化偏小,导致光生载流子在缺陷处复合而不能产生有效的光电转化。即使织构和铁电性良好的掺镧PZT薄膜,由于绝缘性太高,光生载流子无法在薄膜体内形成有效的输运,虽然能产生较大的光伏电压,但光生载流子在纳安量级。那么只有解决钙钛矿铁电薄膜化过程中光电转换效率下降的问题,才能让钙钛矿铁电光伏特性的优势得以发挥。
对于铁电层/缓冲层/半导体衬底结构光伏器件。通常采用镍(Ni)、金(Au)、铝(Al)、银(Ag)的等作为电极材料。电极材料也是影响薄膜光电转化效率的一个重要因素。其中包括电极的透明性等。
发明内容
为了克服上述现有技术的不足,本发明提供了一种铁电层/缓冲层/半导体衬底结构光伏器件及其制备方法,使得光伏器件的光电转换效率大幅度提升,尤其是器件的短路电流得到大幅度的提升。
本发明解决所述技术问题采用的技术方案是,复合薄膜结构光伏器件,包括铁电功能层、半导体衬底、透明电极和下电极,其特征在于,在铁电层和半导体衬底之间设置有缓冲层,所述缓冲层的材料为钛酸锶或氧化钛,缓冲层厚度为10~30nm。
进一步的,所述缓冲层材料为钛酸锶,厚度为20nm。
所述透明电极的材料为氧化铟锡或者掺铝氧化锌,所述铁电功能层的材料为锆钛酸铅或者铁酸铋,半导体衬底的材料为砷化镓。
所述透明电极为面电极,所述下电极为点电极。
本发明还提供一种复合薄膜结构光伏器件的制备方法,其特征在于,包括下述步骤:
1)在半导体衬底上沉积10~30纳米厚度的缓冲层,缓冲层的材料为钛酸锶或氧化钛;
2)在缓冲层上生长铁电功能层;
3)在铁电功能层上沉积上电极,上电极为透明的面电极;
4)在半导体衬底的底面沉积下电极,下电极为点电极。
本发明有益效果为:
1、将铁电材料和半导体材料相结合,从而拓宽了复合薄膜结构光伏器件的光谱吸收范围,实现了更光谱的吸收波段。
2、通过插入钛酸锶(STO)缓冲层,解决了功能层和衬底之间的晶格失配问题,减少了光生载流子在界面缺陷中的复合,显著提高了光电转换效率。
附图说明
图1为本发明具体实施列中复合薄膜光伏器件的结构示意图。
图2所示为本发明具体实施案例中采用PLD生长的异质结的XRD图,插图为摇摆曲线。
图3所示为本发明具体实施案例中采用LMBE生长的缓冲层STO的原位监测(RHEED)高能电子衍射图。
图4所示为本发明具体实施案例中器件的电滞回线图。
图5所示为本发明具体实施案例中器件在一个标准太阳光照射下,短路电流随着电压的变化曲线。图5中,自上向下三条曲线顺次为:Positive Poling,Un-Poling,Negative Poling.
图6所示为本发明具体实施案例中器件的短路电流随着光照强度的变化曲线。
图7所示为本发明具体实施案例中器件的开路电压随着光照强度的变化曲线。
具体实施方式
本发明公开了一种铁电/缓冲层/半导体衬底结构的光伏器件,包括上电极、下电极、铁电功能层和半导体衬底,以及插入的缓冲层。本发明通过插入缓冲层解决了铁电功能层和半导体衬底之间的晶格失配问题。
本实施方式的上电极为透明电极,材质为导电薄膜氧化铟锡(ITO)。下电极为铝(Al)、银(Ag)电极。铁电功能层为锆钛酸铅(PZT)薄膜,厚度为150纳米。
优选的,缓冲层的材料为钛酸锶(STO),厚度为20纳米。
半导体衬底为砷化镓(AsGa)材料。
本发明还公开了一种复合薄膜光伏器件的制备方法,包括下述步骤:
(1)利用脉冲激光分子束外延(L-MBE)技术,在半导体衬底上沉积20纳米厚度STO缓冲层。
(2)利用脉冲激光沉积技术(PLD),在缓冲层上生长150纳米厚度的铁电功能层。
(3)在铁电功能层上利用脉冲激光沉积上电极,上电极为面电极。
(4)在半导体衬底上利用电子束蒸发技术沉积下电极,下电极为点电极。
进一步的,所述的步骤(1)中,STO缓冲层生长在AsGa衬底上,采用的是L-MBE技术。本发明利用高能电子衍射仪(RHEED)进行原位监测。
所述铁电功能层材料为Pb(Zr(1-x),Tix)O3,采用PbO、La2O3、TiO2为原料进行配比,其中,x=0.48。
更进一步的,所述步骤(2)具体包括:
将PZT靶材分别利用无水乙醇和去离子水超声清洗5分钟,高压氮气吹干后放入脉冲激光溅射真空腔体,基片加热至550℃,抽真空至1×10-1Pa以下,然后打开流量计以50sccm的流量向腔体通入氧气,调节腔体至20Pa,待腔体气压稳定后,打开激光器,调节激光频率为3Hz,激光能量为5J/cm-2,溅射30分钟,关闭激光源,调节流量值200sccm的流量,待腔体气压稳定在1×103Pa,原位退火30分钟,之后打开腔体,将样品取出。
制备上电极采用PLD系统,制备下电极采用电子束蒸发法。
实施例
本发明实施例公开了一种复合薄膜结构光伏器件,包括透明电极(上电极)、铁电功能层、缓冲层、半导体衬底和金属下电极。
缓冲层优选钛酸锶(STO)或氧化钛(TiO2);透明导电电极优选为氧化铟锡(ITO)或者掺铝氧化锌等透明导电材料;金属下电极为铝(Al)或者银(Ag);铁电功能层为锆钛酸铅(PZT)或者铁酸铋(BFO);半导体衬底优选为砷化镓(AsGa)。
本实施例提供ITO/PZT/STO/GaAs/Al结构和ITO/PZT/GaAs/Al结构两种器件的对比。ITO为透明导电电极,不会减弱功能层和衬底对光的吸收。缓冲层优选的钛酸锶(STO),STO的晶格常数为0.392纳米。功能层优选的是PZT,PZT的晶格常数是0.402纳米。半导体衬底优选的是GaAs,GaAs的晶格常数是0.565纳米,实验结果表明缓冲层与衬底是旋转45度匹配生长。缓冲层以及功能生长结构良好。由于晶体结构生长良好,器件的短路电流以及开路电压得到了显著提升。尤其是短路电流提高约10000倍。
下面将结合本发明实例中的附图,对本发明实例中的技术方案进行详细的描述。
如图1所示,本发明的复合薄膜结构光伏器件包括透明导电上电极,PZT功能层,STO缓冲层,GaAs衬底以及金属下电极。器件为5×5cm2的尺寸,透明导电电极厚度为100nm,下电极为金属点电极。
图2为本发明的复合薄膜结构光伏器件的XRD图,以及作为对比的不具备缓冲层现有技术的XRD图。插图为摇摆曲线。
由于缓冲层厚度太薄,生长过程中特采用高能电子衍射仪进行原位监测,衍射图如图3所示。
将样品进行测试电滞回线,如图4。
将样品置于一个模拟太阳光下面得到器件的I-V曲线为图5所示。
分别调整光照的不同强度,测出器件的电流密度随光照强度的不同而发生变化如图6所示,器件的开路电压随光照强度的不同而发生变化如图7所示。

Claims (6)

1.复合薄膜结构光伏器件,包括铁电功能层、半导体衬底、透明电极和下电极,其特征在于,在铁电层和半导体衬底之间设置有缓冲层,所述缓冲层的材料为钛酸锶或氧化钛,缓冲层厚度为10~30nm。
2.如权利要求1所述的复合薄膜结构光伏器件,其特征在于,所述缓冲层材料为钛酸锶,厚度为20nm。
3.如权利要求1所述的复合薄膜结构光伏器件,其特征在于,所述透明电极的材料为氧化铟锡或者掺铝氧化锌,所述铁电功能层的材料为锆钛酸铅或者铁酸铋,半导体衬底的材料为砷化镓。
4.如权利要3所述的复合薄膜结构光伏器件,其特征在于,所述透明电极为面电极,所述下电极为点电极。
5.复合薄膜结构光伏器件的制备方法,其特征在于,包括下述步骤:
1)在半导体衬底上沉积10~30纳米厚度的缓冲层,缓冲层的材料为钛酸锶或氧化钛;
2)在缓冲层上生长铁电功能层;
3)在铁电功能层上沉积上电极,上电极为透明的面电极;
4)在半导体衬底的底面沉积下电极,下电极为点电极。
6.复合薄膜结构光伏器件的制备方法,其特征在于,所述步骤2)为:
将PZT靶材分别利用无水乙醇和去离子水超声清洗5分钟,高压氮气吹干后放入脉冲激光溅射真空腔体,基片加热至550℃,抽真空至1×10-1Pa以下,然后以50sccm的流量向腔体通入氧气,调节腔体至20Pa,待腔体气压稳定后,打开激光器,调节激光频率为3Hz,激光能量为5J/cm-2,溅射30分钟,关闭激光源,调节流量值200sccm的流量,待腔体气压稳定在1×103Pa,原位退火30分钟。
CN201710057584.XA 2017-01-26 2017-01-26 复合薄膜结构光伏器件及制备方法 Pending CN106972064A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710057584.XA CN106972064A (zh) 2017-01-26 2017-01-26 复合薄膜结构光伏器件及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710057584.XA CN106972064A (zh) 2017-01-26 2017-01-26 复合薄膜结构光伏器件及制备方法

Publications (1)

Publication Number Publication Date
CN106972064A true CN106972064A (zh) 2017-07-21

Family

ID=59334672

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710057584.XA Pending CN106972064A (zh) 2017-01-26 2017-01-26 复合薄膜结构光伏器件及制备方法

Country Status (1)

Country Link
CN (1) CN106972064A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108517503A (zh) * 2018-05-22 2018-09-11 苏州大学 一种锆钛酸铅薄膜的制备方法
CN109698251A (zh) * 2017-10-24 2019-04-30 华中科技大学 一种铁电增强型的太阳能电池及其制备方法
CN115216745A (zh) * 2022-06-30 2022-10-21 中国工程物理研究院电子工程研究所 基于次序物理沉积的压电厚膜制备方法及工业级压电厚膜
CN116156905A (zh) * 2023-04-21 2023-05-23 宁德时代新能源科技股份有限公司 功能层、太阳能电池和用电装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102306678A (zh) * 2011-09-22 2012-01-04 苏州大学 薄膜太阳能电池
CN102832266A (zh) * 2012-09-07 2012-12-19 苏州大学 铁电光伏器件及其制备方法
CN103872100A (zh) * 2014-03-18 2014-06-18 电子科技大学 一种低漏电流半导体薄膜异质结及其制备方法
US20150054037A1 (en) * 2013-08-26 2015-02-26 The Hong Kong Polytechnic University Semiconductor gallium arsenide compatible epitaxial ferroelectric devices for microwave tunable application
CN105390564A (zh) * 2015-11-03 2016-03-09 绵阳师范学院 一种铁电-半导体pn结型新型叠层太阳电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102306678A (zh) * 2011-09-22 2012-01-04 苏州大学 薄膜太阳能电池
CN102832266A (zh) * 2012-09-07 2012-12-19 苏州大学 铁电光伏器件及其制备方法
US20150054037A1 (en) * 2013-08-26 2015-02-26 The Hong Kong Polytechnic University Semiconductor gallium arsenide compatible epitaxial ferroelectric devices for microwave tunable application
CN103872100A (zh) * 2014-03-18 2014-06-18 电子科技大学 一种低漏电流半导体薄膜异质结及其制备方法
CN105390564A (zh) * 2015-11-03 2016-03-09 绵阳师范学院 一种铁电-半导体pn结型新型叠层太阳电池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JAVAD GATABI等: "Functional material integrated on III-V semiconductors", 《MIRCROELECTRONIC ENGINEERING》 *
LAMIS LOUAHADJ等: "Ferroelectric Pb(Zr,Ti)O3 epitaxial layers on GaAs", 《APPLIED PHYSICS LETTERS》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109698251A (zh) * 2017-10-24 2019-04-30 华中科技大学 一种铁电增强型的太阳能电池及其制备方法
WO2019080594A1 (zh) * 2017-10-24 2019-05-02 华中科技大学 一种铁电增强型的太阳能电池及其制备方法
CN109698251B (zh) * 2017-10-24 2020-05-19 华中科技大学 一种铁电增强型的太阳能电池及其制备方法
US11127535B2 (en) 2017-10-24 2021-09-21 Huazhong University Of Science And Technology Ferroelectric enhanced solar cell and preparation method thereof
CN108517503A (zh) * 2018-05-22 2018-09-11 苏州大学 一种锆钛酸铅薄膜的制备方法
CN115216745A (zh) * 2022-06-30 2022-10-21 中国工程物理研究院电子工程研究所 基于次序物理沉积的压电厚膜制备方法及工业级压电厚膜
CN115216745B (zh) * 2022-06-30 2023-09-05 中国工程物理研究院电子工程研究所 基于次序物理沉积的压电厚膜制备方法及工业级压电厚膜
CN116156905A (zh) * 2023-04-21 2023-05-23 宁德时代新能源科技股份有限公司 功能层、太阳能电池和用电装置
CN116156905B (zh) * 2023-04-21 2023-10-03 宁德时代新能源科技股份有限公司 功能层、太阳能电池和用电装置

Similar Documents

Publication Publication Date Title
Lin et al. Characteristics of Cu2ZnSn (SxSe1− x) 4 thin-film solar cells prepared by sputtering deposition using single quaternary Cu2ZnSnS4 target followed by selenization/sulfurization treatment
CN102791475B (zh) 层合体及其制造方法以及使用其的功能元件
CN106972064A (zh) 复合薄膜结构光伏器件及制备方法
Nakao et al. High mobility exceeding 80 cm2 v-1 s-1 in polycrystalline ta-doped SnO2 thin films on glass using anatase TiO2 seed layers
TWI455333B (zh) 太陽能電池
CN109449214B (zh) 一种氧化镓半导体肖特基二极管及其制作方法
CN103077963A (zh) 一种欧姆接触电极、其制备方法及包含该欧姆接触电极的半导体元件
CN113314672A (zh) 一种钙钛矿太阳能电池及其制备方法
CN109402653A (zh) 一种Si衬底上InGaN纳米柱@Au纳米粒子复合结构及其制备方法与应用
Rui et al. Two-dimensional SnS 2 nanosheets as electron transport and interfacial layers enable efficient perovskite solar cells
CN107180880A (zh) 一种超薄半透明薄膜太阳能电池及其制备方法
CN110350052B (zh) 基于铜锌锡硫/铋铁铬氧材料钙钛矿异质结的薄膜结构
Wang et al. Preparation of highly (1 0 0)-oriented LaNiO3 nanocrystalline films by metalorganic chemical liquid deposition
JP5419160B2 (ja) 光発電装置及びその製造方法
CN111270205A (zh) 尖晶石相p型铁酸镍半导体氧化物薄膜的制备方法
Dixit et al. Preparation and properties of transparent conducting oxide (TCOs) thin films: a review
CN110643948A (zh) 一种钛酸锶/钌酸锶铁电超晶格薄膜材料及其制备方法
CN110993707A (zh) 基于氧化镓多层堆叠结构的pin二极管及其制备方法
CN115295677A (zh) 高响应度β-Ga2O3基异质结自供能紫外探测器及其制备方法和应用
TW201121065A (en) Thin-film solar cells containing nanocrystalline silicon and microcrystalline silicon.
Tung et al. Optical, electrical, and structural properties of Ta-doped SnO2 films against substrate temperature using direct current magnetron sputtering
KR101920869B1 (ko) 칼코제나이드 화합물 박막 태양전지용 후면 전극 및 이의 제조방법
JP2012195501A (ja) 薄膜光電変換素子および太陽電池
CN111740014A (zh) 太阳能电池用二维/一维/零维复合SnO2纳米晶电子传输层的制备方法
Horachit et al. Effects of precursor concentration on hydrothermally grown ZnO nanorods as electron transporting layer in perovskite solar cells

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170721

RJ01 Rejection of invention patent application after publication