CN106964345A - 一种贵金属多孔纳米膜及其制备方法 - Google Patents

一种贵金属多孔纳米膜及其制备方法 Download PDF

Info

Publication number
CN106964345A
CN106964345A CN201611268845.4A CN201611268845A CN106964345A CN 106964345 A CN106964345 A CN 106964345A CN 201611268845 A CN201611268845 A CN 201611268845A CN 106964345 A CN106964345 A CN 106964345A
Authority
CN
China
Prior art keywords
noble metal
nano
salt
porous nano
soluble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611268845.4A
Other languages
English (en)
Other versions
CN106964345B (zh
Inventor
阳晓宇
肖宇轩
应杰
魏浩
范思宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN201611268845.4A priority Critical patent/CN106964345B/zh
Publication of CN106964345A publication Critical patent/CN106964345A/zh
Application granted granted Critical
Publication of CN106964345B publication Critical patent/CN106964345B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/643Pore diameter less than 2 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/30Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds
    • C07C209/32Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups
    • C07C209/325Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups reduction by other means than indicated in C07C209/34 or C07C209/36
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/1648Porous product
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • C23C18/44Coating with noble metals using reducing agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种贵金属多孔纳米膜及其制备方法,所述贵金属多孔纳米膜由粒径为5~20nm的贵金属纳米粒子组装而成,贵金属纳米粒子间具有小孔,孔径为1~10nm,所述贵金属多孔纳米膜厚度为0.2~1μm。制备方法如下:1)将贵金属前驱物及表面活性剂溶解于水中,得到前驱体溶液;2)将前驱体溶液加热至沸腾,待前驱体溶液中产生气泡时加入还原剂,并持续加热直至纳米粒子在水‑空气界面上聚集成一层明显的薄膜;3)将薄膜分离出来,得到贵金属多孔纳米膜。本发明所得贵金属多孔纳米膜具有良好的催化活性和稳定性。

Description

一种贵金属多孔纳米膜及其制备方法
技术领域
本发明涉及纳米材料技术领域,具体涉及一种贵金属多孔纳米膜及其制备方法。
背景技术
贵金属材料具有独特的热、电、磁和光等性能,使其在能源、化工、催化、生物传感等领域有着广泛的应用前景。然而,由于贵金属资源有限,成本较高,因此在实际应用中减少贵金属的用量至关重要。理论和实验结果表面,贵金属材料的性质高度依赖于它的结构。在具体的催化过程中,贵金属材料的高效性和选择性能够通过控制贵金属的结构来得以优化,使贵金属催化剂获得理想的结构,就能极大地提升贵金属材料的催化性能和催化效率。
贵金属纳米材料是目前研究的热门课题。贵金属纳米粒子由于具有小尺寸效应,比表面积较大,因此具有较高的催化活性。但是由于其比表面能较高,因而容易团聚,导致其性能下降。因此,将贵金属制成薄膜材料能够显著地提高贵金属纳米颗粒的形态稳定性,并且具有宏观可操作性。而进一步将贵金属制成多孔薄膜结构,可以提升贵金属材料的活性比表面积,从而提升其性能。尽管目前合成薄膜材料和多孔材料方法繁多,但大多工艺繁琐、耗时较长,或涉及有机溶剂。本发明提供了一种在水-空气界面上进行自组装合成贵金属多孔纳米膜的方法,具有耗时短、能耗低、效率高的特点,并且合成的贵金属多孔薄膜材料具有良好的催化活性,可广泛应用于工业化学催化(如硝基苯催化)和电化学催化(如氧还原反应)。
发明内容
本发明所要解决的技术问题是针对现有技术中存在的上述不足,提供一种在水-空气界面上自组装合成贵金属多孔纳米膜的方法及其制备的贵金属多孔纳米膜,方法简便、能耗低、无污染,并且所得贵金属多孔纳米膜对硝基苯催化展现出了良好的催化活性。
为解决上述技术问题,本发明提供的技术方案是:
提供一种贵金属多孔纳米膜,所述贵金属多孔纳米膜由粒径为5~20nm的贵金属纳米粒子组装而成,贵金属纳米粒子间具有小孔,孔径为1~10nm,所述贵金属多孔纳米膜厚度为0.2~1μm。
按上述方案,所述贵金属纳米粒子为金纳米粒子、银纳米粒子、铂纳米粒子、钯纳米粒子中的一种,或者金纳米粒子与银纳米粒子的混合物,或者铂纳米粒子与钯纳米粒子的混合物。
本发明所述贵金属多孔纳米膜由以下方法制备得到:
1)将贵金属前驱物及表面活性剂按摩尔比1:3溶解于水中,得到前驱体溶液;
2)将步骤1)所得前驱体溶液加热至沸腾,待前驱体溶液中产生气泡时加入还原剂,其中摩尔比还原剂:贵金属前驱物=10:1,并持续加热直至纳米粒子在水-空气界面上聚集成一层明显的薄膜;
3)将步骤2)所得薄膜分离出来,得到贵金属多孔纳米膜。
按上述方案,步骤1)所述贵金属前驱物为含金的可溶性盐、含银的可溶性盐、含铂的可溶性盐、含钯的可溶性盐中的一种,或者含金的可溶性盐与含银的可溶性盐的混合物,或者含铂的可溶性盐与含钯的可溶性盐的混合物。
优选的是,所述含金的可溶性盐为氯金酸;所述含银的可溶性盐为硝酸银;所述含铂的可溶性盐为六水合氯铂酸;所述含钯的可溶性盐为氯钯酸钠。
按上述方案,步骤1)所述表面活性剂为甲基氯化吡啶、丁基氯化吡啶、十二烷基氯化吡啶、十六烷基氯化吡啶中的一种。
按上述方案,步骤2)所述还原剂为抗坏血酸或硼氢化钠。
本发明提供了一种在水-空气界面上简便合成高性能贵金属纳米薄膜材料的方法,首先将金属前驱物和表面活性剂溶于水中,加热至沸腾,然后在溶液开始出现气泡时加入还原剂,最后继续煮沸直至水-空气界面上出现一层明显的薄膜,从而达到制备具有多孔结构贵金属纳米膜的目的。本发明合成原理是当溶液沸腾时,溶液中产生的气泡将底部的金属前驱体带到水面上,当加入还原剂时,水面上的贵金属前驱体被迅速还原,并在界面力的作用下进行聚集组装成膜。
本发明的有益效果在于:1、本发明方法具有过程简便,合成周期短的优势,采用表面活性剂既避免了传统方法制备贵金属纳米粒子易团聚的问题,又修饰了薄膜材料表面使其具有多孔结构,从而进一步提高了贵金属材料的利用率;2、本发明制备的材料将纳米粒子自组装形成膜结构,降低了纳米粒子的表面能,阻止纳米粒子在反应中进行团聚,故可以有效提高金属纳米粒子的稳定性,本发明合成的贵金属多孔纳米膜性能良好,铂钯双金属纳米薄膜用作工业硝基苯加氢反应的催化剂在1h时能使204μL硝基苯转化率达到100%,另外,贵金属纳米薄膜对氧还原反应展现出了较高电化催化学活性,其中铂钯双金属纳米薄膜电化学活性最高。
附图说明
图1为本发明实施例1所制备的钯多孔纳米膜的照片;
图2为实施例1所制备的钯多孔纳米膜的扫描电镜照片:(a)低分辨照片,(b)高分辨照片;
图3为实施例1所制备的钯多孔纳米膜的透射电镜照片:(a)低分辨照片,(b)高分辨照片;
图4为实施例2所制备的铂多孔纳米膜的扫描电镜照片:(a)低分辨照片,(b)高分辨照片;
图5为实施例3所制备的铂钯多孔纳米膜的扫描电镜照片:(a)低分辨照片,(b)高分辨照片;
图6为实施例1所制备的钯多孔纳米膜的X射线衍射谱图;
图7为实施例2所制备的铂多孔纳米膜的X射线衍射谱图
图8为实施例3所制备的铂钯多孔纳米膜的X射线衍射谱图;
图9为实施例1,实施例2和实施例3所制备的贵金属多孔纳米膜的硝基苯催化性能对比图;
图10为实施例1,实施例2和实施例3所制备的贵金属多孔纳米膜的循环伏安曲线图(a)与电化学活性表面积(b)图;
图11为实施例1,实施例2和实施例3所制备的贵金属多孔纳米膜的氧还原反应曲线(a),比活性(b)和质量活性(c)曲线;
图12为实施例1所制备的钯多孔纳米膜的切面图。
具体实施方式
为使本领域技术人员更好地理解本发明的技术方案,下面结合附图对本发明作进一步详细描述。
实施例1
本实施例提供一种钯多孔纳米膜的制备,其具体操作步骤如下:
1)将100μL Na2PdCl4溶液(10mM)和1.1mg十六烷基氯化吡啶置于烧杯中,加入10mL去离子水,得到前驱体溶液;
2)将步骤1)所得前驱体溶液加热至沸腾,待前驱体溶液中产生气泡时加入100μL抗坏血酸溶液(0.1M),并持续加热直至纳米粒子在水-空气界面上聚集成一层明显的薄膜;
3)将步骤2)所得薄膜用滴管吸出,洗涤干燥后得到钯多孔纳米膜。
如图1所示为本实施例所制备的钯多孔纳米膜的照片,可以清楚的观察到在水-空气界面上有一层薄膜出现。如图2所示为本实施例所制备的钯多孔纳米膜的扫描电镜照片,制备的钯多孔纳米膜在扫描电子显微镜下呈现出是由许多粒子连接而成的一层膜结构。图3为所制备的钯多孔纳米膜的透射电镜照片,由图3a可以看出,本实施例制备的钯多孔纳米膜材料具有多孔结构,由图3b可以看出钯纳米粒子粒径约为3nm,孔径约为1nm。
图6为所得钯多孔膜材料的X射线衍射图,与钯标准PDF卡片对比可以证明合成的确实为钯材料。
图12为本实施例制备的钯多孔纳米膜的切面图,从图上可看出膜的厚度约为500nm。
实施例2
本实施例提供一种铂多孔纳米膜的制备,其制备方法与实施例1相似,不同之处在于将步骤1)中的100μLNa2PdCl4溶液(10mM)替换为100μLH2PtCl6·6H20溶液(10mM)。
图4为本实施例所制备的多孔纳米膜的扫描电镜照片。由扫描电镜图片可以看出所得到的产物是由纳米粒子组装而成的多孔薄膜材料。制备的铂多孔纳米膜的结构与实施例1产物的结构类似,是由许多粒子组装而成的一层膜结构,且可以看到清晰地多孔结构。
实施例3
本实施例提供一种铂钯双金属多孔纳米膜的制备,其制备方法与实施例1相似,不同之处在于步骤1)中加入Na2PdCl4溶液后,加入100μL H2PtCl6·6H20溶液(10mM)。
图5为本实施例所制备的多孔纳米膜的扫描电镜照片。由扫描电镜图片可以看出所得到的产物是由纳米粒子组装而成的多孔薄膜材料。
图6,7和8分别为实施例1,2和3所得贵金属多孔膜材料的X射线衍射图,与钯和铂标准PDF卡片对比可以证实合成的薄膜材料分别为钯,铂和铂钯双金属。与图6,7相比,图8的铂钯多孔膜的XRD谱峰稍稍向左偏移,证明掺入粒子半径更大的原子。与铂和钯的标准PDF卡片对比可以证明合成的确实为铂钯材料。
图9所示硝基苯催化实验是将204μL硝基苯和0.05mg催化剂(实施例1-3所制备的催化剂中的一种)加入到100mL三口烧瓶中,加入10mL无水乙醇,30℃油浴条件下通H2反应1h。由图9可以看出钯,铂和铂钯双金属多孔膜材料对硝基苯转化率分别为30%,24%和接近100%。由于铂和钯都具有较好的催化活性,当其形成双金属时,铂和钯之间的协同效应会使得材料的性能大大提升,因而铂钯双金属材料的催化活性远高于单独的铂和钯。
图10为实施例1-3所制备的贵金属多孔纳米膜的线性伏安曲线(a)和电化学活性表面积图(b),由此图可以看出电化学活性表面积:铂钯>钯>铂。图11为实施例1-3所制备的贵金属多孔纳米膜的氧还原反应曲线(a),比活性(b)和质量活性(c)曲线,该测试中铂钯双金属展现出了最高的活性,铂次之,最后为钯。

Claims (7)

1.一种贵金属多孔纳米膜,其特征在于,所述贵金属多孔纳米膜由粒径为5~20nm的贵金属纳米粒子组装而成,贵金属纳米粒子间具有小孔,孔径为1~10nm,所述贵金属多孔纳米膜厚度为0.2~1μm。
2.根据权利要求1所述的贵金属多孔纳米膜,其特征在于:所述贵金属纳米粒子为金纳米粒子、银纳米粒子、铂纳米粒子、钯纳米粒子中的一种,或者金纳米粒子与银纳米粒子的混合物,或者铂纳米粒子与钯纳米粒子的混合物。
3.一种权利要求1-2任一所述的贵金属多孔纳米膜的制备方法,其特征在于步骤如下:
1)将贵金属前驱物及表面活性剂按摩尔比1:3溶解于水中,得到前驱体溶液;
2)将步骤1)所得前驱体溶液加热至沸腾,待前驱体溶液中产生气泡时加入还原剂,其中摩尔比还原剂:贵金属前驱物=10:1,并持续加热直至纳米粒子在水-空气界面上聚集成一层明显的薄膜;
3)将步骤2)所得薄膜分离出来,得到贵金属多孔纳米膜。
4.根据权利要求3所述的贵金属多孔纳米膜的制备方法,其特征在于:步骤1)所述贵金属前驱物为含金的可溶性盐、含银的可溶性盐、含铂的可溶性盐、含钯的可溶性盐中的一种,或者含金的可溶性盐与含银的可溶性盐的混合物,或者含铂的可溶性盐与含钯的可溶性盐的混合物。
5.根据权利要求4所述的贵金属多孔纳米膜的制备方法,其特征在于:所述含金的可溶性盐为氯金酸;所述含银的可溶性盐为硝酸银;所述含铂的可溶性盐为六水合氯铂酸;所述含钯的可溶性盐为氯钯酸钠。
6.根据权利要求3所述的贵金属多孔纳米膜的制备方法,其特征在于:步骤1)所述表面活性剂为甲基氯化吡啶、丁基氯化吡啶、十二烷基氯化吡啶、十六烷基氯化吡啶中的一种。
7.根据权利要求3所述的贵金属多孔纳米膜的制备方法,其特征在于:步骤2)所述还原剂为抗坏血酸或硼氢化钠。
CN201611268845.4A 2016-12-31 2016-12-31 一种贵金属多孔纳米膜及其制备方法 Expired - Fee Related CN106964345B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611268845.4A CN106964345B (zh) 2016-12-31 2016-12-31 一种贵金属多孔纳米膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611268845.4A CN106964345B (zh) 2016-12-31 2016-12-31 一种贵金属多孔纳米膜及其制备方法

Publications (2)

Publication Number Publication Date
CN106964345A true CN106964345A (zh) 2017-07-21
CN106964345B CN106964345B (zh) 2019-08-27

Family

ID=59334645

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611268845.4A Expired - Fee Related CN106964345B (zh) 2016-12-31 2016-12-31 一种贵金属多孔纳米膜及其制备方法

Country Status (1)

Country Link
CN (1) CN106964345B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108788128A (zh) * 2018-06-28 2018-11-13 西北工业大学 一种核电池透气窗用多孔铱透气片的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010016236A1 (en) * 1999-05-12 2001-08-23 Ut-Battelle, Llc. Photobiomolecular deposition of metallic particles and films
CN1463813A (zh) * 2002-06-24 2003-12-31 中国科学院大连化学物理研究所 一种纳米贵金属及其制备方法和应用
CN101007276A (zh) * 2007-01-25 2007-08-01 上海交通大学 生物形态三维网络结构钯系纳米光催化材料的制备方法
CN101190803A (zh) * 2006-11-22 2008-06-04 中国科学院理化技术研究所 含铂纳米粒子的二氧化锆纳米薄膜及其制备方法和用途
CN101497134A (zh) * 2008-01-30 2009-08-05 中国中化集团公司 一种制备贵金属纳米粒子方法
CN102581299A (zh) * 2012-02-21 2012-07-18 金淞电器(九江)有限公司 一种贵金属纳米粒子的光化学制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010016236A1 (en) * 1999-05-12 2001-08-23 Ut-Battelle, Llc. Photobiomolecular deposition of metallic particles and films
CN1463813A (zh) * 2002-06-24 2003-12-31 中国科学院大连化学物理研究所 一种纳米贵金属及其制备方法和应用
CN1180911C (zh) * 2002-06-24 2004-12-22 中国科学院大连化学物理研究所 一种纳米贵金属的制备方法
CN101190803A (zh) * 2006-11-22 2008-06-04 中国科学院理化技术研究所 含铂纳米粒子的二氧化锆纳米薄膜及其制备方法和用途
CN101007276A (zh) * 2007-01-25 2007-08-01 上海交通大学 生物形态三维网络结构钯系纳米光催化材料的制备方法
CN101497134A (zh) * 2008-01-30 2009-08-05 中国中化集团公司 一种制备贵金属纳米粒子方法
CN102581299A (zh) * 2012-02-21 2012-07-18 金淞电器(九江)有限公司 一种贵金属纳米粒子的光化学制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PAN YUXIA: "Construction of Dandelion-like Clusters by PtPd Nanoseeds for Elevating Ethanol Eletrocatalytic Oxidation", 《ELECTROCHIMICA ACTA》 *
罗鲲: "液/液界面反应法合成金纳米颗粒膜", 《贵金属》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108788128A (zh) * 2018-06-28 2018-11-13 西北工业大学 一种核电池透气窗用多孔铱透气片的制备方法

Also Published As

Publication number Publication date
CN106964345B (zh) 2019-08-27

Similar Documents

Publication Publication Date Title
Shin et al. Template synthesis of asymmetrically mesostructured platinum networks
Radi et al. Nanoscale shape and size control of cubic, cuboctahedral, and octahedral Cu− Cu2O core− shell nanoparticles on Si (100) by one-step, templateless, capping-agent-free electrodeposition
Kloke et al. Strategies for the fabrication of porous platinum electrodes
Li et al. Synthesis of single-crystal gold nanosheets of large size in ionic liquids
CN104646025B (zh) 一种中空Pt/Ni合金与石墨烯气凝胶复合材料的制备方法
Liao et al. Mono-mercury doping of Au25 and the HOMO/LUMO energies evaluation employing differential pulse voltammetry
Yang et al. A bis (p-sulfonatophenyl) phenylphosphine-based synthesis of hollow Pt nanospheres
Yin et al. Aerobic oxidation of D-glucose on support-free nanoporous gold
Sarkar et al. Redox transmetalation of prickly nickel nanowires for morphology controlled hierarchical synthesis of nickel/gold nanostructures for enhanced catalytic activity and SERS responsive functional material
Eid et al. Trimetallic PtPdRu dendritic nanocages with three-dimensional electrocatalytic surfaces
CN101623762B (zh) 金核/银铂合金壳结构的岛状多孔三金属纳米棒及其制法
Zhang et al. Facile synthesis of mesoporous Cu2O microspheres with improved catalytic property for dimethyldichlorosilane synthesis
Zhou et al. Enhanced electrocatalytic performance of one-dimensional metal nanowires and arrays generated via an ambient, surfactantless synthesis
CN109014237A (zh) 一种铂-非贵金属合金纳米线及其水相合成方法和应用
CN104923254B (zh) 一种铜基贵金属催化剂、其制备方法与应用
CN106732561A (zh) 一种介孔铂钯双金属纳米粒子及其制备方法
Manchala et al. Solar-light harvesting bimetallic Ag/Au decorated graphene plasmonic system with efficient photoelectrochemical performance for the enhanced water reduction process
CN104815651B (zh) 一种贵金属/二氧化钛纳米复合物的制备方法
Violi et al. Gold nanoparticles supported in zirconia–ceria mesoporous thin films: a highly active reusable heterogeneous nanocatalyst
Liu et al. Novel hybrid electrocatalyst with enhanced performance in alkaline media: hollow Au/Pd core/shell nanostructures with a raspberry surface
CN103657643B (zh) 一种制备纳米钯金属催化剂的方法
CN102275981A (zh) 一种自基底的SnO2纳米棒阵列的制备方法
CN104971759A (zh) 一种负载型钯碳催化剂的制备方法
Mitra et al. Synthesis of equimolar Pd–Ru alloy nanoparticles incorporated mesoporous alumina films: a high performance reusable film catalyst
Din et al. Cadmium oxide based efficient electrocatalyst for hydrogen peroxide sensing and water oxidation

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190827

Termination date: 20191231

CF01 Termination of patent right due to non-payment of annual fee