CN110433737A - 一种多功能生物质基复合水凝胶的制备方法及其应用 - Google Patents

一种多功能生物质基复合水凝胶的制备方法及其应用 Download PDF

Info

Publication number
CN110433737A
CN110433737A CN201910852836.7A CN201910852836A CN110433737A CN 110433737 A CN110433737 A CN 110433737A CN 201910852836 A CN201910852836 A CN 201910852836A CN 110433737 A CN110433737 A CN 110433737A
Authority
CN
China
Prior art keywords
added
mofs
composite hydrogel
preparation
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910852836.7A
Other languages
English (en)
Other versions
CN110433737B (zh
Inventor
段超
刘超然
孟欣
卢万里
高昆
戴磊
王文亮
赵伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Heguangji Intelligent Equipment Co ltd
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN201910852836.7A priority Critical patent/CN110433737B/zh
Publication of CN110433737A publication Critical patent/CN110433737A/zh
Application granted granted Critical
Publication of CN110433737B publication Critical patent/CN110433737B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/04Breaking emulsions
    • B01D17/047Breaking emulsions with separation aids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0052Preparation of gels
    • B01J13/0065Preparation of gels containing an organic phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • B01J2531/0241Rigid ligands, e.g. extended sp2-carbon frameworks or geminal di- or trisubstitution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/842Iron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Dispersion Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Catalysts (AREA)

Abstract

一种多功能生物质基复合水凝胶的制备方法,包括如下步骤:采用水热法合成Fe系金属有机框架,通过光还原法将纳米银负载分散在MOFs上,通过与瓜尔胶物理共混,自交联制备复合水凝胶;复合多功能水凝胶集吸附‑光催化降解染料、油水分离、水体抗菌‑杀菌于一体,在处理工业废水,修复水体环境领域具有广泛的应用前景。

Description

一种多功能生物质基复合水凝胶的制备方法及其应用
技术领域
本发明属于纳米复合材料制备技术领域,催化降解和水体修复领域,尤其涉及一种多功能生物质基复合水凝胶的制备方法及其应用,其用于复杂废水环境治理的应用。
背景技术
近年来,随着工业经济的不断发展,全球尤其是发展中国家不断出现严重的水体污染问题。有机染料、油类和细菌等污染物对人类健康和生态安全造成的威胁越来越大,如何对复杂的水系统进行有效的处理引起了人们的广泛的关注。有机染料,如亚甲基蓝(MB)和甲基橙(MO)等,由于其芳香结构不可降解,通常被认为是有毒甚至致癌的。目前已经采用了许多技术从水中去除这些复杂的污染物,包括吸附,沉淀,过滤,生物处理等,但这些方法通常成本较高而且处理效果较差。相比于上述方法,光催化降解染料是一种安全、高效、无毒环保、成本低廉的新兴技术,具有良好的应用前景。常用到的光催化材料主要是一些金属半导体,如TiO2、Ag2O、CdS等。专利(CN103111309A)公开了一种制备ZnS-CdS复合半导体的方法,通过构筑双半导体异质结构来提高光催化效果。专利(CN108298632A)通过对TiO2进行K、Nd掺杂提升光催化效果,对染料废水展现出高的可见光降解效果。相比于上述传统金属半导体催化剂,Fe系金属有机框架材料也是一种很好的光催化MOFs材料,具有更大的比表面积,更多的反应活性位点,能够更好的吸附污染物并且与活性位点接触。但是其光电子空穴对相对容易复合,光催化性能有待进一步提高。Liang等人将贵金属纳米粒子Pt、Au负载在Fe系MOFs材料上,用于光催化降解甲基橙,贵金属纳米粒子的负载可提高MOFs的光催化性能(Nano Research,2015, 8(10), 3237-3249)。然而,Pt、Au纳米粒子价格昂贵,且催化材料作为粉体材料,可回收性较差,限制了其规模应用
另外,复杂的受污染水体中还存在多种细菌污染物(如大肠杆菌等),严重危害人们居住环境和身体健康。Ag NPs被公认为是最好的抗菌剂之一,能够有效杀死各种细菌。 专利(CN103181399A)将Ag 掺杂在TiO2薄膜上赋予了材料高效的抗菌效果。油类污染物也是造成水体污染的一大诟病,水体中油类污染物是经常造成动植物的大量死亡的主要原因之一。目前主要手段是通过吸附来进行油水分离。瓜尔胶可通过简单的自组装交联形成多孔水凝胶网络体系,其表面具有大量亲水基团,具有高效的吸水性和疏油性,能够很好的将油水混合物分离。公开号为CN109046400A的中国专利公开了一种将贵金属Pt负载在BiOI微球上构筑异质结提升光催化性能的方法,但负载贵金属Pt成本较高,而且产物不容易回收。公开号为CN108607599A的中国专利文献公开了一种量子点Au/C3N4水凝胶基光催化剂的制备方法,将Au量子点包覆在C3N4表面,然后与多糖水凝胶进行复合,制备出抗菌杀菌、光催化降解染料于一体的功能材料。但该方法采用辐射法对Au量子点进行负载,不仅操作复杂而且成本较高,难以应用于复杂废水环境的治理。
发明内容
为克服上述现有技术的不足,本发明的目的是提供了一种多功能生物质基复合水凝胶的制备方法及其应用,
为实现上述目的,本发明采用的技术方案是:一种多功能生物质基复合水凝胶的制备方法,包括以下步骤:
1)将Fe系金属粉末和均苯三甲酸(H3BTC)混合后,加入10~25ml去离子水搅拌,量取150~200µL氢氟酸(HF 48%)和90-150µL硝酸(HNO3 65%)逐滴加入上述溶液中,继续磁力搅拌15~30min;
2)将步骤1)制备的溶液转移到水热反应釜中,加入结晶试剂,继续搅拌10~20min;在100~150℃温度下持续反应12~24h;反应结束后自然冷却到室温,在4000rpm下离心5min,用乙醇洗涤3~6次,在100℃下真空干燥12h,得到MOFs产物;
3)将0.5~2g MOFs加入150~300ml乙醇和水的混合溶液当中,将Ag系金属盐加入混合溶液中,充分搅拌,然后转移到石英瓶当中,通入N2排除瓶内空气,然后在紫外灯下照射20~60min;最后将所得物用乙醇洗涤4~6次,在100℃下真空干燥12h,得到最终产物Ag NPs@MOFs;
4)将1~3g Ag NPs@MOFs置于20~60ml去离子水中,超声分散30min,然后加入0.33g~2g瓜尔胶粉末快速机械搅拌6~12h,然后按照加入氧化剂让上述物品氧化自交联,静置10~30分钟得到复合水凝胶。
所述的Fe系金属粉末为含Fe金属盐,采用还原Fe粉、硫酸铁、硝酸铁或三氯化铁中的一种,Fe系金属粉末与均苯三甲酸的混合摩尔比为Fe:H3BTC=0.5~2.5:0.67 mol。
所述的结晶试剂为十六烷基三甲基溴化铵(CTAB),其与Fe元素摩尔比为0.3~1.2:1 mol。
所述的混合溶液中,乙醇和水的体积比为1:2;所述的Ag系金属盐为含Ag元素的金属盐,采用硝酸银、氟化银中的一种,加入Ag系金属盐后,溶液的银离子浓度为10~80 mM。
所述的氧化剂为高碘酸钠NaIO4,氧化剂与瓜尔胶的质量比为0.1 ~ 0.5:1。
所述的方法制备的复合水凝胶作为光催化、抗菌、油水分离剂的应用。
本发明的目的通过以下技术方案予以实现:
本发明与现有技术相比,具有以下有益的效果:
本发明将纳米催化材料(Ag NPs@MOFs)与瓜尔胶(GG)结合,制备出三维多孔复合水凝胶,可以充分结合三种材料独特优势,克服常规水体修复材料功能单一的局限性,制备出集吸附-光催化降解染料、抗菌、油水分离多功能于一身的水体修复材料。采用绿色、简单的光还原法在Fe系MOFs上原位制备分散均匀的Ag NPs,借助MOFs多孔结构和高比表面积对AgNPs晶体的生长和分散进行调控,进一步提高Ag NPs@MOFs的反应活性;GG多孔水凝胶的构筑引入不仅对染料污染物和细菌具有富集作用外,还能够很好的负载和分散Ag NPs@MOFs纳米催化材料,一方面可有效避免纳米催化材料团聚而影响其催化和抗菌性能,另一方面可对催化材料进行分散和良好的固载作用,从而进一步促进了催化材料的高效回用。复合多功能水凝胶集吸附-光催化降解染料(100min染料去除率100%,图4)具体效果如下:
1)本发明首次将光催化,油水分离,抗菌技术三者融为一体制备出应用于水环境修复的生物质基凝胶材料,制备方法简单,成本低廉,具有很高的实用价值和应用前景。油水分离中的油包括硅油、环己烷、菜籽油等。
2)Ag NPs的引入一方面提高了MOFs的电子空穴分离性能,促进生物质基凝胶材料的光催化效果,另一方面Ag NPs本身较好的抗菌效果,赋予了凝胶材料良好的抗菌效果。水体抗菌-杀菌于一体,抑菌率高于99%。
3)瓜尔胶(GG)的引入赋予材料高效的油水分离性能,不仅具有良好的水体污染物富集作用,同时能够很好的负载和分散纳米催化材料,一方面避免其团聚影响其催化和抗菌性能,另一方面能够促进纳米粉体催化材料的高效回用。
4)该复合水凝胶为天然生物降解材料,制备方法简单,成本低廉,相比于其他金属半导体催化材料,不会对水体造成二次污染。
5)采用光还原法制备Ag NPs相比于传统化学还原法不需要添加任何化学还原剂,更加清洁、绿色、无毒,而且反应高效。借助MOFs多孔结构和高比表面积能够有效调控AgNPs晶体的生长和分散,进一步提高反应活性。
附图说明
图1为本发明实施例1制备的Ag NPs负载的MOFs的透射电镜图(TEM)。
图2为本发明实施例1制备的Ag NPs@MOFs负载在GG上的扫描电镜图(SEM)。
图3为本发明实施例1制备的Ag NPs@MOFs负载在GG上的红外图(FTIR)。
图4为本发明实施例4 制备的Ag NPs@MOFs/ GG水凝胶对亚甲基蓝的光催化降解图(UV-Vis)。
图5(a)为本发明实施例5制备的Ag NPs@MOFs对大肠杆菌的抗菌示意图。
图5(b)为本发明实施例5制备的Ag NPs@MOFs/ GG水凝胶对大肠杆菌的抗菌示意图。
图6为本发明实施例6制备的Ag NPs@MOFs/ GG水凝胶的油水分离效果图(UV-Vis)。
图7为本发明实施例6制备的Ag NPs@MOFs/ GG水凝胶的油水分离分离效率图。
图8为本发明实施例6制备的Ag NPs@MOFs/ GG水凝胶的油水分离循环效果图。
具体实施方式
下面结合具体实施案例对本发明作进一步详细说明。
多功能生物质基复合水凝胶的制备方法,包括以下步骤:
1)采用水热法合成金属有机框架(MOFs),
称取Fe系金属粉末和0.68g均苯三甲酸(H3BTC),按一定摩尔比混合,加入10~25ml去离子水搅拌。 量取150~200µL氢氟酸(HF 48%)和90-150µL硝酸(HNO3 65%)逐滴加入上述溶液中,继续磁力搅拌15~30min。
2)将上述溶液转移到水热反应釜中,加入一定比例的结晶试剂,继续搅拌10~20min;在100~150℃温度下持续反应12~24h;反应结束后自然冷却到室温,在4000rpm下离心5min,用乙醇洗涤3~6次,在100℃下真空干燥12h,收集产物;
所用Fe系金属粉末为还原Fe粉,硫酸铁,硝酸铁,三氯化铁等,与均苯三甲酸混合摩尔比为Fe :H3BTC=0.5~2.5:0.67 mol;
所加入结晶试剂与Fe元素摩尔比为0.3~1.2:1 mol;
3)光还原法将Ag NPs负载在MOFs上
将0.5~2g MOFs加入150~300ml乙醇和水的混合溶液当中,称取一定量的Ag系金属盐加入混合溶液中,充分搅拌,然后转移到石英瓶当中,通入N2排除瓶内空气,然后在紫外灯下照射20~60min。最后将样品用乙醇洗涤4~6次,在100℃下真空干燥12h,得到最终产物;
乙醇和水的混合溶液体积比为1:2,所述的Ag系金属盐为含Ag元素的金属盐,采用硝酸银、氟化银中的一种,加入溶液后银离子浓度为10~80mM;
4)Ag NPs@ MOFs与瓜尔胶(GG)自交联制备复合水凝胶
将1~3g Ag NPs@MOFs置于20~60ml去离子水中,超声分散30min,然后加入0.33g~2g GG粉末快速机械搅拌6~12h,然后按照一定的质量比加入氧化剂让样品氧化自交联,静置10~30分钟得到复合水凝胶;
加入氧化剂为高碘酸钠NaIO4, 与GG的质量比为(0.1g~0.5g)NaIO4:1g GG。
实施例1
称取0.27g还原Fe粉和0.68g均苯三甲酸(H3BTC),加入10ml去离子水搅拌,量取150µL氢氟酸(HF 48%)和90µL硝酸(HNO3 65%)逐滴加入上述溶液中,继续磁力搅拌15min;
将上述溶液转移到水热反应釜中,加入0.35g结晶试剂十六烷基三甲基溴化铵(CTAB),继续搅拌15min,在120℃温度下持续反应12h;反应结束后自然冷却到室温,在4000rpm下离心5min,用乙醇洗涤3次,在100℃下真空干燥12h,收集产物;
将0.5g MOFs加入150ml乙醇和水的混合溶液当中(乙醇与水体积比为1:2),称取170mg硝酸银加入混合溶液中(浓度为10mM),充分搅拌,然后转移到石英瓶当中,通入N2排除瓶内空气,然后在紫外灯下照射20min;最后将样品用乙醇洗涤4次,在100℃下真空干燥12h,得到最终产物;
将1gAg NPs@MOFs置于20ml去离子水中,超声分散30min,然后加入0.33g GG粉末快速机械搅拌6h,然后加入33mgNaIO4让样品氧化自交联,静置10分钟得到复合水凝胶。图1为实施例1制备的Ag NPs负载的MOFs的透射电镜图(TEM)。可以看出Ag NPs在MOFs材料的表面和内部负载的很均匀。图2为实施例1制备的Ag NPs@MOFs负载在GG上的扫描电镜图(SEM)。可以看出Ag NPs@MOFs在GG表面均匀分散。图3为实施例1 制备的Ag NPs@MOFs负载在GG上的红外图(FTIR)。
实施例2
称取1.98g硫酸铁和,0.86g均苯三甲酸(H3BTC),加入20ml去离子水搅拌,量取170µL氢氟酸(HF 48%)和120µL硝酸(HNO3 65%)逐滴加入上述溶液中,继续磁力搅拌20min;
将上述溶液转移到水热反应釜中,加入0.85g结晶试剂十六烷基三甲基溴化铵(CTAB),继续搅拌10min,在100℃温度下持续反应18h;反应结束后自然冷却到室温,在4000rpm下离心5min,用乙醇洗涤5次,在100℃下真空干燥12h,收集产物;
将1.2g MOFs加入225ml乙醇和水的混合溶液当中(乙醇与水体积比为1:2),称取0.95g氟化银加入混合溶液中(浓度为50mM),充分搅拌,然后转移到石英瓶当中,通入N2排除瓶内空气,然后在紫外灯下照射40min;最后将样品用乙醇洗涤5次,在100℃下真空干燥12h,得到最终产物;
将2g Ag NPs@MOFs置于40ml去离子水中,超声分散30min,然后加入1g GG粉末快速机械搅拌9h,然后加入100mg NaIO4让样品氧化自交联,静置20分钟得到复合水凝胶。
实施例3
称取2g硝酸铁和1.2g均苯三甲酸(H3BTC),加入25ml去离子水搅拌, 量取200µL氢氟酸(HF 48%)和150µL硝酸(HNO3 65%)逐滴加入上述溶液中,继续磁力搅拌30min;
将上述溶液转移到水热反应釜中,加入1.2g结晶试剂十六烷基三甲基溴化铵(CTAB),继续搅拌20min;在150℃温度下持续反应24h;反应结束后自然冷却到室温,在4000rpm下离心5min,用乙醇洗涤6次,在100℃下真空干燥12h,收集产物;
将2g MOFs加入300ml乙醇和水的混合溶液当中(乙醇和水体积比为1:2),称取0.68g的硝酸银加入混合溶液中(80mM),充分搅拌,然后转移到石英瓶当中,通入N2排除瓶内空气,然后在紫外灯下照射60min;最后将样品用乙醇洗涤6次,在100℃下真空干燥12h,得到最终产物;
将3gAg NPs@MOFs置于60ml去离子水中,超声分散30min,然后加入2g GG粉末快速机械搅拌12h,然后加入180mg NaIO4让样品氧化自交联,静置30分钟得到复合水凝胶。
实施例4
实施例4是制备的Ag NPs@MOFs/GG 复合水凝胶光催化降解亚甲基蓝(MB)实验。步骤如下:配置40ml浓度为40mg/L亚甲基蓝溶液,加入0.5g Ag NPs@MOFs/GG,先在黑暗条件下反应50min使反应达到饱和吸脱附平衡,然后在500w氙灯照射下反应,每隔20min取一次样在紫外可见分光光度计(UV-Vis)下测试。结果表明100min后MB被完全降解,如图4所示。
实施例5
实施例5是制备的Ag NPs@MOFs/GG 复合水凝胶对大肠杆菌的抗菌实验。采用抑菌圈法进行实验。从图5(a)和图5(b)b可以看到,负载Ag NPs的Ag NPs@MOFs(i-2)和Ag NPs@MOFs/GG (ii-1)出现了最大的抑菌圈,说明负载纳米Ag后对大肠杆菌的抗菌效果非常显著。不含AgNPs 的MOFs(i-1)和MOFs/GG(ii-2)只表现出微弱的抑菌效果,单独GG(ii-3)无抑菌效果。
实施例6
实施例6是制备的Ag NPs@MOFs/GG 复合水凝胶的油水分离实验。步骤如下:首先将AgNPs@MOFs/GG涂覆在滤纸上,然后固定在直径为80mm的玻璃漏斗上,油水分离前用去离子水润湿。然后将40ml油类物质(如硅油、菜籽油、环己烷)和40ml水混合,倒入漏斗中仅在重力作用下进行油水分离。收集过滤水称重,通过与原来加入水的重量比计算分离效率。结果如图7所示,分离效率高达99%。
图8是实例6制备的Ag NPs@MOFs/ GG水凝胶的油水分离循环效果图,从图中可以看到经过10次循环,分离效率高达95%以上,说明材料具有很好的重复使用性。

Claims (6)

1.一种多功能生物质基复合水凝胶的制备方法,其特征在于,包括以下步骤:
1)将Fe系金属粉末和均苯三甲酸(H3BTC)混合后,加入10~25ml去离子水搅拌,量取150~200µL氢氟酸(HF 48%)和90-150µL硝酸(HNO3 65%)逐滴加入上述溶液中,继续磁力搅拌15~30min;
2)将步骤1)制备的溶液转移到水热反应釜中,加入结晶试剂,继续搅拌10~20min;在100~150℃温度下持续反应12~24h;反应结束后自然冷却到室温,在4000rpm下离心5min,用乙醇洗涤3~6次,在100℃下真空干燥12h,得到MOFs产物;
3)将0.5~2g MOFs加入150~300ml乙醇和水的混合溶液当中,将Ag系金属盐加入混合溶液中,充分搅拌,然后转移到石英瓶当中,通入N2排除瓶内空气,然后在紫外灯下照射20~60min;最后将所得物用乙醇洗涤4~6次,在100℃下真空干燥12h,得到最终产物Ag NPs@MOFs;
4)将1~3g Ag NPs@MOFs置于20~60ml去离子水中,超声分散30min,然后加入0.33g~2g瓜尔胶粉末快速机械搅拌6~12h,然后加入氧化剂让上述物品氧化自交联,静置10~30分钟得到复合水凝胶。
2.根据权利要求1中所述的一种多功能纳米银@金属有机框架/瓜尔胶复合水凝胶的制备方法,其特征在于,所述的Fe系金属粉末为含Fe金属盐,采用还原Fe粉、硫酸铁、硝酸铁或三氯化铁中的一种,Fe系金属粉末与均苯三甲酸的混合摩尔比为Fe:H3BTC=0.5~2.5:0.67mol。
3.根据权利要求1中所述的一种多功能纳米银@金属有机框架/瓜尔胶复合水凝胶的制备方法,其特征在于,所述的结晶试剂为十六烷基三甲基溴化铵(CTAB),其与Fe元素摩尔比为0.3~1.2:1 mol。
4.据权利要求1中所述的一种多功能纳米银@金属有机框架/瓜尔胶复合水凝胶的制备方法,其特征在于,所述的混合溶液中,乙醇和水的体积比为1:2;所述的Ag系金属盐为含Ag元素的金属盐,采用硝酸银、氟化银中的一种,加入Ag系金属盐后,溶液的银离子浓度为10~80 mM。
5.据权利要求1中所述的一种多功能纳米银@金属有机框架/瓜尔胶复合水凝胶的制备方法,其特征在于,所述的氧化剂为高碘酸钠NaIO4,氧化剂与瓜尔胶的质量比为0.1 ~0.5:1。
6.根据权利要求1所述的方法制备的复合水凝胶作为光催化、抗菌、油水分离剂的应用。
CN201910852836.7A 2019-09-10 2019-09-10 一种多功能生物质基复合水凝胶的制备方法及其应用 Active CN110433737B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910852836.7A CN110433737B (zh) 2019-09-10 2019-09-10 一种多功能生物质基复合水凝胶的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910852836.7A CN110433737B (zh) 2019-09-10 2019-09-10 一种多功能生物质基复合水凝胶的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN110433737A true CN110433737A (zh) 2019-11-12
CN110433737B CN110433737B (zh) 2021-09-17

Family

ID=68439736

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910852836.7A Active CN110433737B (zh) 2019-09-10 2019-09-10 一种多功能生物质基复合水凝胶的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN110433737B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111296480A (zh) * 2020-02-21 2020-06-19 衢州学院 装载银纳米颗粒的铁基金属-有机框架材料及其制备方法与应用
CN111450806A (zh) * 2020-04-23 2020-07-28 陕西科技大学 一种基于废弃玉米芯的多孔吸附抗菌复合材料的制备方法
CN111500217A (zh) * 2020-04-06 2020-08-07 恩平市盈嘉丰胶粘制品有限公司 一种多功能纳米材料改性压敏胶的制备方法
CN113083241A (zh) * 2021-03-26 2021-07-09 西南石油大学 一种高效处理油田废水及染料废水的磺酰腙改性天然高分子的制备
CN113084188A (zh) * 2021-04-06 2021-07-09 北京理工大学 一种多功能治疗性生物材料及其制备方法
CN113712045A (zh) * 2021-08-31 2021-11-30 厦门大学 基于金属有机框架的银纳米颗粒复合抗菌材料的制备方法
CN114931146A (zh) * 2022-06-30 2022-08-23 浙江英凡新材料科技有限公司 一种MOFs抗菌材料及其制备方法
CN115105629A (zh) * 2022-07-26 2022-09-27 暨南大学 一种抗菌水凝胶及其制备方法和应用
CN115739013A (zh) * 2022-06-23 2023-03-07 广州大学 一种三维多功能石墨烯膜及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011076080A1 (de) * 2011-05-18 2012-11-22 Technische Universität Dresden Verfahren zur Herstellung von Partikeln enthaltend Metall-organische Gerüstverbindungen
WO2014116508A1 (en) * 2013-01-25 2014-07-31 Schlumberger Canada Limited Metal organic frameworks as chemical carriers for downhole treatment applications
CN106927458A (zh) * 2017-02-21 2017-07-07 青岛科技大学 一种石墨烯与zif‑8复合气凝胶及其制备方法
CN108607599A (zh) * 2018-06-15 2018-10-02 湖北科技学院 一种量子点-Au/C3N4-水凝胶基光催化剂
CN108940374A (zh) * 2018-06-11 2018-12-07 陕西科技大学 纤维复合膜催化剂的制备方法及应用
CN109513038A (zh) * 2018-12-14 2019-03-26 华南理工大学 负载铜金属有机骨架纳米粒子的温敏水凝胶及其制备方法
CN109892326A (zh) * 2019-03-25 2019-06-18 合肥工业大学 一种载银含锌复合纳米球抗菌剂及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011076080A1 (de) * 2011-05-18 2012-11-22 Technische Universität Dresden Verfahren zur Herstellung von Partikeln enthaltend Metall-organische Gerüstverbindungen
WO2014116508A1 (en) * 2013-01-25 2014-07-31 Schlumberger Canada Limited Metal organic frameworks as chemical carriers for downhole treatment applications
CN106927458A (zh) * 2017-02-21 2017-07-07 青岛科技大学 一种石墨烯与zif‑8复合气凝胶及其制备方法
CN108940374A (zh) * 2018-06-11 2018-12-07 陕西科技大学 纤维复合膜催化剂的制备方法及应用
CN108607599A (zh) * 2018-06-15 2018-10-02 湖北科技学院 一种量子点-Au/C3N4-水凝胶基光催化剂
CN109513038A (zh) * 2018-12-14 2019-03-26 华南理工大学 负载铜金属有机骨架纳米粒子的温敏水凝胶及其制备方法
CN109892326A (zh) * 2019-03-25 2019-06-18 合肥工业大学 一种载银含锌复合纳米球抗菌剂及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DAI LEI ET AL.,: "《A self-assembling guar gum hydrogel for efficient oil/water separation in harsh environments》", 《SEPARATION AND PURIFICATION TECHNOLOGY》 *
RUOWEN LIANG ET AL.,: "《M@MIL-100(Fe) (M = Au, Pd, Pt) nanocomposites fabricated by a facile photodeposition process:Efficient visible-light photocatalysts for redox reactions in water》", 《NANO RESEARCH》 *
陈宁,白韬光: "《船舶压载水管理系统开发关与应用》", 31 October 2017, 上海科学技术出版社 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111296480A (zh) * 2020-02-21 2020-06-19 衢州学院 装载银纳米颗粒的铁基金属-有机框架材料及其制备方法与应用
CN111500217A (zh) * 2020-04-06 2020-08-07 恩平市盈嘉丰胶粘制品有限公司 一种多功能纳米材料改性压敏胶的制备方法
CN111450806A (zh) * 2020-04-23 2020-07-28 陕西科技大学 一种基于废弃玉米芯的多孔吸附抗菌复合材料的制备方法
CN111450806B (zh) * 2020-04-23 2022-11-11 陕西科技大学 一种基于废弃玉米芯的多孔吸附抗菌复合材料的制备方法
CN113083241A (zh) * 2021-03-26 2021-07-09 西南石油大学 一种高效处理油田废水及染料废水的磺酰腙改性天然高分子的制备
CN113084188B (zh) * 2021-04-06 2022-03-29 北京理工大学 一种多功能治疗性生物材料及其制备方法
CN113084188A (zh) * 2021-04-06 2021-07-09 北京理工大学 一种多功能治疗性生物材料及其制备方法
CN113712045A (zh) * 2021-08-31 2021-11-30 厦门大学 基于金属有机框架的银纳米颗粒复合抗菌材料的制备方法
CN113712045B (zh) * 2021-08-31 2022-04-08 厦门大学 基于金属有机框架的银纳米颗粒复合抗菌材料的制备方法
CN115739013A (zh) * 2022-06-23 2023-03-07 广州大学 一种三维多功能石墨烯膜及其制备方法
CN114931146A (zh) * 2022-06-30 2022-08-23 浙江英凡新材料科技有限公司 一种MOFs抗菌材料及其制备方法
CN115105629A (zh) * 2022-07-26 2022-09-27 暨南大学 一种抗菌水凝胶及其制备方法和应用
CN115105629B (zh) * 2022-07-26 2023-05-30 暨南大学 一种抗菌水凝胶及其制备方法和应用

Also Published As

Publication number Publication date
CN110433737B (zh) 2021-09-17

Similar Documents

Publication Publication Date Title
CN110433737A (zh) 一种多功能生物质基复合水凝胶的制备方法及其应用
Li et al. Plasmonic Ag as electron-transfer mediators in Bi2MoO6/Ag-AgCl for efficient photocatalytic inactivation of bacteria
Habibi-Yangjeh et al. ZnO/ZnBi2O4 nanocomposites with pn heterojunction as durable visible-light-activated photocatalysts for efficient removal of organic pollutants
Ochiai et al. Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purification
Jaafar et al. Direct in situ activation of Ag0 nanoparticles in synthesis of Ag/TiO2 and its photoactivity
Liu et al. Enhanced photocatalytic degradation of environmental pollutants under visible irradiation by a composite coating
Balasurya et al. Elucidation of photocatalysis, photoluminescence and antibacterial studies of Ag2MoO4 decorated NiMoO4 nano-heterostructure
Yadav et al. A review on degradation of organic dyes by using metal oxide semiconductors
Sabzehmeidani et al. Visible light-induced photo-degradation of methylene blue by n–p heterojunction CeO2/CuS composite based on ribbon-like CeO2 nanofibers via electrospinning
Shoueir et al. Encapsulation of extremely stable polyaniline onto Bio-MOF: photo-activated antimicrobial and depletion of ciprofloxacin from aqueous solutions
CN106040239A (zh) 一种高分散纳米金属单质/碳复合材料可控制备方法及其电催化应用
CN102631936A (zh) 一种BiOI复合材料及其制备方法和应用
Kaur et al. Bi2WO6/NH2-MIL-88B (Fe) heterostructure: An efficient sunlight driven photocatalyst for the degradation of antibiotic tetracycline in aqueous medium
Vakili et al. Synthesis of immobilized cerium doped ZnO nanoparticles through the mild hydrothermal approach and their application in the photodegradation of synthetic wastewater
CN101773841A (zh) 一种用于水处理的光催化剂
Alshaikh et al. Templated synthesis of CuCo2O4-modified g-C3N4 heterojunctions for enhanced photoreduction of Hg2+ under visible light
Xia et al. A modified flower pollen-based photothermocatalytic process for enhanced solar water disinfection: Photoelectric effect and bactericidal mechanisms
Zhong et al. Preparation of pumice-loaded CeO 2/Bi 2 WO 6 photocatalysts and treatment of tetracycline wastewater with a continuous flow photocatalytic reactor
Zhao et al. Polyoxometalates-doped TiO 2/Ag hybrid heterojunction: removal of multiple pollutants and mechanism investigation
Al-Musawi et al. The application of a new recyclable photocatalyst γ-Fe2O3@ SiO2@ ZIF8-Ag in the photocatalytic degradation of amoxicillin in aqueous solutions
Wang et al. Engineering hierarchical FeS2/TiO2 nanotubes on Ti mesh as a tailorable flow-through catalyst belt for all-day-active degradation of organic pollutants and pathogens
Qiao et al. Efficient removal of organic pollution via photocatalytic degradation over a TiO2@ HKUST-1 yolk-shell nanoreactor
Xu et al. Electric-field-enhanced photocatalytic removal of Cr (VI) under sunlight of TiO2 nanograss mesh with nondestructive regeneration and feasible collection for Cr (III)
Mirsadeghi et al. Study of photocatalytic and electrocatalytic activities of calcium tungstate nanoparticles synthesized via surfactant-supported hydrothermal method
Gul et al. Photodegradation of orange II dye using pn junction NiO/TiO2 composite, and assessment of its biological activities

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20221107

Address after: 215400 room 1202-9, building 3, Gangcheng Plaza, No. 16 North Ring Road, Taicang Port Economic and Technological Development Zone, Taicang City, Suzhou City, Jiangsu Province

Patentee after: Suzhou heguangji Intelligent Equipment Co.,Ltd.

Address before: 710021 Shaanxi province Xi'an Weiyang university campus of Shaanxi University of Science and Technology

Patentee before: SHAANXI University OF SCIENCE & TECHNOLOGY