CN106971804A - 一种FeSiB非晶磁粉芯及其制备方法 - Google Patents

一种FeSiB非晶磁粉芯及其制备方法 Download PDF

Info

Publication number
CN106971804A
CN106971804A CN201710159417.6A CN201710159417A CN106971804A CN 106971804 A CN106971804 A CN 106971804A CN 201710159417 A CN201710159417 A CN 201710159417A CN 106971804 A CN106971804 A CN 106971804A
Authority
CN
China
Prior art keywords
powder
fesib
fesib amorphous
crystalline state
powders
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710159417.6A
Other languages
English (en)
Inventor
余红雅
李蓓
郑志刚
曾德长
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201710159417.6A priority Critical patent/CN106971804A/zh
Publication of CN106971804A publication Critical patent/CN106971804A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15325Amorphous metallic alloys, e.g. glassy metals containing rare earths
    • B22F1/0003
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15358Making agglomerates therefrom, e.g. by pressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15383Applying coatings thereon

Abstract

本发明公开了一种FeSiB非晶磁粉芯,包括FeSiB非晶粉末和晶态铁磁性粉末;所述晶态铁磁性粉末的粒径小于FeSiB非晶粉末的粒径,晶态铁磁性粉末位于FeSiB非晶粉末的颗粒的间隙中。本发明还公开了上述FeSiB非晶磁粉芯的制备方法。本发明的FeSiB非晶磁粉芯具有高饱和磁感应强度、高磁导率、低损耗,降低了现有的磁粉芯的非磁性气隙的比例,减少磁通路发生偏斜的情况。

Description

一种FeSiB非晶磁粉芯及其制备方法
技术领域
本发明涉及磁粉芯,特别涉及一种FeSiB非晶磁粉芯及其制备方法。
背景技术
磁粉芯作为一种功能材料具有能量转换的作用而广泛应用于电力、电子等领域。随着科技的迅速发展,电子元器件朝着小型、节能、高频、高灵敏度方向发展。高灵敏度要求磁粉芯具有高的饱和磁感应强度和高的磁导率;小型化、节能、高频要求磁粉芯具有低的损耗。FeSiB非晶磁粉芯因具有较高的饱和磁感应强度Bs、低损耗、较好的直流叠加特性广泛用于变压器铁芯、电感、滤波器等。但非晶磁粉芯的的磁导率低,因而限制了FeSiB非晶磁粉芯的应用。许多文献中报道添加微量元素(Nb,Mo,Co等)可以提高磁粉芯原材料的磁性能,但是Mo、Co元素价格昂贵不利于大规模的生产;而利用非晶薄带直接卷绕成的磁芯在高频条件下损耗大且非晶薄带直接卷绕成的磁芯强度较低。因此通常将非晶薄带粉碎后压制成磁粉芯。2014年申请号为201110391858.1的中国专利中通过混合FeCuNbSiB非晶粉末与羟基铁粉制备铁基复合磁粉芯。
磁粉芯是将包覆后的粉末通过粉末冶金的方法压制成型制备而成的。这种方法制备的磁粉芯中存在许多非磁性的气隙。当施加外加磁场的情况下,磁通路优先从磁性颗粒间距较小的地方通过。因此非磁性气隙的存在使磁通路发生偏斜,有效磁导率降低。
发明内容
为了克服现有技术的上述缺点与不足,本发明的目的在于提供一种具有高饱和磁感应强度、高磁导率、低损耗的FeSiB非晶磁粉芯,降低非磁性气隙的比例,减少磁通路发生偏斜的情况。
本发明的另一目的在于提供上述FeSiB非晶磁粉芯的制备方法。
本发明的目的通过以下技术方案实现:
一种FeSiB非晶磁粉芯,包括FeSiB非晶粉末和晶态铁磁性粉末;所述晶态铁磁性粉末的粒径小于FeSiB非晶粉末的粒径,晶态铁磁性粉末位于FeSiB非晶粉末的颗粒的间隙中。
所述的FeSiB非晶磁粉芯,按重量百分含量计,所述晶态铁磁性粉末的含量为5%~20%,余量为FeSiB非晶粉末。
所述的FeSiB非晶磁粉芯,按重量百分含量计,所述晶态铁磁性粉末的含量为15%,余量为FeSiB非晶粉末。
所述FeSiB非晶粉末为500目FeSiB非晶粉末,所述晶态铁磁性粉末为800目的晶态铁磁性粉末。
所述晶态铁磁性粉末为FeNi50。
所述FeSiB非晶磁粉芯的制备方法,包括以下步骤:
(1)将FeSiB非晶粉末和晶态铁磁性粉末置于行星式球磨机中混合,得到混合粉末;
(2)将混合粉末加入绝缘包覆溶液中,并充分搅拌,包覆后的粉末置于真空干燥箱中烘干;
(3)将烘干后的粉末压制成生坯后在Ar气氛围中于350℃~500℃退火0.5h~2h。
步骤(1)所述混合,具体为:以80~200r/min的转速混合0.5h~3h。
步骤(2)中混合粉末与绝缘包覆溶液的质量分数为2%~6%。
步骤(3)所述烘干,具体为:
于真空干燥箱中80℃-150℃烘干。
与现有技术相比,本发明具有以下优点和有益效果:
(1)本发明的FeSiB非晶磁粉芯,较小颗粒的晶态铁磁性粉末存在于大颗粒的FeSiB非晶粉末的间隙中,来提高FeSiB非晶磁粉芯的饱和磁感应强度和磁导率并降低非晶磁粉芯的损耗。通过小颗粒铁磁性粉末的加入,FeSiB非晶磁粉芯的磁导率提升了41%且损耗略有降低。
(2)本发明采用的包覆方法为物理法,该方法操作简单,易于实现工厂化大规模生产。
(3)本发明以少量的FeNi50合金粉末大幅度提FeSiB非晶磁粉芯的磁性能,减少了FeNi50合金的用量,可降低生产成本。
附图说明
图1(a)为实施例和对比例中采用的FeSiB非晶粉末的XRD衍射图;
图1(b)为实施例中采用的-800目FeNi50(Permalloy)粉末XRD衍射图;
图2为实施例和对比例中水雾化采用的FeSiB非晶粉末的SEM图;
图3为对比例1与实施例1、2、3、4中原料粉末的饱和磁感应强度图;
图4对比例1与实施例1、2、3、4磁粉芯磁导率随频率的变化图;
图5(a)~5(e)分别为对比例1与实施例1、2、3、4磁粉芯截面的SEM图;
图6为对比例1与实施例1、2、3、4磁粉芯损耗随频率的变化图。
具体实施方式
下面结合实施例,对本发明作进一步地详细说明,但本发明的实施方式不限于此。
实施例1
本实施例中,非晶磁粉芯中-800目的晶态铁磁性粉末FeNi50(Permalloy)为5%,其余为500目FeSiB非晶粉末。将-800目的晶态铁磁性粉末FeNi50(Permalloy)与FeSiB非晶粉末置于行星式球磨机中以150r/min的转速混合1h,使FeSiB非晶粉末与FeNi50粉末混合均匀。将上述混合后的粉末按100:2的质量比加入DC805绝缘包覆溶液中。混合均匀后干燥。将上述绝缘包覆后的粉末压制成外径20mm,内径12mm,厚度4mm的生坯。经450℃退火1h后随炉冷至室温,最终制得本发明所述的非晶磁粉芯。
实施例2
本实施例中,非晶磁粉芯中-800目的晶态铁磁性粉末FeNi50(Permalloy)为10%,其余为500目FeSiB非晶粉末。粉末混合及磁粉芯制备方法与实施例1相同。
实施例3
本实施例中,非晶磁粉芯中-800目的晶态铁磁性粉末FeNi50(Permalloy)为15%,其余为500目FeSiB非晶粉末。粉末混合及磁粉芯制备方法与实施例1相同。
实施例4
本实施例中,非晶磁粉芯中-800目的晶态铁磁性粉末FeNi50(Permalloy)为20%,其余为500目FeSiB非晶粉末。粉末混合及磁粉芯制备方法与实施例1相同。
对比例1
本对比例中,采用水雾化制备的500目FeSiB非晶粉末制备磁粉芯。磁粉芯制备方法与实施例1相同。
实施例1、2、3、4与对比例采用的FeSiB非晶粉末的XRD衍射图谱如图1(a)所示。根据XRD衍射图谱,在宽化的非晶衍射峰上出现较尖锐的衍射峰,说明在FeSiB非晶粉末中存在少量的纳米晶。根据谢乐公式以及衍射峰的位置和衍射峰的半高宽,可以计算出纳米晶的晶粒尺寸大约为43nm。图1(b)为FeNi50(Permalloy)XRD衍射图。FeSiB非晶粉末的形状如图2所示。图3为对比例1中纯FeSiB粉末与实施例1、2、3、4中混合粉末的饱和磁感应强度对比图。从图3中可以看出由于晶态铁磁性粉末FeNi50的加入,饱和磁感应强度Bs由102emu/g提升至157~165emu/g,饱和磁感应强度最高提高了60.7%。根据表1,随着铁元素含量的降低,Ni元素的升高,饱和磁感应强度呈现先升后降的趋势;但随着晶态铁磁性粉末含量的增加,饱和磁感应强度变化不大。
图4为对比例1与实施例1、2、3、4磁粉芯磁导率随频率的变化曲线。晶态铁磁性粉末的加入使FeSiB非晶磁粉芯的磁导率显著增加。随着FeNi50粉末含量的增加,磁导率呈现先升后降的趋势,实施例3制备的磁粉芯的磁导率最高。与对比例1相比,实施例3的磁导率提升了41%。
图5(a)~5(e)分别为对比例1与实施例1、2、3、4磁粉芯截面的SEM图。根据图5(a),对比例1制备的磁粉芯粉末颗粒间的间隙较大,随着小颗粒FeNi50合金粉末含量的增加,磁粉芯中的间隙减少,如图5(b)(实施例1)、图5(c)(实施例2)、图5(d)(实施例3)。但由图5(e)可以看出,当FeNi粉末含量为20wt.%时,磁粉芯的间隙增加。图6为对比例1与实施例1、2、3、4磁粉芯损耗随频率的变化曲线。与对比例1相比,小颗粒晶态铁磁性粉末的加入使FeSiB非晶磁粉芯的损耗明显降低。且随着晶态铁磁性粉末的增加,磁粉芯的损耗变化较小。
表1对比例1与实施例1、2、3、4中原料粉末的饱和磁感应强度与Fe、Ni元素含量的关系,可知实施例1、2、3、4中粉末的饱和磁感应强度显著高于对比例1。随着FeNi50合金含量的增加,混合粉末中Fe元素含量降低,Ni元素含量升高。Ni元素含量升高,饱和磁感应强度呈现先升高而后略有降低的趋势。FeNi50合金粉末的饱和磁感应强度大于FeSiB非晶粉末,因此FeNi50合金加入后,FeSiB非晶粉末的饱和磁感应强度升高。
表1对比例1与实施例1、2、3、4饱和磁感应强度与Fe、Ni元素含量的关系
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受所述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (9)

1.一种FeSiB非晶磁粉芯,其特征在于,包括FeSiB非晶粉末和晶态铁磁性粉末;所述晶态铁磁性粉末的粒径小于FeSiB非晶粉末的粒径,晶态铁磁性粉末位于FeSiB非晶粉末的颗粒的间隙中。
2.根据权利要求1所述的FeSiB非晶磁粉芯,其特征在于,按重量百分含量计,所述晶态铁磁性粉末的含量为5%~20%,余量为FeSiB非晶粉末。
3.根据权利要求1所述的FeSiB非晶磁粉芯,其特征在于,按重量百分含量计,所述晶态铁磁性粉末的含量为15%,余量为FeSiB非晶粉末。
4.根据权利要求1~3任一项所述的FeSiB非晶磁粉芯,其特征在于,所述FeSiB非晶粉末为500目FeSiB非晶粉末,所述晶态铁磁性粉末为800目的晶态铁磁性粉末。
5.根据权利要求1所述的FeSiB非晶磁粉芯,其特征在于,所述晶态铁磁性粉末为FeNi50。
6.权利要求1~5任一项所述FeSiB非晶磁粉芯的制备方法,其特征在于,包括以下步骤:
(1)将FeSiB非晶粉末和晶态铁磁性粉末置于行星式球磨机中混合,得到混合粉末;
(2)将混合粉末加入绝缘包覆溶液中,并充分搅拌,包覆后的粉末置于真空干燥箱中烘干;
(3)将烘干后的粉末压制成生坯后在Ar气氛围中于350℃~500℃退火0.5h~2h。
7.根据权利要求6所述的FeSiB非晶磁粉芯的制备方法,其特征在于,步骤(1)所述混合,具体为:以80~200r/min的转速混合0.5h~3h。
8.根据权利要求6所述的FeSiB非晶磁粉芯的制备方法,其特征在于,步骤(2)中混合粉末与绝缘包覆溶液的质量分数为2%~6%。
9.根据权利要求6所述的FeSiB非晶磁粉芯的制备方法,其特征在于,步骤(3)所述烘干,具体为:
于真空干燥箱中80℃-150℃烘干。
CN201710159417.6A 2017-03-17 2017-03-17 一种FeSiB非晶磁粉芯及其制备方法 Pending CN106971804A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710159417.6A CN106971804A (zh) 2017-03-17 2017-03-17 一种FeSiB非晶磁粉芯及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710159417.6A CN106971804A (zh) 2017-03-17 2017-03-17 一种FeSiB非晶磁粉芯及其制备方法

Publications (1)

Publication Number Publication Date
CN106971804A true CN106971804A (zh) 2017-07-21

Family

ID=59329453

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710159417.6A Pending CN106971804A (zh) 2017-03-17 2017-03-17 一种FeSiB非晶磁粉芯及其制备方法

Country Status (1)

Country Link
CN (1) CN106971804A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022241736A1 (zh) * 2021-05-20 2022-11-24 华为技术有限公司 用于制造磁体的磁性粉末、磁体和磁性元件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327762A (ja) * 2003-04-25 2004-11-18 Matsushita Electric Ind Co Ltd 複合軟磁性材料
CN1787127A (zh) * 2005-12-28 2006-06-14 安泰科技股份有限公司 磁粉芯用复合粉末及其磁粉芯制备方法
CN103559974A (zh) * 2013-09-11 2014-02-05 青岛云路新能源科技有限公司 一种非晶纳米晶复合磁粉芯及其制备方法
CN106373694A (zh) * 2016-08-31 2017-02-01 北京康普锡威科技有限公司 一种Fe基非晶软磁复合粉芯的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327762A (ja) * 2003-04-25 2004-11-18 Matsushita Electric Ind Co Ltd 複合軟磁性材料
CN1787127A (zh) * 2005-12-28 2006-06-14 安泰科技股份有限公司 磁粉芯用复合粉末及其磁粉芯制备方法
CN103559974A (zh) * 2013-09-11 2014-02-05 青岛云路新能源科技有限公司 一种非晶纳米晶复合磁粉芯及其制备方法
CN106373694A (zh) * 2016-08-31 2017-02-01 北京康普锡威科技有限公司 一种Fe基非晶软磁复合粉芯的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022241736A1 (zh) * 2021-05-20 2022-11-24 华为技术有限公司 用于制造磁体的磁性粉末、磁体和磁性元件

Similar Documents

Publication Publication Date Title
JP6662436B2 (ja) 圧粉磁心の製造方法
Xi et al. The enhanced microwave absorption property of CoFe2O4 nanoparticles coated with a Co3Fe7–Co nanoshell by thermal reduction
EP2146357B1 (en) Magnetic material for high frequency wave, and method for production thereof
TWI626666B (zh) Soft magnetic alloy and magnetic parts
EP2806433A1 (en) Dust core, coil component, and method for producing dust core
TWI667355B (zh) Soft magnetic alloy and magnetic parts
CN101620906B (zh) 一种块体纳米晶软磁合金材料及其制备方法
Fuzerova et al. Analysis of the Complex Permeability Versus Frequency of Soft Magnetic Composites Consisting of Iron and ${\rm Fe} _ {73}{\rm Cu} _ {1}{\rm Nb} _ {3}{\rm Si} _ {16}{\rm B} _ {7} $
TW201817896A (zh) 軟磁性合金及磁性部件
CN107170575A (zh) 一种软磁复合粉芯的制备方法
CN110853910B (zh) 高磁导率低损耗软磁复合材料的制备方法及其磁环
He et al. Soft magnetic materials for power inductors: State of art and future development
TW201926370A (zh) 軟磁性合金及磁性部件
JP6471015B2 (ja) Fe−Co合金粉末並びにアンテナ、インダクタおよびEMIフィルタ
CN102962465B (zh) 低磁导率、低功耗的铁硅铝软磁材料及其制备方法
CN109628845B (zh) 软磁性合金和磁性部件
CN112735721B (zh) 一种高频低损耗复合软磁材料及其制备方法和用途
JP6981199B2 (ja) 軟磁性合金および磁性部品
KR101429530B1 (ko) 전자파 흡수체용 편상분말 및 그 제조방법
WO2019053948A1 (ja) 軟磁性合金および磁性部品
CN106971804A (zh) 一种FeSiB非晶磁粉芯及其制备方法
Zhang et al. Production and properties of soft magnetic cores made from Fe-Rich FeSiBPCu powders
Zhang et al. Novel Fe-based amorphous magnetic powder cores with ultra-low core losses
CN116190093A (zh) 一种软磁粉芯及其制备方法
Jiang et al. Facile fabrication and characterization of NiFe2O4/ZnO hybrid nanoparticles

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170721

RJ01 Rejection of invention patent application after publication