CN106947027A - 一种含氟含氯导电高分子树脂的制备方法 - Google Patents

一种含氟含氯导电高分子树脂的制备方法 Download PDF

Info

Publication number
CN106947027A
CN106947027A CN201710251598.5A CN201710251598A CN106947027A CN 106947027 A CN106947027 A CN 106947027A CN 201710251598 A CN201710251598 A CN 201710251598A CN 106947027 A CN106947027 A CN 106947027A
Authority
CN
China
Prior art keywords
fluorine
sulfuryl fluoride
preparation
liquid monomer
containing chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710251598.5A
Other languages
English (en)
Other versions
CN106947027B (zh
Inventor
吴慧生
杨颖�
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Hancheng Industrial Co ltd
Zhejiang Hancheng New Energy Co ltd
Original Assignee
Zhejiang Han Cheng Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Han Cheng Technology Co Ltd filed Critical Zhejiang Han Cheng Technology Co Ltd
Priority to CN201710251598.5A priority Critical patent/CN106947027B/zh
Publication of CN106947027A publication Critical patent/CN106947027A/zh
Priority to PCT/CN2018/081864 priority patent/WO2018192368A1/zh
Priority to GB1916736.0A priority patent/GB2575951B/en
Priority to US16/605,668 priority patent/US11136424B2/en
Priority to DE112018002056.8T priority patent/DE112018002056B4/de
Application granted granted Critical
Publication of CN106947027B publication Critical patent/CN106947027B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F261/00Macromolecular compounds obtained by polymerising monomers on to polymers of oxygen-containing monomers as defined in group C08F16/00
    • C08F261/06Macromolecular compounds obtained by polymerising monomers on to polymers of oxygen-containing monomers as defined in group C08F16/00 on to polymers of unsaturated ethers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本发明公开了一种含氟含氯导电高分子树脂的制备方法,先将可自由基聚合的含氟带磺酰氟液相单体、纯净水、含氟表面活性剂混合搅拌得到预聚体乳液;然后通入气相混合单体和自由基引发剂进行自由基聚合反应,得到含氟含氯带磺酰氟的高分子乳液,最后对含氟含氯带磺酰氟的高分子乳液进行水解,再经凝聚、水洗、干燥后得到含氟含氯导电高分子树脂。通过所述制备方法可以制备得到具有较高的机械强度及防水、透湿、耐油污、耐水洗、阻燃、抗生化武器穿透及高导电性等优秀的物化性能。

Description

一种含氟含氯导电高分子树脂的制备方法
技术领域
本发明涉及分子材料技术领域,具体涉及一种含氟含氯导电高分子树脂的制备方法。
背景技术
含氟高分子,尤其是四氟乙烯的均聚、改性、或共聚高分子树脂都具有优异的物理机械性能和化学稳定性,在化工材料、机械电子、航空航天、军工防护、新型材料和新能源等各领域都有着广泛的应用;含氯高分子,如三氟氯乙烯的均聚、改性、或共聚高分子树脂均具有优异的物理机械性能和抗化学穿透性,在化学防护上有重要贡献。含氟导电高分子如杜邦的Nafion树脂,有优异的导电性及化学稳定性,在燃料电池及氯碱电池的应用广泛,但仍存在不少缺点,如导电性能还不够高,其单膜的常温电导率(Conductivity)<0.1(S/cm);化学穿透性高,无法有效阻隔有毒有害化学品穿透。
膨体聚四氟乙烯制备是采用高结晶度的聚四氟乙烯分散树脂,经双向拉伸膨化获得,具有高度微米或纳米纤维紧密结合的微孔结构,有优良的物理化学性能,机械性能,防水透气性和化学稳定性,从七十年代以来就被用于制造电线电缆绝缘材料、人造血管、密封带、环保过滤以及服装面料等;但其缺点是这些微米或纳米纤维的耐穿刺性不好,抗蠕变性能不佳,且在受张力后这些微米或纳米纤维会继续被拉长拉松,造成膜组织变形,导致功能性下降,严重影响膜整体防护性功能。
发明内容
针对现有技术的不足,本发明旨在提出一种含氟含氯导电高分子树脂的制备方法,得到的含氟含氯导电高分子树脂具有较高的机械强度及防水、透湿、耐油污、耐水洗、阻燃、抗生化武器穿透及高导电性等优秀的物化性能。
为了实现上述目的,本发明采用如下技术方案:
一种含氟含氯导电高分子树脂的制备方法,包括如下步骤:
S1按重量百分比将可自由基聚合的含氟带磺酰氟液相单体1%~20%、纯净水79%~98%、含氟表面活性剂0.01%~1%加入反应釜中进行高速搅拌,得到预聚体乳液;
S2往反应釜内通入四氟乙烯、偏氟乙烯中的一种或两种与三氟氯乙烯的气相混合单体,反应压力为5公斤或以上;然后通入自由基引发剂,反应温度在20-120℃,反应压力在5-25公斤,反应时间为15-180min,得到反应产物含氟含氯带磺酰氟的高分子乳液;所述含氟带磺酰氟液相单体与所述气相混合单体实际参与自由基聚合反应的总重量之比为1:3~3:1;自由基引发剂的通入总重量与含氟带磺酰氟液相单体的重量比为0.01%~3.0%;
S3对含氟含氯带磺酰氟的高分子乳液进行水解,再经凝聚、水洗、干燥后得到含氟含氯导电高分子树脂。
进一步地,步骤S1中,所述含氟带磺酰氟液相单体包括CF2=CF-O-Rf-SO2F、CF2=CF-O-Rf1-O-Rf2-SO2F、CF2=CF-CF2-O-Rf3-SO2F中一种或几种,其中Rf、Rf1、Rf2是1-6个碳的含氟烷基,Rf3是0-5个碳的含氟烷基。
更进一步地,所述含氟带磺酰氟液相单体包括CF2=CF-O-CF2CF2-SO2F,CF2=CF-O-CF2CFCF3-O-CF2CF2-SO2F、CF2=CF-CF2-O-SO2F、CF2=CF-CF2-O-CF2CF2-SO2F中的一种或几种。
更进一步地,当所述含氟含氯导电高分子树脂应用于电池领域时,含氟带磺酰氟液相单体以如下重量百分比组成:CF2=CF-O-CF2CF2-SO2F0-80%,CF2=CF-O-CF2CFCF3-O-CF2CF2-SO2F 20%-99%,CF2=CF-CF2-O-SO2F0%-20%,CF2=CF-CF2-O-CF2CF2-SO2F 0%-80%。
更进一步地,当所述含氟含氯导电高分子树脂应用于核生化防护膜材时,含氟带磺酰氟液相单体以如下重量百分比组成:CF2=CF-O-CF2CF2-SO2F 0-80%,CF2=CF-O-CF2CFCF3-O-CF2CF2-SO2F 0%-20%,CF2=CF-CF2-O-SO2F 20%-100%,CF2=CF-CF2-O-CF2CF2-SO2F 0%-80%。
进一步地,所述含氟带磺酰氟液相单体里含有含氟不带磺酰氟试剂,所述含氟不带磺酰氟试剂与含氟带磺酰氟液相单体的重量比小于或等于30%。
更进一步地,所述含氟不带磺酰氟试剂包括含氟烷基、含氟烷基醚、全氟甲基乙烯基醚、全氟乙基乙烯基醚、全氟丙基乙烯基醚、3,3,3-三氟丙稀或全氟烷基乙烯中的一种或多种。
进一步地,所述气相混合单体以摩尔比计含:25%-90%的四氟乙烯、0%-70%的偏氟乙烯、5%-50%的三氟氯乙烯。
进一步地,所述含氟表面活性剂包括含6-16个碳的有机物,并至少含一个羧酸或者磺酸的官能团。
进一步地,所述自由基引发剂包括过硫酸盐、双氧水、有机过氧化合物中的一种或多种。
本发明的有益效果在于:通过本发明可以制备得到一种含氟含氯导电高分子树脂具有较高的机械强度及防水、透湿、耐油污、耐水洗、阻燃、抗生化武器穿透及高导电性等优秀的物化性能。
含氟含氯高分子比全氟的高分子机械强度高,发现高分子主链上含少量氯原子可增加分子间吸引力,使高分子机械强度增强,使其抗蠕变性较好,不易变形。另外,其抗化学武器穿透性也较好,适合做防护性服装膜,而且其抗酒精穿透性也较好,适合做酒精燃料电池膜等应用。
具体实施方式
以下将对本发明作进一步的描述,需要说明的是,本实施例以本技术方案为前提,给出了详细的实施方式和具体的操作过程,但本发明的保护范围并不限于本实施例。
一种含氟含氯导电高分子树脂的制备方法,包括如下步骤:
S1按重量百分比将可自由基聚合的含氟带磺酰氟液相单体1%~20%、纯净水79%~98%、含氟表面活性剂0.01%~1%加入反应釜中进行高速搅拌,得到预聚体乳液;
S2往反应釜内通入四氟乙烯、偏氟乙烯中的一种或两种与三氟氯乙烯的气相混合单体,反应压力为5公斤或以上;然后通入自由基引发剂,反应温度在20-120℃,反应压力在5-25公斤,反应时间为15-180min,得到反应产物含氟含氯带磺酰氟的高分子乳液;所述含氟带磺酰氟液相单体与所述气相混合单体实际参与自由基聚合反应的总重量之比为1:3~3:1;自由基引发剂的通入总重量与含氟带磺酰氟液相单体的重量比为0.01%~3.0%;
S3对含氟含氯带磺酰氟的高分子乳液进行水解,再经凝聚、水洗、干燥后得到含氟含氯导电高分子树脂。
进一步地,步骤S1中,所述含氟带磺酰氟液相单体包括CF2=CF-O-Rf-SO2F、CF2=CF-O-Rf1-O-Rf2-SO2F、CF2=CF-CF2-O-Rf3-SO2F中一种或几种,其中Rf、Rf1、Rf2是1-6个碳的含氟烷基,Rf3是0-5个碳的含氟烷基。
更进一步地,所述含氟带磺酰氟液相单体包括CF2=CF-O-CF2CF2-SO2F,CF2=CF-O-CF2CFCF3-O-CF2CF2-SO2F、CF2=CF-CF2-O-SO2F、CF2=CF-CF2-O-CF2CF2-SO2F中的一种或几种。
更进一步地,当所述含氟含氯导电高分子树脂应用于电池领域时,含氟带磺酰氟液相单体以如下重量百分比组成:CF2=CF-O-CF2CF2-SO2F0-80%,CF2=CF-O-CF2CFCF3-O-CF2CF2-SO2F 20%-99%,CF2=CF-CF2-O-SO2F0%-20%,CF2=CF-CF2-O-CF2CF2-SO2F 0%-80%。
更进一步地,当所述含氟含氯导电高分子树脂应用于核生化防护膜材时,含氟带磺酰氟液相单体以如下重量百分比组成:CF2=CF-O-CF2CF2-SO2F 0-80%,CF2=CF-O-CF2CFCF3-O-CF2CF2-SO2F 0%-20%,CF2=CF-CF2-O-SO2F 20%-100%,CF2=CF-CF2-O-CF2CF2-SO2F 0%-80%。
进一步地,所述含氟带磺酰氟液相单体里含有含氟不带磺酰氟试剂,所述含氟不带磺酰氟试剂与含氟带磺酰氟液相单体的重量比小于或等于30%。
更进一步地,所述含氟不带磺酰氟试剂包括含氟烷基、含氟烷基醚、全氟甲基乙烯基醚、全氟乙基乙烯基醚、全氟丙基乙烯基醚、3,3,3-三氟丙稀或全氟烷基乙烯中的一种或多种。
进一步地,所述气相混合单体以摩尔比计含:25%-90%的四氟乙烯、0%-70%的偏氟乙烯、5%-50%的三氟氯乙烯。
进一步地,所述含氟表面活性剂包括含6-16个碳的有机物,并至少含一个羧酸或者磺酸的官能团。
进一步地,所述自由基引发剂包括过硫酸盐、双氧水、有机过氧化合物中的一种或多种。
实施例1:
在一个约100升内容积密闭的预乳化反应釜A内,常温下加入39000g纯净水,100g的全氟辛酸铵,开高速剪切搅拌,然后往釜里慢慢加入5000g的重量比70%CF2=CF-O-CF2CFCF3-O-CF2CF2-SO2F及30%CF2=CF-O-CF2CF2-SO2F混合组成的含氟带磺酰氟液相单体,连续高速剪切搅拌约30分后,制得预聚体乳液;
在另一个约100升内容积的反应釜B内,釜里先排氧,直到釜里氧含量小于20ppm,然后加入从反应釜A来的全部预聚体乳液,釜里通入气相混合单体,其摩尔比为90%四氟乙烯及10%三氟氯乙烯,升温至70度,釜内压力维持在11公斤,加入2.5克过硫酸铵预溶于1升的去离子水,开始自由基聚合。
所述含氟带磺酰氟液相单体与所述气相混合单体实际参与自由基聚合反应的总重量之比约为4:5;自由基引发剂的通入总重量与含氟带磺酰氟液相单体的重量比为0.05%;
反应温度控制在70~75度,反应时间一小时,将釜内温度降至室温后,停止搅拌,反应物放料,获得含氟含氯导电高分子乳液,其初级粒子的平均粒径约100纳米,乳液固含量约19%,所得含氟含氯导电高分子乳液经磺酰氟(-SO2F)水解后得到含氟含氯带磺酸(-SO3H)的导电高分子,干燥后,其比重约1.99,酸当量数(meq/g)约900,其单膜的常温电导率(Conductivity)>0.15(S/cm)。
实施例2
在一个约100升内容积密闭的预乳化反应釜A内,常温下加入39000g去离子水,100g的全氟辛酸铵,开高速剪切搅拌,然后往釜里慢慢加入5000g的重量比80%CF2=CF-O-CF2CFCF3-O-CF2CF2-SO2F及20%CF2=CF-O-CF2CF2-SO2F的混合物,连续高速剪切搅拌约30分后,制得预聚体乳液;在另一个约100升内容积的反应釜B内,釜里先排氧,直到釜里氧含量小于20ppm,然后加入从反应釜A来的全部预聚体乳液,釜里通入混合气相混合单体,其摩尔比为75%四氟乙烯、20%偏氟乙烯及5%三氟氯乙烯,升温至70度,釜内压力维持在9公斤,加入2.5克过硫酸铵预溶于1升的去离子水,开始自由基聚合。
所述含氟带磺酰氟液相单体与所述气相混合单体实际参与自由基聚合反应的总重量之比约为5:4;自由基引发剂的通入总重量与含氟带磺酰氟液相单体的重量比为0.05%;
反应温度控制在70~75度,反应时间约一小时,将釜内温度降至室温后,停止搅拌,反应物放料,获得含氟含氯导电高分子乳液,其初级粒子的平均粒径约120纳米,乳液固含量约21%,所得含氟含氯导电高分子乳液经磺酰氟(-SO2F)水解后得到含氟含氯带磺酸(-SO3H)的导电高分子,干燥后,其比重约1.91,酸当量数(meq/g)约800,其单膜的常温电导率(Conductivity)>0.20(S/cm)。
实施例3:
在一个约100升内容积密闭的预乳化釜A内,常温下加入39000g纯净水,100g的全氟辛酸铵,开高速剪切搅拌,然后往釜里慢慢加入3000g的重量比50%【CF2=CF-O-CF2CFCF3-O-CF2CF2-SO2F】及50%【CF2=CF-CF2-O-CF2CF2-SO2F】的混合物,连续高速剪切搅拌约30分后,制得预聚体乳液;在另一个约100升内容积的反应釜B内,釜里先排氧,直到釜里氧含量小于20ppm,然后加入从反应釜A来的全部预聚体乳液,釜里通入气相混合单体,其摩尔比为50%四氟乙烯及50%三氟氯乙烯,升温至70度,釜内压力维持在14公斤,加入1.5克过硫酸铵预溶于1升的去离子水,开始自由基聚合。
所述含氟带磺酰氟液相单体与所述气相混合单体实际参与自由基聚合反应的总重量之比约为1:3;自由基引发剂的通入总重量与含氟带磺酰氟液相单体的重量比为0.05%;
反应温度控制在70~75度,反应时间约一小时,将釜内温度降至室温后,停止搅拌,反应物放料,获得含氟含氯导电高分子乳液,其初级粒子的平均粒径约150纳米,乳液固含量约22%,所得含氟含氯导电高分子乳液经磺酰氟(-SO2F)水解后得到含氟含氯带磺酸(-SO3H)的导电高分子,干燥后,其比重约2.02,酸当量数(meq/g)约1500,其单膜的常温电导率(Conductivity)>0.02(S/cm)。
实施例4:
在一个约100升内容积密闭的预乳化反应釜A内,常温下加入39000g去离子水,300g的全氟辛酸铵,开高速剪切搅拌,然后往釜里慢慢加入6000g的重量比20%【CF2=CF-O-CF2CFCF3-O-CF2CF2-SO2F】及80%【CF2=CF-CF2-O-CF2CF2-SO2F】的混合物,连续高速剪切搅拌约30分后,制得预聚体乳液;在另一个约100升内容积的反应釜B内,釜里先排氧,直到釜里氧含量小于20ppm,然后加入从反应釜A来的全部预聚体乳液,釜里通入气相混合单体,其摩尔比为70%四氟乙烯及30%三氟氯乙烯,升温至70度,釜内压力维持在10公斤,加入3克过硫酸铵预溶于1升的去离子水,开始自由基聚合。
所述含氟带磺酰氟液相单体与所述气相混合单体实际参与自由基聚合反应的总重量之比约为3:1;自由基引发剂的通入总重量与含氟带磺酰氟液相单体的重量比为0.05%;
反应温度控制在70~75度,反应时间约一小时,将釜内温度降至室温后,停止搅拌,反应物放料,获得含氟含氯导电高分子乳液,其初级粒子的平均粒径约70纳米,乳液固含量约19.5%,所得含氟含氯导电高分子乳液经磺酰氟(-SO2F)水解后得到含氟含氯带磺酸(-SO3H)的导电高分子,干燥后,其比重约1.97,酸当量数(meq/g)约500,其单膜的常温电导率(Conductivity)>0.35(S/cm)。
实施例5
在一个约100升内容积密闭的预乳化釜A内,常温下加入39000g去离子水,300g的全氟辛酸铵,开高速剪切搅拌,然后往釜里慢慢加入3公斤的重量比60%CF2=CF-CF2-O-SO2F及40%CF2=CF-CF2-O-CF2CF2-SO2F的混合物,连续高速剪切搅拌约30分后,制得预聚体乳液;在另一个约100升内容积的反应釜B内,釜里先排氧,直到釜里氧含量小于20ppm,然后加入从反应釜A来的全部预聚体乳液,釜里通入气相混合单体,其摩尔比为25%四氟乙烯、70%偏氟乙烯、5%三氟氯乙烯,升温至80度,釜内压力维持在17公斤,加入1.5克过硫酸铵预溶于1升的去离子水,开始自由基聚合。
所述含氟带磺酰氟液相单体与所述气相混合单体实际参与自由基聚合反应的总重量之比约为1:2.5;自由基引发剂的通入总重量与含氟带磺酰氟液相单体的重量比为0.05%;
反应温度控制在80~85度,反应时间约45分钟,将釜内温度降至室温后,停止搅拌,反应物放料,获得含氟导电高分子乳液,其初级粒子的平均粒径约50纳米,乳液固含量约20%,所得含氟导电高分子乳液经磺酰氟(-SO2F)水解成磺酸(-SO3H),(-CF2-O-SO2F)水解成羧酸(-COOH)的含氟含磺酸/羧酸导电高分子,干燥后,其比重约1.72,酸当量数(meq/g)约950,其单膜的常温电导率(Conductivity)>0.10(S/cm)。
实施例6
将实施例3中制造得的含氟含氯导电高分子树脂与二甲基乙酰胺以约1:4的重量比混合,升温搅拌,树脂溶解后,用静电纺丝法喷纳米纤维丝,每分钟产能约5克,所产生纳米纤维丝用离型形纸收集,所制得的纳米纤维丝堆积在离形纸上,离形纸以每分钟0.1米的速度前进,所收集到的是一幅宽约1米的纳米纤维丝膜,将此丝膜在约90℃热风处理下渐烘干纳米纤维丝薄膜,最终行成厚度约20微米,宽度约100厘米的纳米纤维丝薄膜,纤维的平均直径约170纳米,经检测,膜重约10克/平米,孔隙率约78-82%,比重为0.39,透气性Gurley测法100毫升空气透过速度约7~12秒。
实施例7
将聚丙烯腈PAN树脂(由丙烯腈和少量丙烯酸甲醋、甲叉丁二脂共聚生成共聚聚丙烯腈树脂,分子量高于6到8万)与二甲基亚矾以约1:4的重量比混合,升温搅拌,树脂溶解后,用超高速离心纺丝法喷纳米纤维丝,每分钟产能约20克,所产生纳米纤维丝用离型形纸收集,所制得的纳米纤维丝堆积在离形纸上,离形纸以每分钟0.1米得速度前进,所收集到的是一幅宽约1米的纳米纤维丝膜,将此丝膜在约160℃热风处理下渐烘干纳米纤维丝薄膜,最终行成厚度约70微米,宽度约100厘米的纳米纤维丝薄膜,纤维的平均直径约350纳米;经检测,膜重约39克/平米,孔隙率约82-86%,比重为0.28,透气性Gurley测法100毫升空气透过速度约13~17秒。
实施例8
将实施例7中制造得到的聚丙烯腈纳米微孔薄膜,在空气下加热至约270℃,保温2h,聚丙烯腈PAN树脂纳米微孔薄膜的颜色由白色逐渐变成黄色、棕色,最后形成黑色的预氧化微孔薄膜,是聚丙烯腈线性高分子受热氧化后,发生氧化、热解、交联、环化等一系列化学反应形成耐热梯型高分子的结果,然后将预氧化微孔薄膜在氮气中进行高温处理1600℃的碳化处理,则纳米纤维进一步产生交联环化、芳构化及缩聚等反应,并脱除氢、氮、氧原子,最后形成二维碳环平面网状结构和层片粗糙平行的乱层石墨结构的PAN基纳米碳纤维薄膜,最终行成厚度约15微米,宽度约100厘米的纳米纤维丝薄膜,纤维的平均直径约160纳米,经检测,膜重约7克/平米,孔隙率约89-93%,比重为0.27,透气性Gurley测法100毫升空气透过速度约7~9秒。
实施例9
将ECTFE树脂(乙烯与三氟氯乙烯共聚物,来自苏威公司)用熔融纺丝法喷ECTFE纤维纳米丝,每分钟喷丝约20克,所产生纳米纤维丝用离型形纸收集,所制得的纳米纤维丝堆积在离形纸上,离形纸以每分钟1米的速度前进,所收集到的是一幅宽约1米的ECTFE纳米纤维丝膜,最终行成厚度约45微米,宽度约100厘米的纳米纤维丝薄膜,纤维的平均直径约450纳米,经检测,膜重约20克/平米,孔隙率约75-80%,比重为0.42,透气性Gurley测法100毫升空气透过速度约12~15秒。
实施例10
将PET聚酯树脂与碳酸乙烯酯以约1:4的重量比混合,升温搅拌,树脂溶解后,在略超过200℃的溶液温度下全面涂布在离形纸上,所生成的PET膜经急速冷却至室温,撕去离形纸,将此PET膜在约170℃热风处理下渐烘干PET薄膜,最终行成厚度约50微米,宽度约160厘米的纳米微孔薄膜,经检测,所得含氟含氯微孔薄膜的膜重约15克/平米,孔隙率约68-72%,比重为0.29,透气性Gurley测法100毫升空气透过速度约17~23秒。
实施例11
将实施例1中制造得到的含氟含氯导电高分子树脂先溶解在二甲基乙酰胺/乙醇(1:1)溶液里,含氟含氯导电高分子树脂在溶液里的浓度约20%,将实施例6中制得到的含氟含氯导电高分子(酸当量数1500)微孔薄膜骨架,常温双面浸泡在所制的20%含氟含氯导电高分子(酸当量数900)溶液里约一分钟,取出浸泡的薄膜,轻轻刮去膜表面多余液体,在90度下慢慢烘干,即获得复合薄膜;经检测,复合薄膜最终厚度约25微米,宽度约100厘米的透明薄膜,膜重约45克/平米,比重为1.81,透气性Gurley测法100毫升空气透过速度大于3分钟,复合膜导电度(Conductivity)约0.11(S/cm)。
实施例12
将实施例4中制造得到的含氟含氯导电高分子树脂先溶解在二甲基乙酰胺/乙醇(1:1)溶液里,导电高分子在溶液里的浓度约20%,再加入溶液重量约5%的石墨粉及1ppm金属铂的纳米颗粒,将实施例6中制得到的含氟含氯导电高分子(酸当量数1500)微孔薄膜骨架,常温双面浸泡在所制的溶液里约一分钟,取出浸泡的薄膜,轻轻刮去膜表面多余液体,在90度下慢慢烘干,即获得复合薄膜;经检测,所得复合薄膜最终厚度约25微米,宽度约100厘米的透明薄膜,膜重约47克/平米,比重为1.83,透气性Gurley测法100毫升空气透过速度大于3分钟;复合膜导电度(Conductivity)约0.23(S/cm)。
实施例13
将实施例1中制造得到的含氟含氯导电高分子树脂(酸当量数900)先溶解在二甲基乙酰胺/乙醇(1:1)溶液里,导电高分子在溶液里的浓度约20%,再加入10ppm石墨烯,将实施例8中制得到的碳纤维微孔薄膜骨架,常温双面浸泡在所制的溶液里约一分钟,取出浸泡的薄膜,轻轻刮去膜表面多余液体,在90度下慢慢烘干,即获得特种复合薄膜;经检测,所得复合薄膜最终厚度约19微米,宽度约100厘米的透明薄膜,膜重约37克/平米,比重约为1.93,透气性Gurley测法100毫升空气透过速度大于3分钟,复合膜导电度(Conductivity)约0.19(S/cm)。
实施例14
将实施例4中制造得到的含氟含氯导电高分子树脂(酸当量数500)先溶解在二甲基乙酰胺/乙醇(1:1)溶液里,导电高分子在溶液里的浓度约20%,将实施例9中制得到的ECTFE微孔薄膜骨架,常温双面浸泡在所制的20%含氟含氯导电高分子(酸当量数500)溶液里约一分钟,取出浸泡的薄膜,轻轻刮去膜表面多余液体,在90度下慢慢烘干,即获得复合薄膜;经检测,所得复合薄膜最终厚度约50微米,宽度约100厘米的透明薄膜,膜重约98克/平米,比重为1.96,透气性Gurley测法100毫升空气透过速度大于3分钟,复合膜导电度(Conductivity)约0.17(S/cm)。
实施例15
将实施例5中制造得到的含氟含氯导电高分子树脂(酸当量数950)先溶解在二甲基甲酰胺/乙醇(1:1)溶液里,导电高分子在溶液里的浓度约20%,将实施例8中制得到的碳纤维微孔薄膜骨架,常温双面浸泡在所制的20%含氟含氯导电高分子(酸当量数950)溶液里约一分钟,取出浸泡的薄膜,轻轻刮去膜表面多余液体,在90度下慢慢烘干,即获得复合薄膜;经检测,所得复合薄膜最终厚度约21微米,宽度约100厘米的透明薄膜,膜重约39克/平米,比重约为1.86,透气性Gurley测法100毫升空气透过速度大于3分钟,复合薄膜导电度(Conductivity)约0.13(S/cm)。
此复合薄膜与尼龙6平织布(90克/平米),经点状聚氨酯贴合胶点将薄膜与布复合,此复合面料,耐水压(JIS L1092法)初始大于200kPa,经水洗10次后,耐水压仍大于100kPa;透湿气率>4000g/m2/day,根据美国军规MIL-DTL-32102 3April 2002测仿糜烂毒气:氯乙醚(ClCH2CH2OCH2CH2Cl)穿透率合格<4μg/cm2/day,证明此复合薄膜抗生化穿透能力强。
实施例16
将实施例5中制造得到的含氟含氯导电高分子(酸当量数950)先溶解在二甲基甲酰胺/乙醇(1:1)溶液里,导电高分子在溶液里的浓度约20%,再加入溶液重量约5%的活性碳粉,将实施例9中制得到的ECTFE微孔薄膜骨架,常温单面浸泡在溶液里约一分钟,取出单面浸泡的薄膜,轻轻刮去单面浸泡膜表面多余液体,在90度下慢慢烘干,即获得复合薄膜;经检测,所得复合薄膜最终厚度约47微米,宽度约100厘米的透明薄膜,膜重约39克/平米,上胶量约19克/平米,透气性Gurley测法100毫升空气透过速度大于3分钟。
此特种复合薄膜与尼龙6平织布(90克/平米),经点状聚氨酯贴合胶点将薄膜与布复合,此复合面料,耐水压(JIS L1092法)初始大于200kPa,经水洗10次后,耐水压仍大于100kPa;透湿气率>4000g/m2/day,根据美国军规MIL-DTL-32102 3April 2002测仿糜烂毒气:氯乙醚(ClCH2CH2OCH2CH2Cl)穿透率合格<4μg/cm2/day,证明此复合膜抗生化穿透能力强。
实施例17
将实施例5中制造得到的含氟含氯导电高分子(酸当量数950)先溶解在二甲基甲酰胺/乙醇(1:1)溶液里,导电高分子在溶液里的浓度约20%,将实施例10中制得到的PET聚酯微孔薄膜骨架,常温单面浸泡在所制的20%含氟含氯导电高分子(酸当量数950)溶液里约一分钟,取出单面浸泡浸泡的薄膜,轻轻刮去单面浸泡膜表面多余液体,在90度下慢慢烘干,即获得特种复合薄膜;经检测,所得特种含氟含氯高分子单面填充复合薄膜最终厚度约53微米,宽度约100厘米的透明薄膜,膜重约33克/平米,上胶量约18克/平米,透气性Gurley测法100毫升空气透过速度大于3分钟。
此特种复合薄膜与尼龙6平织布(90克/平米),经点状聚氨酯贴合胶点将薄膜与布复合,此复合面料,耐水压(JIS L1092法)初始大于200kPa,经水洗10次后,耐水压仍大于100kPa;透湿气率>4000g/m2/day,根据美国军规MIL-DTL-32102 3April 2002测仿糜烂毒气:氯乙醚(ClCH2CH2OCH2CH2Cl)穿透率合格<4μg/cm2/day,证明此复合膜抗生化穿透能力强。
对于本领域的技术人员来说,可以根据以上的技术方案和构思,作出各种相应的改变和变形,而所有的这些改变和变形都应该包括在本发明权利要求的保护范围之内。

Claims (10)

1.一种含氟含氯导电高分子树脂的制备方法,其特征在于,包括如下步骤:
S1按重量百分比将可自由基聚合的含氟带磺酰氟液相单体1%~20%、纯净水79%~98%、含氟表面活性剂0.01%~1%加入反应釜中进行高速搅拌,得到预聚体乳液;
S2往反应釜内通入四氟乙烯、偏氟乙烯中的一种或两种与三氟氯乙烯的气相混合单体,反应压力为5公斤或以上;然后通入自由基引发剂,反应温度在20-120℃,反应压力在5-25公斤,反应时间为15-180min,得到反应产物含氟含氯带磺酰氟的高分子乳液;所述含氟带磺酰氟液相单体与所述气相混合单体实际参与自由基聚合反应的总重量之比为1:3~3:1;自由基引发剂的通入总重量与含氟带磺酰氟液相单体的重量比为0.01%~3.0%;
S3对含氟含氯带磺酰氟的高分子乳液进行水解,再经凝聚、水洗、干燥后得到含氟含氯导电高分子树脂。
2.根据权利要求1所述的制备方法,其特征在于,步骤S1中,所述含氟带磺酰氟液相单体包括CF2=CF-O-Rf-SO2F、CF2=CF-O-Rf1-O-Rf2-SO2F、CF2=CF-CF2-O-Rf3-SO2F中一种或几种,其中Rf、Rf1、Rf2是1-6个碳的含氟烷基,Rf3是0-5个碳的含氟烷基。
3.根据权利要求2所述的制备方法,其特征在于,所述含氟带磺酰氟液相单体包括CF2=CF-O-CF2CF2-SO2F,CF2=CF-O-CF2CFCF3-O-CF2CF2-SO2F、CF2=CF-CF2-O-SO2F、CF2=CF-CF2-O-CF2CF2-SO2F中的一种或几种。
4.根据权利要求3所述的制备方法,其特征在于,当所述含氟含氯导电高分子树脂应用于电池领域时,含氟带磺酰氟液相单体以如下重量百分比组成:CF2=CF-O-CF2CF2-SO2F 0-80%,CF2=CF-O-CF2CFCF3-O-CF2CF2-SO2F 20%-99%,CF2=CF-CF2-O-SO2F 0%-20%,CF2=CF-CF2-O-CF2CF2-SO2F 0%-80%。
5.根据权利要求3所述的制备方法,其特征在于,当所述含氟含氯导电高分子树脂应用于核生化防护膜材时,含氟带磺酰氟液相单体以如下重量百分比组成:CF2=CF-O-CF2CF2-SO2F 0-80%,CF2=CF-O-CF2CFCF3-O-CF2CF2-SO2F 0%-20%,CF2=CF-CF2-O-SO2F 20%-100%,CF2=CF-CF2-O-CF2CF2-SO2F 0%-80%。
6.根据权利要求1所述的制备方法,其特征在于,所述含氟带磺酰氟液相单体里含有含氟不带磺酰氟试剂,所述含氟不带磺酰氟试剂与含氟带磺酰氟液相单体的重量比小于或等于30%。
7.根据权利要求6所述的制备方法,其特征在于,所述含氟不带磺酰氟试剂包括含氟烷基、含氟烷基醚、全氟甲基乙烯基醚、全氟乙基乙烯基醚、全氟丙基乙烯基醚、3,3,3-三氟丙稀或全氟烷基乙烯中的一种或多种。
8.根据权利要求1所述的制备方法,其特征在于,所述气相混合单体以摩尔比计含:25%-90%的四氟乙烯、0%-70%的偏氟乙烯、5%-50%的三氟氯乙烯。
9.根据权利要求1所述的制备方法,其特征在于,所述含氟表面活性剂包括含6-16个碳的有机物,并至少含一个羧酸或者磺酸的官能团。
10.根据权利要求1所述的制备方法,其特征在于,所述自由基引发剂包括过硫酸盐、双氧水、有机过氧化合物中的一种或多种。
CN201710251598.5A 2017-04-18 2017-04-18 一种含氟含氯导电高分子树脂的制备方法 Active CN106947027B (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201710251598.5A CN106947027B (zh) 2017-04-18 2017-04-18 一种含氟含氯导电高分子树脂的制备方法
PCT/CN2018/081864 WO2018192368A1 (zh) 2017-04-18 2018-04-04 一种含氟含氯导电高分子树脂的制备方法及其制备的单面或双面填充复合薄膜和制备方法
GB1916736.0A GB2575951B (en) 2017-04-18 2018-04-04 Preparation method for fluorine- and chlorine-containing conductive polymer resin and single- or double-sided filled composite thin film prepared using same
US16/605,668 US11136424B2 (en) 2017-04-18 2018-04-04 Preparation method for fluorine- and chlorine-containing conductive polymer resin and single- or double-sided filled composite thin film prepared using same and the preparation method therefor
DE112018002056.8T DE112018002056B4 (de) 2017-04-18 2018-04-04 Verfahren zur Herstellung eines fluorhaltigen chlorhaltigen elektrisch leitenden Polymerharzes und ein damit hergestellter einseitig oder beidseitig gefüllter Verbundfilm sowie Verfahren zur Herstellung desselben

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710251598.5A CN106947027B (zh) 2017-04-18 2017-04-18 一种含氟含氯导电高分子树脂的制备方法

Publications (2)

Publication Number Publication Date
CN106947027A true CN106947027A (zh) 2017-07-14
CN106947027B CN106947027B (zh) 2019-05-14

Family

ID=59477168

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710251598.5A Active CN106947027B (zh) 2017-04-18 2017-04-18 一种含氟含氯导电高分子树脂的制备方法

Country Status (1)

Country Link
CN (1) CN106947027B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018192368A1 (zh) * 2017-04-18 2018-10-25 浙江汉丞科技有限公司 一种含氟含氯导电高分子树脂的制备方法及其制备的单面或双面填充复合薄膜和制备方法
CN114133475A (zh) * 2021-11-18 2022-03-04 山东东岳未来氢能材料股份有限公司 含氟阴离子与非离子混合型可聚合乳化剂、制备方法及其在水性氟碳树脂合成的应用
CN114773768A (zh) * 2022-05-13 2022-07-22 安徽雄亚塑胶科技有限公司 一种tpe拉力圈材料及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3213093A1 (en) 2021-03-29 2022-10-06 Huisheng Wu Composite membrane of special highly-enhanced fluorine-containing proton or ion exchange membrane, composite membrane electrode, special highly-enhanced fluorine-containing chlor-alkali battery membrane, special release membrane, and preparation method therefor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6228963B1 (en) * 1997-10-15 2001-05-08 E. I. Du Pont De Nemours And Company Copolymers of maleic anhydride or acid and fluorinated olefins
CN102633688A (zh) * 2012-04-13 2012-08-15 华东理工大学 全氟乙烯基醚磺酸盐及其制备方法和用途
CN103204961A (zh) * 2013-04-18 2013-07-17 山东东岳高分子材料有限公司 一种使用混合含氟表面活性剂制备含氟聚合物的方法
US20150025293A1 (en) * 2013-07-18 2015-01-22 Cms Technologies Holdings, Inc. Membrane separation of olefin and paraffin mixtures
CN105111351A (zh) * 2015-08-12 2015-12-02 江苏梅兰化工有限公司 一种特种氟醚表面活性剂的制备方法
CN106366230A (zh) * 2016-08-23 2017-02-01 金华永和氟化工有限公司 一种用于控制含氟聚合物乳液粒径的混合表面活性剂及其制备含氟聚合物的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6228963B1 (en) * 1997-10-15 2001-05-08 E. I. Du Pont De Nemours And Company Copolymers of maleic anhydride or acid and fluorinated olefins
CN102633688A (zh) * 2012-04-13 2012-08-15 华东理工大学 全氟乙烯基醚磺酸盐及其制备方法和用途
CN103204961A (zh) * 2013-04-18 2013-07-17 山东东岳高分子材料有限公司 一种使用混合含氟表面活性剂制备含氟聚合物的方法
US20150025293A1 (en) * 2013-07-18 2015-01-22 Cms Technologies Holdings, Inc. Membrane separation of olefin and paraffin mixtures
CN105111351A (zh) * 2015-08-12 2015-12-02 江苏梅兰化工有限公司 一种特种氟醚表面活性剂的制备方法
CN106366230A (zh) * 2016-08-23 2017-02-01 金华永和氟化工有限公司 一种用于控制含氟聚合物乳液粒径的混合表面活性剂及其制备含氟聚合物的方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018192368A1 (zh) * 2017-04-18 2018-10-25 浙江汉丞科技有限公司 一种含氟含氯导电高分子树脂的制备方法及其制备的单面或双面填充复合薄膜和制备方法
GB2575951A (en) * 2017-04-18 2020-01-29 Zhejiang Hyproof Tech Co Ltd Preparation method for fluorine- and chlorine-containing conductive polymer resin and single- or double-sided filled composite thin film prepared using same
US11136424B2 (en) 2017-04-18 2021-10-05 Zhejiang Hyproof Technology Co., Ltd. Preparation method for fluorine- and chlorine-containing conductive polymer resin and single- or double-sided filled composite thin film prepared using same and the preparation method therefor
GB2575951B (en) * 2017-04-18 2022-07-13 Zhejiang Hyproof Tech Co Ltd Preparation method for fluorine- and chlorine-containing conductive polymer resin and single- or double-sided filled composite thin film prepared using same
CN114133475A (zh) * 2021-11-18 2022-03-04 山东东岳未来氢能材料股份有限公司 含氟阴离子与非离子混合型可聚合乳化剂、制备方法及其在水性氟碳树脂合成的应用
CN114773768A (zh) * 2022-05-13 2022-07-22 安徽雄亚塑胶科技有限公司 一种tpe拉力圈材料及其制备方法
CN114773768B (zh) * 2022-05-13 2023-09-08 安徽雄亚塑胶科技有限公司 一种tpe拉力圈材料及其制备方法

Also Published As

Publication number Publication date
CN106947027B (zh) 2019-05-14

Similar Documents

Publication Publication Date Title
CN106968110B (zh) 一种含氟含氯导电高分子双面填充复合薄膜及其制备方法
CN106947027B (zh) 一种含氟含氯导电高分子树脂的制备方法
CN106283659B (zh) 一种导电聚酰亚胺纤维材料的制备方法
CN106977640B (zh) 一种含氟含氯导电高分子单面填充复合薄膜及其制备方法
Zhang et al. The quintuple-shape memory effect in electrospun nanofiber membranes
JP5855093B2 (ja) ポリイミド多孔性ウェブ、その製造方法、及びそれを含む電解質膜
Zhao et al. Tailoring waterproof and breathable properties of environmentally friendly electrospun fibrous membranes by optimizing porous structure and surface wettability
CN107254058A (zh) 氧化还原液流二次电池和氧化还原液流二次电池用电解质膜
CN107408703A (zh) 导电性芳族聚酰亚胺多孔膜及其制备方法
Wang et al. Continuous meter-scale wet-spinning of cornlike composite fibers for eco-friendly multifunctional electronics
CN102084529A (zh) 质子传导性材料在制备燃料电池中的用途
CN109972401B (zh) 一种具有超双疏阻燃高导电织物的制备方法
CN108538630A (zh) 一种生物质炭/石墨烯柔性复合膜的制备方法
CN113522698A (zh) 一种纤维素纳米晶体/MXene自组装阻燃抗静电涂层及在玻璃钢上的应用
CN107216431A (zh) 一种含氟超疏油微孔膜的制备方法
Gao et al. A high energy density supercapacitor fabricated with aqueous polymer electrolyte based on soybean protein isolate grafted by polyacrylic acid
CN116462838B (zh) 一种聚合物及其制备方法和用途
CN108470638A (zh) 一种多孔石墨烯纤维与柔性全固态超级电容器的制备方法
CN110846926A (zh) 一种对位纳米芳纶纤维与碳纳米管复合纸的制备方法
CN108587007B (zh) 一种叠层结构铁电聚合物基电介质薄膜、及其制备方法和用途
CN114774988A (zh) 电解槽复合隔膜、制备方法、碱性电解水制氢装置及应用
WO2018192368A1 (zh) 一种含氟含氯导电高分子树脂的制备方法及其制备的单面或双面填充复合薄膜和制备方法
Zhao et al. Polyacrylonitrile/multi-walled carbon nanotubes/polyurethane electrospun nanofiber membranes for sports equipment
CN113308127A (zh) 一种耐根穿刺沥青防水卷材
CN115404722A (zh) 一种合成石墨烯改性水性聚氨酯蓄热织物覆膜的制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20190516

Address after: 310000 Room 2324, Building 2, No. 63, Jiuhuan Road, Jianggan District, Hangzhou City, Zhejiang Province

Co-patentee after: Zhejiang Hancheng New Energy Co.,Ltd.

Patentee after: ZHEJIANG HANCHENG TECHNOLOGY Co.,Ltd.

Address before: 310000 Room 2324, Building 2, No. 63, Jiuhuan Road, Jianggan District, Hangzhou City, Zhejiang Province

Patentee before: ZHEJIANG HANCHENG TECHNOLOGY Co.,Ltd.

TR01 Transfer of patent right
CP03 Change of name, title or address

Address after: 201422 building 10, No. 860, Xinyang Road, Lingang New District, China (Shanghai) pilot Free Trade Zone, Pudong New Area, Shanghai

Patentee after: Shanghai Hancheng Industrial Co.,Ltd.

Patentee after: Zhejiang Hancheng New Energy Co.,Ltd.

Address before: 310000 Room 2324, Building 2, No. 63, Jiuhuan Road, Jianggan District, Hangzhou City, Zhejiang Province

Patentee before: ZHEJIANG HANCHENG TECHNOLOGY Co.,Ltd.

Patentee before: Zhejiang Hancheng New Energy Co.,Ltd.

CP03 Change of name, title or address