CN106920895A - 一种顶发射有机电致发光器件的阴极及其制备方法 - Google Patents

一种顶发射有机电致发光器件的阴极及其制备方法 Download PDF

Info

Publication number
CN106920895A
CN106920895A CN201710328465.3A CN201710328465A CN106920895A CN 106920895 A CN106920895 A CN 106920895A CN 201710328465 A CN201710328465 A CN 201710328465A CN 106920895 A CN106920895 A CN 106920895A
Authority
CN
China
Prior art keywords
layer
negative electrode
organic
thickness
protective layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710328465.3A
Other languages
English (en)
Other versions
CN106920895B (zh
Inventor
晋芳铭
赵铮涛
李文连
任清江
王仕伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Integrated Display Technology Co Ltd
Original Assignee
Semiconductor Integrated Display Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Integrated Display Technology Co Ltd filed Critical Semiconductor Integrated Display Technology Co Ltd
Priority to CN201710328465.3A priority Critical patent/CN106920895B/zh
Publication of CN106920895A publication Critical patent/CN106920895A/zh
Application granted granted Critical
Publication of CN106920895B publication Critical patent/CN106920895B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/852Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission

Abstract

本发明公开了一种顶发射有机电致发光器件的阴极具有发光层基底层和依次形成在所述发光层基底层上的能级匹配层、内置保护层、能级修饰层、电荷收集层和外置保护层,该阴极采用高真空热蒸发沉积制备法。本发明阴极能提高顶发射有机电致发光器件的稳定性、工作寿命和效率以及光出射率。本发明还公开了一种工艺简单、成本低廉的顶发射有机电致发光器件的阴极的制备方法。

Description

一种顶发射有机电致发光器件的阴极及其制备方法
技术领域
本发明涉及顶发射有机电致发光器件技术领域,特别是一种顶发射有机电致发光器件的阴极及其制备方法。
背景技术
有机电致发光器件(OLED)同时具备全固态、自发光、响应速度块、视角广泛、工作温度范围广等一系列优点,受到越来越多的学界和产业界的关注。经过多年不断的积极探索,有机电致发光器件的结构和工艺的以及相关材料的进一步优化,有机电致发光已经取得了长足进步,目前已经实现了产业化。
但是要在平板显示市场上充分发挥其优势,有机电致发光器件的发光效率、色度、驱动电压、寿命、器件稳定性等方面还需要进一步改善。顶发射有机电致发光器件(TWOLED)是将像素驱动电路制作在器件下方,这解决了 OLED 器件像素驱动电路和显示发光面积相互竞争的问题,从而提高了显示器件的开口率。同时在一些特殊的基底上,诸如硅基OLED微显示器件,受限于基底的不透光性,只能采用顶发射的结构。因此制作高效稳定的顶发射有机电致发光器件具有重要的意义。
目前,绝大多数的TWOLED采用的阴极结构为半透明的低功函数金属,或者双层复合结构,诸如Al、Ag、LiF/Al、Ca/Mg等等。也有使用溅射的ITO作为半透明的阴极。这些传统的半透明的阴极主要存在以下几个方面的问题:(1)金属蒸发或者溅射温度高,容易烧毁有机功能层;(2)金属元素易于向有机功能层扩散,造成器件加速老化;(3)考虑半透明阴极的透光性,阴极需要做的比较薄,不利于对有机层进行水氧保护,器件寿命差;(4)由于阴极的光反射作用,光波导损失大,出光率低,降低了器件的效率。
因此,目前的TEOLED 器件阴极结构无法同时兼有制备工艺简单、成本低廉、电化学性能稳定、高透射率、低电阻等特点。
发明内容
本发明针对现有技术的不足,提供一种兼具制备工艺简单、成本低廉、电化学性能稳定、高透射率、低电阻高导电性的顶发射有机电致发光器件的阴极及其制备方法。
为实现上述技术问题,本发明采用的技术方案为:一种顶发射有机电致发光器件的阴极,包括发光基底层以及从所述发光基底层依次向上沉积的能级匹配层、内置保护层、能级修饰层、电荷收集层和外置保护层
优选地,所述阴极结构基底层为有机电致发光层。
优选地,所述能级匹配层厚度在20~50Å,能级匹配层使用有机材料制备。
优选地,所述内置保护层厚度20~100Å,内置保护层使用无机材料制备。
优选地,所述能级修饰层厚度在50~100 Å,能级修饰层使用有机材料。
优选地,电荷收集层在100~400 Å,电荷收集层使用金属材料制备。
优选地,所述外置保护层厚度在100~1000 Å。
优选地,所述外置保护层为无机材料或者有机材料。
一种制备如上述顶发射有机电致发光器件的阴极的方法,采用高真空热蒸发方法成膜,包括以下工艺:
第一步:蒸镀材料装载,在阴极制备前将所用的有机、无机材料放入各自的坩埚之内;
第二步:将基底装载入真空沉积设备,位于坩埚的上方,二者的距离在10~50 cm;
第三步:真空沉积设备抽真空至压力小于10-4 Pa后开始依次沉积能级匹配层、内置保护层、能级修饰层、电荷收集层和外置保护层,膜厚由石英晶振片进行监控。
优选地,镀膜的步骤如下:
第一步:在发光基底层上沉积能级匹配层,其厚度为20 ~50Å;
第二步:在已镀的能级匹配层上沉积内置保护层,厚度为20~100Å;
第三步:在已镀的内置保护层上沉积能级修饰层,厚度为50~100 Å;
第四步:在已镀的能级修饰层上沉积电荷收集层,厚度为100~400 Å;
第五步:在已镀的电荷收集层上沉积外置保护层,厚度为100~1000 Å。
本发明方案的有益效果是:
所述能级匹配层用于保护发光层基底层且用于防止界面偶极作用的发生以提高后续沉积的内置保护层的电子传输能力。
所述内置保护层用于阻挡空气进入发光层基底层,提高顶发射有机电致发光器件的稳定性和工作寿命,同时还能降低后续制备能级修饰层、电荷收集层和外置保护层的沉积过程中产生的高温对发光层基底层的伤害,另外还能阻挡金属元素向发光层基底层的扩散,提高顶发射有机电致发光器件的工作效率和寿命。
所述能级修饰层和所述能级匹配层用于提高电子注入能力,降低顶发射有机电致发光器件的启亮电压,以提高工作效率。
所述电荷收集层用于电荷的收集。
所述外置保护层用于保护透明电极,同时利用光学微腔效应提高顶发射有机电致发光器件的光出射率。
附图说明
图1为本发明的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,本发明的一种顶发射有机电致发光器件的阴极,具有发光层基底层1和依次形成在所述发光层基底层1上的能级匹配层2、内置保护层3、能级修饰层4、电荷收集层5和外置保护层6。
所述能级匹配层用于保护发光层基底层且用于防止界面偶极作用的发生以提高后续沉积的内置保护层的电子传输能力;所述内置保护层用于阻挡空气进入发光层基底层,提高顶发射有机电致发光器件的稳定性和工作寿命,同时还能降低后续制备能级修饰层、电荷收集层和外置保护层的沉积过程中产生的高温对发光层基底层的伤害,另外还能阻挡金属元素向发光层基底层的扩散,提高顶发射有机电致发光器件的工作效率和寿命;所述能级修饰层和所述能级匹配层用于提高电子注入能力,降低顶发射有机电致发光器件的启亮电压,以提高工作效率;所述电荷收集层用于电荷的收集;所述外置保护层用于保护透明电极,同时利用光学微腔效应提高顶发射有机电致发光器件的光出射率。
本发明的具体实施方式是:所述发光层基底层1上采用真空沉积一次性制备法依次镀膜形成所述能级匹配层2、所述内置保护层3、所述能级修饰层4、所述电荷收集层5和所述外置保护层6。该真空沉积一次性制备工艺简单,成本低廉。
其中,所述发光层基底层1为柔性有机电致发光层基底层。所述发光层基底层(1)可以制备在ITO导电玻璃、或单晶、或多晶、或无定形硅上。
其中,所述能级匹配层2的厚度在20 ~50Å,采用有机材料制成,所述有机材料选择BAlQ3、Bphen、BCP、AlQ3、TPBI其中之一。该能级匹配层的作用一方面可以保护有机发光层基底层,另一方面防止界面偶极作用的发生,提高后续沉积的无机内置保护层的电子传输能力。典型的能级匹配层厚度小于50Å,电子输运通过隧穿的方式进行。
其中,所述内置保护层3的厚度20~100Å,所述内置保护层采用金属无机材料制成。所述金属无机材料选择MoO3、WoO3、V2O5、Cr2O3其中之一。由于内置保护层采用化学稳定性质优异、易于热蒸发成膜的无机材料,其作用包括:阻挡空气进入有机功能层,提高器件的稳定性和工作寿命,同时,降低后续金属沉积的高温对于有机功能层的伤害,还能阻挡金属元素向有机功能层的扩散,提高器件的效率和寿命。典型的能级匹配层厚度小于100Å,其电子传输能力随着厚度的增大急剧降低。
其中,所述能级修饰层4厚度在50~100 Å,采用有机材料制成,所述有机材料选择BAlQ3、Bphen、BCP、AlQ3、TPBI其中之一。所述能级匹配层2和所述能级修饰层4均为其中所述能级匹配层和所述能级修饰层的有机材料相同或不同。由于能级修饰层和能级匹配层采用高迁移率的有机电子传输材料,可以大幅提高电子的注入能力,降低器件的启亮电压,提高器件的效率。
其中,所述电荷收集层5厚度在100~400 Å,采用高导电性、高透过率的金属无机材料制成,所述金属材料为Al、Ag、Ge、Al/Ag、Al/Ge、Ag/Ge或者它们的合金。电荷收集层用于电荷的收集。
其中,所述外置保护层6厚度在100~1000 Å。所述外置保护层采用化学稳定性质优异、透光率高的无机材料或有机材料制成。所述无机材料或有机材料为MoO3、WoO3、V2O5、Bphen、BCP、AlQ3、TPBI、MoO3/ AlQ3、WoO3/ AlQ3、V2O5/ AlQ3、MoO3/ Bphen、WoO3/ Bphen、V2O5/ Bphen、MoO3/ TPBI、WoO3/ TPBI、V2O5/ TPBI、MoO3/ BCP、WoO3/ BCP、V2O5/ BCP双层结构。其作用一方面是保护透明电极,另一方面利用光学微腔效应提高器件的光学透过率。
本发明的能级匹配层,其作用一方面可以保护有机发光功能层,另一方面界面偶极作用的发生,提高后续沉积的无机内置保护层的电子传输能力。典型的能级匹配层厚度小于50Å,电子输运通过隧穿的方式进行。
内置保护层采用化学稳定性质优异、易于热蒸发成膜的无机材料。其作用包括:1、阻挡空气进入有机功能层,提高器件的稳定性和工作寿命;2、降低后续金属沉积的高温对于有机功能层的伤害;3、阻挡金属元素向有机功能层的扩散,提高器件的效率和寿命。典型的能级匹配层厚度小于100Å,其电子传输能力随着厚度的增大急剧降低。
能级修饰层能级匹配层采用高迁移率的有机电子传输材料,可以大幅提高电子的注入能力,降低器件的启亮电压,提高器件的效率。
电荷收集层采用高导电性,高透过率的金属材料制备,用于电荷的收集。
外置保护层化学稳定性质优异、透光率高的有机或者无机材料。其作用一方面是保护透明电极,另一方面利用光学微腔效应提高器件的光学透过率。
本发明采用了多层薄膜结构设计实现了TEOLED阴极的多功能性。能级匹配层层,提高了电荷传输能力,使得 TEOLED 器件具有更高的量子效率 ;内置保护层可以起到阻挡了空气进入有机功能层,降低后续金属沉积的高温对于有机功能层的伤害;阻挡金属元素向有机功能层的扩散的作用,可以大幅提高器件的效率和寿命。能级修饰层降低了电子注入势垒同时,有利于降低器件功耗。 外置保护层可以起到保护透明电极,增强光出射率的的作用。本发明采用的阴极制备工艺简单、成本低廉,可在有机发光功能层制备后采用真空沉积一次性制备。
综上所述,由于本发明具体实施方式采用多层薄膜结构设计实现了TEOLED阴极的多功能性 :能级匹配层层,提高了电荷传输能力,使得 TEOLED 器件具有更高的量子效率;内置保护层可以起到阻挡了空气进入有机功能层,降低后续金属沉积的高温对于有机功能层的伤害;阻挡金属元素向有机功能层的扩散的作用,可以大幅提高器件的效率和寿命。能级修饰层降低了电子注入势垒同时,有利于降低器件功耗。 外置保护层可以起到保护透明电极,增强光出射率的的作用。
本发明一种顶发射有机电致发光器件的阴极的制备方法。具体实施方式是,采用高真空热蒸发沉积一次制备法。具体为步骤为:
步骤一:在阴极制备前,将所述能级匹配层2、内置保护层3、能级修饰层4、电荷收集层5和外置保护层6所用的材料放入各自的坩埚之内。
步骤二:将所述发光层基底层1装载入真空沉积设备,所述发光层基底层1位于坩埚的上方,所述发光层基底层与所述坩埚的距离在10~50 cm。
步骤三:当所述真空沉积设备抽真空至压力小于10-4 Pa后,开始在所述在发光层基底层上沉积镀膜形成所述能级匹配层,再在所述匹配层上沉积镀膜形成所述内置保护层,再在所述内置保护层上沉积镀膜形成所述能级修饰层,再在所述能级修饰层上沉积镀膜形成所述电荷收集层,最后在所述电荷收集层上沉积镀膜形成所述外置保护层。
其中,在所述步骤三中,所述能级匹配层2、内置保护层3、能级修饰层4、电荷收集层5和外置保护层6的厚度由石英晶振片进行监控。
其中,所述步骤三中的所述能级匹配层(2)、内置保护层(3)、能级修饰层(4)、电荷收集层(5)和外置保护层(6)按先后顺序一次完成生长过程。
本发明采用的阴极制备工艺简单、成本低廉。
需要说明的是,在本文中,如若存在第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

1.一种顶发射有机电致发光器件的阴极,其特征在于,包括发光基底层(1)以及从所述发光基底层(1)依次向上沉积的能级匹配层(2)、内置保护层(3)、能级修饰层(4)、电荷收集层(5)和外置保护层(6)。
2.根据权利要求1所述的顶发射有机电致发光器件的阴极,其特征在于,所述阴极结构基底层(1)为有机电致发光层。
3.根据权利要求1所述的顶发射有机电致发光器件的阴极,其特征在于,所述能级匹配层(2)厚度在20~50Å,能级匹配层(2)使用有机材料制备。
4.根据权利要求1所述的顶发射有机电致发光器件的阴极,其特征在于,所述内置保护层(3)厚度20~100Å,内置保护层(3)使用无机材料制备。
5.根据权利要求1所述的顶发射有机电致发光器件的阴极,其特征在于, 所述能级修饰层(4)厚度在50~100 Å,能级修饰层(4)使用有机材料。
6.根据权利要求1所述的顶发射有机电致发光器件的阴极,其特征在于,电荷收集层(5)在100~400 Å,电荷收集层(5)使用金属材料制备。
7. 根据权利要求1所述的顶发射有机电致发光器件的阴极,其特征在于,所述外置保护层(6)厚度在100~1000 Å。
8.根据权利要求1或者7所述的顶发射有机电致发光器件的阴极,其特征在于,所述外置保护层(6)为无机材料或者有机材料。
9.一种制备如权利要求1-8任一项所述的顶发射有机电致发光器件的阴极的方法,其特征在于,采用高真空热蒸发方法成膜,包括以下工艺:
第一步:蒸镀材料装载,在阴极制备前将所用的有机、无机材料放入各自的坩埚之内;
第二步:将基底装载入真空沉积设备,位于坩埚的上方,二者的距离在10~50 cm;
第三步:真空沉积设备抽真空至压力小于10-4 Pa后开始依次沉积能级匹配层(2)、内置保护层(3)、能级修饰层(4)、电荷收集层(5)和外置保护层(6),膜厚由石英晶振片进行监控。
10.根据权利要求9所述的制顶发射有机电致发光器件的阴极的方法,其特征在于,镀膜的步骤如下:
第一步:在发光基底层(1)上沉积能级匹配层(2),其厚度为20 ~50Å;
第二步:在已镀的能级匹配层(2)上沉积内置保护层(3),厚度为20~100Å;
第三步:在已镀的内置保护层(3)上沉积能级修饰层(4),厚度为50~100 Å;
第四步:在已镀的能级修饰层(4) 上沉积电荷收集层(5),厚度为100~400 Å;
第五步:在已镀的电荷收集层(5)上沉积外置保护层(6),厚度为100~1000 Å。
CN201710328465.3A 2017-05-11 2017-05-11 一种顶发射有机电致发光器件的阴极及其制备方法 Active CN106920895B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710328465.3A CN106920895B (zh) 2017-05-11 2017-05-11 一种顶发射有机电致发光器件的阴极及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710328465.3A CN106920895B (zh) 2017-05-11 2017-05-11 一种顶发射有机电致发光器件的阴极及其制备方法

Publications (2)

Publication Number Publication Date
CN106920895A true CN106920895A (zh) 2017-07-04
CN106920895B CN106920895B (zh) 2020-04-07

Family

ID=59568380

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710328465.3A Active CN106920895B (zh) 2017-05-11 2017-05-11 一种顶发射有机电致发光器件的阴极及其制备方法

Country Status (1)

Country Link
CN (1) CN106920895B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109873087A (zh) * 2017-12-01 2019-06-11 上海和辉光电有限公司 一种像素结构及显示面板
CN110085765A (zh) * 2019-04-28 2019-08-02 深圳市华星光电半导体显示技术有限公司 显示面板及其制作方法
CN111129321A (zh) * 2018-11-01 2020-05-08 Tcl集团股份有限公司 一种量子点发光二极管及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7569158B2 (en) * 2004-10-13 2009-08-04 Air Products And Chemicals, Inc. Aqueous dispersions of polythienothiophenes with fluorinated ion exchange polymers as dopants
CN103915553A (zh) * 2014-04-21 2014-07-09 吉林大学 基于碳量子点的载流子注入式蓝光和白光led及制作方法
CN104409649A (zh) * 2014-11-20 2015-03-11 天津理工大学 一种低压高效有机发光二极管及其制备方法
CN105098079A (zh) * 2015-07-13 2015-11-25 电子科技大学 基于双层阴极缓冲层的有机薄膜太阳能电池及其制备方法
CN105789467A (zh) * 2016-04-19 2016-07-20 Tcl集团股份有限公司 一种In掺杂MoO3薄膜的制备方法及其在QLED中的应用
CN106129251A (zh) * 2016-07-14 2016-11-16 华中科技大学 一种柔性钙钛矿电池的结构及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7569158B2 (en) * 2004-10-13 2009-08-04 Air Products And Chemicals, Inc. Aqueous dispersions of polythienothiophenes with fluorinated ion exchange polymers as dopants
CN103915553A (zh) * 2014-04-21 2014-07-09 吉林大学 基于碳量子点的载流子注入式蓝光和白光led及制作方法
CN104409649A (zh) * 2014-11-20 2015-03-11 天津理工大学 一种低压高效有机发光二极管及其制备方法
CN105098079A (zh) * 2015-07-13 2015-11-25 电子科技大学 基于双层阴极缓冲层的有机薄膜太阳能电池及其制备方法
CN105789467A (zh) * 2016-04-19 2016-07-20 Tcl集团股份有限公司 一种In掺杂MoO3薄膜的制备方法及其在QLED中的应用
CN106129251A (zh) * 2016-07-14 2016-11-16 华中科技大学 一种柔性钙钛矿电池的结构及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109873087A (zh) * 2017-12-01 2019-06-11 上海和辉光电有限公司 一种像素结构及显示面板
CN111129321A (zh) * 2018-11-01 2020-05-08 Tcl集团股份有限公司 一种量子点发光二极管及其制备方法
CN110085765A (zh) * 2019-04-28 2019-08-02 深圳市华星光电半导体显示技术有限公司 显示面板及其制作方法
CN110085765B (zh) * 2019-04-28 2021-08-24 深圳市华星光电半导体显示技术有限公司 显示面板及其制作方法

Also Published As

Publication number Publication date
CN106920895B (zh) 2020-04-07

Similar Documents

Publication Publication Date Title
CN100580976C (zh) 有机发光显示器、阴极复合层及其制造方法
CN102832356B (zh) Oled封装结构及其制造方法、发光器件
WO2019080246A1 (zh) Qled器件的制作方法及qled器件
WO2007052985A1 (en) Organic electroluminescent device and method for preparing the same
CN108922978A (zh) 发光二极管及其制备方法
US20200035926A1 (en) Blue organic electroluminescent device and preparation method thereof
JP6280234B2 (ja) 有機電界発光素子及びその制作方法
CN106920895A (zh) 一种顶发射有机电致发光器件的阴极及其制备方法
CN206293474U (zh) 等离子体共振增强的蓝光有机发光二极管
CN102074658A (zh) 电荷产生层、叠层有机发光二极管及其制备方法
CN108649144A (zh) 一种基于复合空穴传输层的钙钛矿发光二极管及其制备方法
CN105355797A (zh) 倒置型有机电致发光器件及其制备方法
CN103746079B (zh) 一种单层结构的倒置顶发射有机电致发光器件
CN206116461U (zh) 一种采用低温镀膜tco作为阴极的oled膜层
CN102088062A (zh) 具有复合空穴传输层的有机电致发光器件及其制造方法
CN103000818B (zh) 顶发射有机电致发光器件及其制备方法和应用
CN109860404B (zh) 白光有机发光二极管及其制备方法
CN202749419U (zh) Oled封装结构及发光器件
US20190363271A1 (en) White organic electroluminescent device and preparation method thereof
Choi et al. Enhanced light extraction efficiency using self-textured aluminum-doped zinc oxide in organic light-emitting diodes
KR20120118306A (ko) 유기 전계 발광소자용 광추출층 및 그 제조방법
KR20120118305A (ko) 유기 전계 발광소자용 광추출층 및 그 제조방법
CN108538905B (zh) Oled发光器件及oled显示装置
CN109742253A (zh) 一种基于银纳米粒子的蓝光有机发光二极管
JP2008108423A (ja) 酸化物透明導電膜およびアルカリ金属含有酸化物透明導電膜の成膜方法ならびにその酸化物透明導電膜を利用した有機光装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant