CN106927458A - 一种石墨烯与zif‑8复合气凝胶及其制备方法 - Google Patents

一种石墨烯与zif‑8复合气凝胶及其制备方法 Download PDF

Info

Publication number
CN106927458A
CN106927458A CN201710091901.XA CN201710091901A CN106927458A CN 106927458 A CN106927458 A CN 106927458A CN 201710091901 A CN201710091901 A CN 201710091901A CN 106927458 A CN106927458 A CN 106927458A
Authority
CN
China
Prior art keywords
graphene
zif
preparation
composite
hydrogel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710091901.XA
Other languages
English (en)
Other versions
CN106927458B (zh
Inventor
蒋敏
李厚志
张建明
段咏欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Science and Technology
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN201710091901.XA priority Critical patent/CN106927458B/zh
Publication of CN106927458A publication Critical patent/CN106927458A/zh
Application granted granted Critical
Publication of CN106927458B publication Critical patent/CN106927458B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0091Preparation of aerogels, e.g. xerogels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28047Gels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/46Materials comprising a mixture of inorganic and organic materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明提供了一种石墨烯与ZIF‑8复合气凝胶材料及其制备方法,属于功能材料制备技术领域,且该气凝胶具有高的二氧化碳气体吸附性能。所述制备方法包括以氧化石墨烯分散液为原料制得石墨烯水凝胶,和以石墨烯水凝胶为模板原位生长ZIF‑8,得到石墨烯与ZIF‑8复合气凝胶材料。本发明使用水凝胶作为模板既提高了ZIF‑8的负载效率,又简化了制备工艺。该复合气凝胶具有较大的比表面积,对1atm,298K下二氧化碳气体具有良好的吸附性能,有望实现在气体存储领域的应用。

Description

一种石墨烯与ZIF-8复合气凝胶及其制备方法
【技术领域】
本发明涉及一种石墨烯与ZIF-8复合气凝胶及其制备方法,尤其是它的CO2吸附性能,属于功能材料制备技术领域。
【背景技术】
氧化石墨烯是石墨通过氧化还原法制备石墨烯的中间产物,它表面具有丰富的含氧基团(碳原子层平面上的羟基和环氧基、层边缘的羰基和羧基)。可以通过一定的方法将二维氧化石墨烯还原组装成为多孔、超轻的三维石墨烯气凝胶。多孔的网络结构赋予石墨烯较大的比表面积和孔隙率,可进一步用于负载各种功能体。金属有机骨架化合物(MOFs)是一种通过金属离子与多官能团有机配体配位而成的多孔晶体材料。它具有较大的孔隙率、比表面积和结构多样性,因此在气体吸附和分离领域得到广泛应用。ZIFs材料是一类具有沸石骨架结构的金属有机骨架材料,与其它类型的MOFs相比,ZIFs材料具有更高的比表面积和孔隙率、较高水热稳定性和耐化学腐蚀性。其中ZIF-8是ZIFs材料中性能稳定且被研究最多的一类物质。ZIF-8具有的微孔尺寸和大于1500m2/g的比表面积,且所含碱性咪唑基团可提供利于某些气体(如二氧化碳)吸附的氮原子。这些性质都使ZIF-8材料在气体储存与分离方面具有潜在的应用价值。
考虑到ZIF-8粉末材料在实际应用中可加工方面存在局限性,因此将其负载于多孔材料中进行应用是一种优选方法。通常石墨烯气凝胶具有三维网络搭建所形成的介孔结构,该介孔结构为二氧化碳气体进入孔材料内部提供通道,而且二氧化碳分子可以与具有微孔结构的ZIF-8中的碱性咪唑基团发生强相互作用。利用石墨烯气凝胶与ZIF-8的协同作用构建的微孔/介孔多级孔结构,使得石墨烯与ZIF-8复合气凝胶材料对二氧化碳气体具有高吸附性能。目前,石墨烯与ZIF-8复合材料的制备主要是通过原位法获得二维复合结构,对于负载ZIF-8的石墨烯三维复合结构却未见报道。
本发明所要解决的技术问题在于突破现有的二维复合结构,以化学还原法获得的石墨烯水凝胶为模板,实现ZIF-8在凝胶体系中的有序成核与生长。并通过常压干燥法,制得具有多层次孔状结构的复合气凝胶材料。本发明所采用的制备方法工艺简单、绿色环保,通过控制还原时间,可以地控制石墨烯表面的氧含量,从而控制石墨烯与ZIF-8复合比例,进而调控二氧化碳的吸附量。该复合气凝胶在二氧化碳吸附和存储,以及超级电容器等领域有着潜在应用价值。
【发明内容】
本发明的目的在于提供一种石墨烯与ZIF-8复合气凝胶。
本发明的目的还在于提供一种石墨烯与ZIF-8复合气凝胶的制备方法。
如前所述,ZIF-8粉末材料在实际应用中可加工方面存在局限性,因此考虑将其负载于多孔材料中进行应用。石墨烯气凝胶具有三维网络搭建所形成的多孔结构,有利于负载ZIF-8材料。由于ZIF-8中的锌离子可以与氧化石墨烯表面的含氧基团发生配位作用,所以ZIF-8可以在氧化石墨烯表面成核并生长。常规石墨烯气凝胶的制备是以水为溶剂,通过冷冻干燥法,制得气凝胶材料。本发明利用ZIF-8成核生长所需的有机溶剂环境,来置换石墨烯凝胶中的水,就可以通过常压干燥法制得相应的石墨烯与ZIF-8复合气凝胶材料。
本发明通过下述实验方案实现的,具体是:以氧化石墨烯为原料,通过化学还原制备石墨烯水凝胶,以该水凝胶为三维模板,通过锌盐与2-甲基咪唑反应,在三维石墨烯表面均匀形成ZIF-8,通过常压干燥最终制得石墨烯与ZIF-8复合气凝胶,该方法操作方便,实验简单易行。
1.一种石墨烯与ZIF-8复合气凝胶,其特征在于:该复合气凝胶的重量百分比组分为石墨烯占15%~30%,ZIF-8占70%~85%;该复合气凝胶的密度为11.0mg/cm3~23.1mg/cm3;该复合气凝胶具有多级孔状结构,其中大孔径尺寸分布范围为500μm~50μm,介孔径分布范围为7nm~3nm,微孔径分布范围为小于1.2nm;在298K,1atm条件下,该气凝胶对CO2的吸附量为0.80mmol/g~0.99mmol/g;
2.制备所述石墨烯与ZIF-8复合气凝胶的制备方法,其特征在于该方法包括以下步骤:
(1)石墨烯水凝胶的制备:将氧化石墨烯分散液进行化学还原制得石墨烯水凝胶;还原剂为水合肼、抗坏血酸和碘化氢中的一种或几种,还原温度为90℃~95℃,还原时间为20min~40min,氧化石墨烯与还原剂的质量比为1:2~1:1;
(2)石墨烯与ZIF-8复合气凝胶的制备:将步骤(1)所得石墨烯水凝胶浸入甲醇或异丙醇中进行溶剂置换,再将其多次交替浸入到无机锌盐的有机溶液和2-甲基咪唑的有机溶液中,经浸泡洗涤干燥,最终得到具有不同组分比例的石墨烯与ZIF-8复合气凝胶材料;
置换溶剂与石墨烯水凝胶的体积比为3:1~4:1,置换时间为6h~12h;
步骤(2)中无机锌盐溶液和2-甲基咪唑溶液浓度分别为5mmol/L~10mmol/L和40mmol/L~80mmol/L,无机锌盐溶液和2-甲基咪唑溶液体积比为1:1,反应温度为25℃~40℃,反应时间为2h~4h。
3.进一步,步骤(2)中的无机锌盐为硝酸锌或氯化锌。
4.进一步,步骤(2)中的有机溶液中有机溶剂为甲醇或异丙醇。
5.进一步,步骤(2)中浸泡时间为30min~60min。
6.进一步,步骤(2)中干燥的温度为40~60℃,干燥时间为12h~24h。
本发明由于采取上述技术方案,具有以下优点:
(1)本发明选用石墨烯水凝胶作为模板,ZIF-8能够均匀负载于石墨烯气凝胶内外表面。
(2)本发明采用有机溶剂置换法,实现了常压干燥法制备石墨烯与ZIF-8复合气凝胶。
(3)本发明所制备的石墨烯与ZIF-8复合气凝胶具有微孔、介孔和大孔的多层次孔状结构。
(4)本发明所制备的石墨烯与ZIF-8复合气凝胶具有轻质特性,ZIF-8的负载重量百分比为70%-85%,气凝胶密度范围在11.0mg/cm3到23.1mg/cm3
(5)本发明所制备的石墨烯与ZIF-8复合气凝胶具有很好的二氧化碳吸附性能,高于同等条件下纯石墨烯气凝胶或纯ZIF-8晶体的二氧化碳吸附量。
(6)通过选择复合次数,来控制ZIF-8的负载量。ZIF-8的负载量越高,其CO2的吸附性能越好。
【附图说明】
图1是本发明实施例1所得的石墨烯与ZIF-8复合气凝胶断面的扫描电镜图;
图2a是本发明实施例1所得的石墨烯与ZIF-8复合气凝胶表面的扫描电镜图;
图2b是对比例1所制备的气凝胶表面的扫描电镜图;
图3是本发明实施例1所得的石墨烯与ZIF-8复合气凝胶的孔径分布曲线。
图4是本发明实施例1所得的石墨烯与ZIF-8复合气凝胶与对比例1纯石墨烯基气凝胶、纯ZIF-8样品在298K,1atm下CO2吸附量曲线。
【具体实施方式】
下面结合实施例对本发明进一步描述,但不因此将本发明限制在所述的实例范围之中。
实施例1.
(1)石墨烯水凝胶的制备。以325目鳞片石墨为原料,通过Hummer法制备氧化石墨烯,得到4mg/mL的氧化石墨烯水溶液。取3mL氧化石墨烯水溶液加入到平底试管中,加入12mg抗坏血酸搅拌均匀后,置于95℃反应20min形成1.7cm3石墨烯水凝胶。
(2)将上述1.7cm3石墨烯水凝胶浸入到6mL甲醇中6h进行溶剂置换。然后将凝胶充分浸入到5mL,10mmol/L的六水合硝酸锌的40℃甲醇中,2h后将凝胶取出。再浸入到5mL,80mmol/L的2-甲基咪唑的40℃甲醇中,将反应体系静置2h。将凝胶用硝酸锌和2-甲基咪唑的40℃甲醇溶液交替浸泡8次后,放到甲醇中浸泡1h,以除去未反应的物质。最后将凝胶取出,放在40℃烘箱干燥12h,即制得石墨烯与ZIF-8复合气凝胶。该气凝胶的密度为23.1mg/cm3,ZIF-8重量百分比为84%。
图1是本发明实施例1中石墨烯与ZIF-8复合气凝胶的截面形貌图。
图2是本发明实施例1和对比例2中石墨烯与ZIF-8复合气凝胶的表面形貌图。
图3是本发明实施例1中石墨烯与ZIF-8复合气凝胶的孔径分布曲线。
图4是本发明实施例1中石墨烯与ZIF-8复合气凝胶、对比例1中纯石墨烯基气凝胶、以及纯ZIF-8样品在298K,1atm下CO2吸附量曲线。
实施例2
(1)石墨烯水凝胶的制备。以325目鳞片石墨为原料,通过Hummer法制备氧化石墨烯,得到4mg/mL的氧化石墨烯水溶液。取3mL氧化石墨烯水溶液加入到平底试管中,加入12mg抗坏血酸搅拌均匀后,置于90℃反应40min形成1.7cm3石墨烯水凝胶。
(2)将上述1.7cm3石墨烯水凝胶浸入到6mL甲醇中6h进行溶剂置换。然后将凝胶充分浸入到5mL,10mmol/L的六水合硝酸锌的40℃甲醇中,2h后将凝胶取出。再浸入到5mL,80mmol/L的2-甲基咪唑的40℃甲醇中,将反应体系静置2h。将凝胶用硝酸锌和2-甲基咪唑的40℃甲醇溶液交替浸泡8次后,放到甲醇中浸泡1h,以除去未反应的物质。最后将凝胶取出,放在40℃烘箱干燥12h,即制得石墨烯与ZIF-8复合气凝胶。其密度见表1。
表1.石墨烯与ZIF-8复合气凝胶的密度
表2.石墨烯与ZIF-8复合气凝胶在298K,1atm下CO2的吸附量
实施例3
(1)石墨烯水凝胶的制备。以325目鳞片石墨为原料,通过Hummer法制备氧化石墨烯,得到4mg/mL的氧化石墨烯水溶液。取1.5mL氧化石墨烯水溶液加入到平底试管中,加入12mg抗坏血酸搅拌均匀后,置于95℃反应20min形成0.8cm3石墨烯水凝胶。
(2)将上述0.8cm3石墨烯水凝胶浸入到2.4mL甲醇中6h进行溶剂置换。然后将凝胶充分浸入到5mL,5mmol/L的六水合硝酸锌的40℃甲醇中,2h后将凝胶取出。再浸入到5mL,40mmol/L的2-甲基咪唑的40℃甲醇中,将反应体系静置2h。将凝胶用硝酸锌和2-甲基咪唑的40℃甲醇溶液交替浸泡8次后,放到甲醇中浸泡1h,以除去未反应的物质。最后将凝胶取出,放在40℃烘箱干燥12h,即制得石墨烯与ZIF-8复合气凝胶。其密度见表1。
实施例4
(1)石墨烯水凝胶的制备。以325目鳞片石墨为原料,通过Hummer法制备氧化石墨烯,得到4mg/mL的氧化石墨烯水溶液。取3mL氧化石墨烯水溶液加入到平底试管中,加入12mg抗坏血酸搅拌均匀后,置于95℃反应20min形成1.7cm3石墨烯水凝胶。
(2)将上述1.7cm3石墨烯水凝胶浸入到6.8mL异丙醇中12h进行溶剂置换。然后将凝胶充分浸入到5mL,40mmol/L的六水合硝酸锌的25℃异丙醇中,2h后将凝胶取出。再浸入到5mL,80mmol/L的2-甲基咪唑的25℃异丙醇中,将反应体系静置4h。将凝胶用硝酸锌和2-甲基咪唑的25℃异丙醇溶液交替浸泡8次后,放到异丙醇中浸泡30min,以除去未反应的物质。最后将凝胶取出,放在60℃烘箱干燥24h,即制得石墨烯与ZIF-8复合气凝胶。其密度见表1。
实施例5
工艺流程同实施例1,不同的是分别用硝酸锌和2-甲基咪唑的甲醇溶液循环浸泡2次。制得气凝胶的密度为11.0mg/cm3,ZIF-8重量百分比为70%。CO2吸附性能见表2。
实施例6
工艺流程同实施例1,不同的是分别用硝酸锌和2-甲基咪唑的甲醇溶液循环浸泡4次。制得气凝胶的密度为11.7mg/cm3,ZIF-8重量百分比为73%。CO2吸附性能见表2。
实施例7
工艺流程同实施例1,不同的是分别用硝酸锌和2-甲基咪唑的甲醇溶液循环浸泡6次。制得气凝胶的密度为20.5mg/cm3,ZIF-8重量百分比为83%。CO2吸附性能见表2。
对比例1
石墨烯气凝胶的制备。以325目鳞片石墨为原料,通过Hummer法制备氧化石墨烯,得到4mg/mL的氧化石墨烯水溶液。取3mL氧化石墨烯水溶液加入到平底试管中,加入12mg抗坏血酸搅拌均匀后,置于95℃反应25min形成石墨烯水凝胶。将该水凝胶进行冷冻干燥制得1.4cm3石墨烯气凝胶。该气凝胶的密度为5.0mg/cm3,CO2吸附性能见表2。
对比例2
(1)石墨烯气凝胶的制备。以325目鳞片石墨为原料,通过Hummer法制备氧化石墨烯,得到4mg/mL的氧化石墨烯水溶液。取3mL氧化石墨烯水溶液加入到平底试管中,加入12mg抗坏血酸搅拌均匀后,置于95℃反应25min形成石墨烯水凝胶。将该水凝胶进行冷冻干燥制得1.4cm3石墨烯气凝胶。
(2)将上述墨烯气凝胶充分浸入到5mL,10mmol/L的六水合硝酸锌的40℃甲醇中,2h后将凝胶取出。再浸入到5mL,80mmol/L的2-甲基咪唑的40℃甲醇中,将反应体系静置2h。将凝胶用硝酸锌和2-甲基咪唑的40℃甲醇溶液交替浸泡4次后,放到甲醇中浸泡1h,以除去未反应的物质。最后将凝胶取出,放在40℃烘箱干燥12h,即制得石墨烯与ZIF-8复合气凝胶。该气凝胶的密度为10.8mg/cm3,ZIF-8重量百分比为69%。CO2吸附性能见表2。
图1展示了实施例1复合气凝胶的内部结构状态,石墨烯气凝胶的三维蜂窝状结构在50-500μm之间,属于大孔。图2展示了实施例1所得的石墨烯与ZIF-8复合气凝胶的表面形态,ZIF-8均匀地分布于石墨烯气凝胶表面。而对比例2所得的石墨烯与ZIF-8复合气凝胶中,在石墨烯片层表面ZIF-8分布稀疏,且ZIF-8的复合量小于实施例1。图3展示了石墨烯与ZIF-8复合气凝胶的孔径分布曲线,可以看出,孔径大小主要为0.9~1.2nm的微孔、3~7nm的介孔,结合扫描电镜看到的石墨烯气凝胶的三维蜂窝状结构,可以得出石墨烯与ZIF-8复合气凝胶的多孔级结构。图4为本发明实施例1所得的石墨烯与ZIF-8复合气凝胶、对比例1所得纯石墨烯基气凝胶和纯ZIF-8样品在298K,1atm下CO2吸附量曲线。可以看出本发明所制备的石墨烯与ZIF-8复合气凝胶具有很好的二氧化碳吸附性能,高于同等条件下纯石墨烯气凝胶或纯ZIF-8晶体的二氧化碳吸附量。

Claims (6)

1.一种石墨烯与ZIF-8复合气凝胶,其特征在于:该复合气凝胶的重量百分比组分为石墨烯占15%~30%,ZIF-8占70%~85%;该复合气凝胶的密度为11.0mg/cm3~23.1mg/cm3;该复合气凝胶具有多级孔状结构,其中大孔径尺寸分布范围为500μm~50μm,介孔径分布范围为7nm~3nm,微孔径分布范围为小于1.2nm;在298K,1atm条件下,该气凝胶对CO2的吸附量为0.80mmol/g~0.99mmol/g。
2.制备如权利要求1所述石墨烯与ZIF-8复合气凝胶的制备方法,其特征在于该方法包括以下步骤:
(1)石墨烯水凝胶的制备:将氧化石墨烯分散液进行化学还原制得石墨烯水凝胶;还原剂为水合肼、抗坏血酸和碘化氢中的一种或几种,还原温度为90℃~95℃,还原时间为20min~40min,氧化石墨烯与还原剂的质量比为1:2~1:1;
(2)石墨烯与ZIF-8复合气凝胶的制备:将步骤(1)所得石墨烯水凝胶浸入甲醇或异丙醇中进行溶剂置换,再将其多次交替浸入到无机锌盐的有机溶液和2-甲基咪唑的有机溶液中,经浸泡洗涤干燥,最终得到具有不同组分比例的石墨烯与ZIF-8复合气凝胶材料;
置换溶剂与石墨烯水凝胶的体积比为3:1~4:1,置换时间为6h~12h;
步骤(2)中无机锌盐溶液和2-甲基咪唑溶液浓度分别为5mmol/L~10mmol/L和40mmol/L~80mmol/L,无机锌盐溶液和2-甲基咪唑溶液体积比为1:1,反应温度为25℃~40℃,反应时间为2h~4h。
3.如权利要求2所述的方法,其特征在于,步骤(2)中的无机锌盐为硝酸锌或氯化锌。
4.如权利要求2所述的方法,其特征在于,步骤(2)中的有机溶液中有机溶剂为甲醇或异丙醇。
5.如权利要求2所述的方法,其特征在于,步骤(2)中浸泡时间为30min~60min。
6.如权利要求2所述的方法,其特征在于,步骤(2)中干燥的温度为40~60℃,干燥时间为12h~24h。
CN201710091901.XA 2017-02-21 2017-02-21 一种石墨烯与zif-8复合气凝胶及其制备方法 Active CN106927458B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710091901.XA CN106927458B (zh) 2017-02-21 2017-02-21 一种石墨烯与zif-8复合气凝胶及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710091901.XA CN106927458B (zh) 2017-02-21 2017-02-21 一种石墨烯与zif-8复合气凝胶及其制备方法

Publications (2)

Publication Number Publication Date
CN106927458A true CN106927458A (zh) 2017-07-07
CN106927458B CN106927458B (zh) 2019-03-01

Family

ID=59424541

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710091901.XA Active CN106927458B (zh) 2017-02-21 2017-02-21 一种石墨烯与zif-8复合气凝胶及其制备方法

Country Status (1)

Country Link
CN (1) CN106927458B (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107376837A (zh) * 2017-07-27 2017-11-24 武汉工程大学 一种石墨烯/金属有机框架气凝胶吸附/催化材料的制备方法
CN107497377A (zh) * 2017-10-19 2017-12-22 山东大学 一种形貌均一金属有机骨架化合物/氧化石墨烯复合微球的制备方法
CN108707235A (zh) * 2018-03-30 2018-10-26 中南大学 一种利用界面吸附-原位反应生成zif-8/菌丝复合材料的方法
CN109054939A (zh) * 2018-06-19 2018-12-21 太原理工大学 一种润滑油添加剂、润滑油及其制备方法
CN109962218A (zh) * 2017-12-25 2019-07-02 南京理工大学 Zif-67/go复合材料的制备方法
CN110165073A (zh) * 2019-04-29 2019-08-23 福建华佳彩有限公司 石墨烯基氮掺杂的多孔碳复合材料的透明薄膜的制备方法
CN110433737A (zh) * 2019-09-10 2019-11-12 陕西科技大学 一种多功能生物质基复合水凝胶的制备方法及其应用
CN110867327A (zh) * 2019-11-27 2020-03-06 华北电力大学 多级次孔碳气凝胶材料、超级电容器电极材料及制法
CN111330520A (zh) * 2020-03-09 2020-06-26 南京大学深圳研究院 一种石墨烯与uio-66复合气凝胶的制备方法及其应用
CN113637216A (zh) * 2021-09-01 2021-11-12 大同共聚(西安)科技有限公司 一种表面修饰zif-8的低介电聚酰亚胺及其制备方法
CN113774429A (zh) * 2021-08-19 2021-12-10 武汉工程大学 一种zif-8/石墨烯复合气凝胶及其制备方法与应用
CN114864293A (zh) * 2022-04-25 2022-08-05 武汉大学 一种三维CNTs/RGO-金属有机框架水凝胶电极、其制备方法及应用
CN114864294A (zh) * 2022-05-30 2022-08-05 武汉大学 一种3d打印的金属有机框架衍生碳材料、其制备方法及应用
CN116003059A (zh) * 2022-12-27 2023-04-25 山东华美建材有限公司 一种环保墙体砖及其加工方法
WO2024098104A1 (en) * 2022-11-09 2024-05-16 Commonwealth Scientific And Industrial Research Organisation Hydrophobic acidic gas absorbents

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104201385A (zh) * 2014-08-14 2014-12-10 中国科学技术大学 一种高氮掺杂类石墨烯纳米粒子的制备方法及其作为锂离子电池负极材料的应用
CN104525125A (zh) * 2014-12-17 2015-04-22 江苏科技大学 负载型金属有机骨架/氧化石墨烯储氢材料及其制备方法
CN105107539A (zh) * 2015-08-26 2015-12-02 华南理工大学 燃料电池用石墨烯-铁氮共掺杂多孔碳复合催化剂及其方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104201385A (zh) * 2014-08-14 2014-12-10 中国科学技术大学 一种高氮掺杂类石墨烯纳米粒子的制备方法及其作为锂离子电池负极材料的应用
CN104525125A (zh) * 2014-12-17 2015-04-22 江苏科技大学 负载型金属有机骨架/氧化石墨烯储氢材料及其制备方法
CN105107539A (zh) * 2015-08-26 2015-12-02 华南理工大学 燃料电池用石墨烯-铁氮共掺杂多孔碳复合催化剂及其方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DAEOK KIM 等: "Graphene/ZIF-8 composites with tunable hierarchical porosity and electrical conductivity", 《JOURNAL OF MATERIALS CHEMISTRY A》 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107376837A (zh) * 2017-07-27 2017-11-24 武汉工程大学 一种石墨烯/金属有机框架气凝胶吸附/催化材料的制备方法
CN107497377A (zh) * 2017-10-19 2017-12-22 山东大学 一种形貌均一金属有机骨架化合物/氧化石墨烯复合微球的制备方法
CN109962218A (zh) * 2017-12-25 2019-07-02 南京理工大学 Zif-67/go复合材料的制备方法
CN109962218B (zh) * 2017-12-25 2022-03-22 南京理工大学 Zif-67/go复合材料的制备方法
CN108707235B (zh) * 2018-03-30 2020-10-30 中南大学 一种利用界面吸附-原位反应生成zif-8/菌丝复合材料的方法
CN108707235A (zh) * 2018-03-30 2018-10-26 中南大学 一种利用界面吸附-原位反应生成zif-8/菌丝复合材料的方法
CN109054939A (zh) * 2018-06-19 2018-12-21 太原理工大学 一种润滑油添加剂、润滑油及其制备方法
CN109054939B (zh) * 2018-06-19 2021-01-29 太原理工大学 一种润滑油添加剂、润滑油及其制备方法
CN110165073A (zh) * 2019-04-29 2019-08-23 福建华佳彩有限公司 石墨烯基氮掺杂的多孔碳复合材料的透明薄膜的制备方法
CN110433737B (zh) * 2019-09-10 2021-09-17 陕西科技大学 一种多功能生物质基复合水凝胶的制备方法及其应用
CN110433737A (zh) * 2019-09-10 2019-11-12 陕西科技大学 一种多功能生物质基复合水凝胶的制备方法及其应用
CN110867327A (zh) * 2019-11-27 2020-03-06 华北电力大学 多级次孔碳气凝胶材料、超级电容器电极材料及制法
CN111330520A (zh) * 2020-03-09 2020-06-26 南京大学深圳研究院 一种石墨烯与uio-66复合气凝胶的制备方法及其应用
CN113774429A (zh) * 2021-08-19 2021-12-10 武汉工程大学 一种zif-8/石墨烯复合气凝胶及其制备方法与应用
CN113637216A (zh) * 2021-09-01 2021-11-12 大同共聚(西安)科技有限公司 一种表面修饰zif-8的低介电聚酰亚胺及其制备方法
CN113637216B (zh) * 2021-09-01 2023-06-20 大同共聚(西安)科技有限公司 一种表面修饰zif-8的低介电聚酰亚胺及其制备方法
CN114864293A (zh) * 2022-04-25 2022-08-05 武汉大学 一种三维CNTs/RGO-金属有机框架水凝胶电极、其制备方法及应用
CN114864294A (zh) * 2022-05-30 2022-08-05 武汉大学 一种3d打印的金属有机框架衍生碳材料、其制备方法及应用
WO2024098104A1 (en) * 2022-11-09 2024-05-16 Commonwealth Scientific And Industrial Research Organisation Hydrophobic acidic gas absorbents
CN116003059A (zh) * 2022-12-27 2023-04-25 山东华美建材有限公司 一种环保墙体砖及其加工方法
CN116003059B (zh) * 2022-12-27 2024-05-07 山东华美建材有限公司 一种环保墙体砖及其加工方法

Also Published As

Publication number Publication date
CN106927458B (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
CN106927458B (zh) 一种石墨烯与zif-8复合气凝胶及其制备方法
Ma et al. Multifunctional flexible composite aerogels constructed through in-situ growth of metal-organic framework nanoparticles on bacterial cellulose
Zhong et al. The application of ZIF-67 and its derivatives: adsorption, separation, electrochemistry and catalysts
Dai et al. Synthesis of novel microporous nanocomposites of ZIF-8 on multiwalled carbon nanotubes for adsorptive removing benzoic acid from water
Ma et al. Water chestnut shell-derived N/S-doped porous carbons and their applications in CO2 adsorption and supercapacitor
Li et al. Trace pyrolyzed ZIF-67 loaded activated carbon pellets for enhanced adsorption and catalytic degradation of Rhodamine B in water
Yuan et al. 5 Ultramicropore-rich renewable porous carbon from biomass tar with excellent adsorption capacity and selectivity for CO2 capture
Wang et al. High salt removal capacity of metal–organic gel derived porous carbon for capacitive deionization
Petit et al. MOF–graphite oxide nanocomposites: surface characterization and evaluation as adsorbents of ammonia
Sui et al. Green synthesis of carbon nanotube–graphene hybrid aerogels and their use as versatile agents for water purification
Fu et al. Iron nanoclusters as template/activator for the synthesis of nitrogen doped porous carbon and its CO2 adsorption application
Sevilla et al. CO2 adsorption by activated templated carbons
Liu et al. Fabrication of nitrogen-doped hierarchically porous carbons through a hybrid dual-template route for CO2 capture and haemoperfusion
Li et al. Prussian blue nanocubes decorated on nitrogen-doped hierarchically porous carbon network for efficient sorption of radioactive cesium
Ma et al. Water-enhanced performance in capacitive deionization for desalination based on graphene gel as electrode material
Jiang et al. Synthesis and hydrogen-storage performance of interpenetrated MOF-5/MWCNTs hybrid composite with high mesoporosity
Zhou et al. Carbon dioxide adsorption performance of N-doped zeolite Y templated carbons
Elsayed et al. Development of MIL-101 (Cr)/GrO composites for adsorption heat pump applications
Zhang et al. Grain-based activated carbons for natural gas storage
Saha et al. Hydrogen adsorption on metal-organic framework (MOF-5) synthesized by DMF approach
Masika et al. Exceptional gravimetric and volumetric hydrogen storage for densified zeolite templated carbons with high mechanical stability
Sun et al. Novel MOF-5 derived porous carbons as excellent adsorption materials for n-hexane
Masika et al. Preparation of ultrahigh surface area porous carbons templated using zeolite 13X for enhanced hydrogen storage
Terres et al. Hydrogen storage in spherical nanoporous carbons
CN113750964B (zh) 一种载镧石墨烯气凝胶磷吸附剂的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant