CN106920618A - 一种提高矫顽力和磁能积的铈铁硼磁体合金条带 - Google Patents

一种提高矫顽力和磁能积的铈铁硼磁体合金条带 Download PDF

Info

Publication number
CN106920618A
CN106920618A CN201710182543.3A CN201710182543A CN106920618A CN 106920618 A CN106920618 A CN 106920618A CN 201710182543 A CN201710182543 A CN 201710182543A CN 106920618 A CN106920618 A CN 106920618A
Authority
CN
China
Prior art keywords
boron magnet
magnet alloy
band
energy product
magnetic energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710182543.3A
Other languages
English (en)
Inventor
陈方
徐锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201710182543.3A priority Critical patent/CN106920618A/zh
Publication of CN106920618A publication Critical patent/CN106920618A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本发明公开了一种提高矫顽力和磁能积的铈铁硼磁体合金条带,所述铈铁硼磁体合金条带的化学式为Ce2Fe14B(NdAl)x,其中x为0.1、0.2、0.3或0.4。本发明的提高矫顽力和磁能积的铈铁硼磁体合金条带与现有技术相比矫顽力和磁能积大大的提高了,虽然合金条带中添加了稀土Nd元素,但Nd元素只占稀土含量的13.04%,只用极少的Nd元素就大大提高了铈铁硼合金条带的磁性能。

Description

一种提高矫顽力和磁能积的铈铁硼磁体合金条带
技术领域
本发明涉及一种提高矫顽力和磁能积的铈铁硼磁体合金条带。
背景技术
稀土NdFeB永磁材料性能优越,应用广泛,需求量逐年增大。在钕铁硼材料中,Nd的成本约占到整个磁体的90%。由于稀土矿藏的共生性及储量有限,随着钕铁硼磁体需求的逐年增加,Nd元素价格不断上涨,同时高丰度而且低价格的稀土Ce元素大量积压。由于铈铁硼磁体性能较差,不能代替钕铁硼磁体进行使用,所以提高铈铁硼磁体的性能是铈铁硼磁体开发的前提。
因此,需要一种新的铈铁硼磁体合金条带以解决上述问题。
发明内容
为解决现有技术存在的缺陷,提供一种提高矫顽力和磁能积的铈铁硼磁体合金条带。
为了实现上述目标,本发明采用如下的技术方案:
一种提高矫顽力和磁能积的铈铁硼磁体合金条带,所述铈铁硼磁体合金条带的化学式为Ce2Fe14B(NdAl)x,其中x为0.1、0.2、0.3或0.4。
更进一步的,x为0.3。此时,合金条带矫顽力最大,最大磁能积最高。Ce2Fe14B(NdAl)0.3合金条带磁性能为Br=8.15KGs,Hcj=6.61KOe,(BH)max=11.48MGOe。
更进一步的,所述铈铁硼磁体合金条带在600℃±10℃的温度下,热处理10min-60min。经过热处理后,生成足够多的Ce2Fe14B相,并且生成的Ce2Fe14B相晶粒足够的小。在保证形成足够大的剩磁条件下,获得够大的矫顽力。
更进一步的,所述铈铁硼磁体合金条带在600℃的温度下,热处理20min。此时,经过热处理后,生成相对更多的Ce2Fe14B相,并且生成的Ce2Fe14B相晶粒更小。在保证形成足够大的剩磁条件下,获得最大的矫顽力。
有益效果:本发明的提高矫顽力和磁能积的铈铁硼磁体合金条带与现有技术相比矫顽力和磁能积大大的提高了,虽然合金条带中添加了稀土Nd元素,但Nd元素只占稀土含量的13.04%,只用极少的Nd元素就大大提高了铈铁硼合金条带的磁性能。
本发明还公开了一种提高矫顽力和磁能积的铈铁硼磁体合金条带的制备方法,包括以下步骤:
1)、根据所述铈铁硼磁体合金条带的化学式Ce2Fe14B(NdAl)x称取Ce2Fe14B和NdAl,其中x为0.1、0.2、0.3或0.4;
2)、将步骤1)得到的Ce2Fe14B和NdAl在高纯氩气氛围下进行快淬甩带,得到所述铈铁硼磁体合金条带。
更进一步的,步骤2)中对Ce2Fe14B和NdAl进行快淬甩带之前先进行预熔炼。合金条带制备过程中Ce2Fe14B、NdAl进行预熔炼,预熔炼后按比例混合进行快淬甩带。
更进一步的,步骤2)中快淬甩带的快淬速率为20m/s。
更进一步的,步骤1)中x为0.3。此时,合金条带矫顽力最大,最大磁能积最高。Ce2Fe14B(NdAl)0.3合金条带磁性能为Br=8.15KGs,Hcj=6.61KOe,(BH)max=11.48MGOe。
有益效果:本发明的提高矫顽力和磁能积的铈铁硼磁体合金条带的制备方法简单方便,容易实施,制备得到的铈铁硼磁体合金条带与现有技术相比矫顽力和磁能积大大的提高了,且只用极少的Nd元素就大大提高了铈铁硼合金条带的磁性能。
附图说明
图1为Ce2Fe14B(NdAl)x(x=0.1、0.2、0.3、0.4)合金条带600℃、20min热处理后的磁滞回线;
图2是Ce2Fe14B(NdAl)x(x=0.1、0.2、0.3、0.4)未经过热处理时的磁滞回线;
图3是Ce2Fe14B(NdAl)x(x=0.1、0.2、0.3、0.4)合金条带650℃、5min热处理后的磁滞回线;
图4为Ce2Fe14B(NdAl)x(x=0.1、0.2、0.3、0.4)合金条带600℃、20min热处理后的XRD衍射数据;
图5是Ce2Fe14B(NdAl)x(x=0.1、0.2、0.3、0.4)未经过热处理时的XRD衍射数据;
图6是Ce2Fe14B(NdAl)x(x=0.1、0.2、0.3、0.4)合金条带650℃、5min热处理后的XRD衍射数据。
具体实施方式
以下结合具体实施例对本发明作具体的介绍。
本发明的提高矫顽力和磁能积的铈铁硼磁体合金条带,首先,制备Ce2Fe14B、NdAl成分的合金铸锭,其中,合金铸锭的制备方法为高纯氩气氛围保护下电弧熔炼。其次,将得到的Ce2Fe14B和NdAl在高纯氩气氛围下进行快淬甩带,得到铈铁硼磁体合金条带。快淬条带制备也是在高纯氩气氛围下进行感应熔炼并快淬甩带,快淬速率为20m/s。条带在真空条件下进行600℃,20min的热处理,并对原始条带和热处理条带样品进行测试分析。
本发明首先制备Ce2Fe14B、NdAl成分的合金铸锭。然后将铸锭按Ce2Fe14B(NdAl)x成分配比并进行快淬熔炼甩带,其中x为0.1、0.2、0.3和0.4。优选的,x为0.3。
实施例1:
利用振动样品磁强计(Vibrating Sample Magnetometer:VSM)进行磁性能的测试。
图1为Ce2Fe14B(NdAl)x(x=0.1、0.2、0.3、0.4)合金条带600℃、20min热处理后的磁滞回线,当x=0.3时,合金条带获得了最优的磁性能,剩磁为8.15KGs,矫顽力为6.61KOe,最大磁能积为11.48MGOe。
图2是Ce2Fe14B(NdAl)x(x=0.1、0.2、0.3、0.4)未经过热处理时的磁滞回线,x=0.1的条带表现出非晶的磁性能,x=0.3的样品也存在部分非晶,x=0.4的样品矫顽力6.98kOe。
图3是Ce2Fe14B(NdAl)x(x=0.1、0.2、0.3、0.4)合金条带650℃、5min热处理后的磁滞回线,热处理后合金条带磁性能大致相同,表明热处理温度过高。
实施例2:
利用X射线衍射仪(X-ray Diffraction:XRD)测了合金条带的物相结构。
图4为Ce2Fe14B(NdAl)x(x=0.1、0.2、0.3、0.4)合金条带600℃、20min热处理后的XRD图谱。所有合金条带都显示为Ce2Fe14B相,而且条带衍射峰强度不高,合金条带晶粒较细,保证了合金条带有足够的矫顽力。
图5是Ce2Fe14B(NdAl)x(x=0.1、0.2、0.3、0.4)未经过热处理时的XRD图谱。在x=0.1时,合金条带为非晶;在x=0.2、0.3、0.4时,合金条带中出现极少量的Ce2Fe14B相。
图6是Ce2Fe14B(NdAl)x(x=0.1、0.2、0.3、0.4)合金条带650℃、5min热处理后的XRD图谱。所有条带中都出现大量的Ce2Fe14B相,而且衍射峰强度较强,Ce2Fe14B晶粒较大。

Claims (8)

1.一种提高矫顽力和磁能积的铈铁硼磁体合金条带,其特征在于,所述铈铁硼磁体合金条带的化学式为Ce2Fe14B(NdAl)x,其中x为0.1、0.2、0.3或0.4。
2.如权利要求1所述的提高矫顽力和磁能积的铈铁硼磁体合金条带,其特征在于,x为0.3。
3.如权利要求1所述的提高矫顽力和磁能积的铈铁硼磁体合金条带,其特征在于,所述铈铁硼磁体合金条带在600℃±10℃的温度下,热处理10min-60min。
4.如权利要求3所述的提高矫顽力和磁能积的铈铁硼磁体合金条带,其特征在于,所述铈铁硼磁体合金条带在600℃的温度下,热处理20min。
5.一种提高矫顽力和磁能积的铈铁硼磁体合金条带的制备方法,其特征在于,包括以下步骤:
1)、根据所述铈铁硼磁体合金条带的化学式Ce2Fe14B(NdAl)x称取Ce2Fe14B和NdAl,其中x为0.1、0.2、0.3或0.4;
2)、将步骤1)得到的Ce2Fe14B和NdAl在高纯氩气氛围下进行快淬甩带,得到所述铈铁硼磁体合金条带。
6.如权利要求5所述的提高矫顽力和磁能积的铈铁硼磁体合金条带的制备方法,其特征在于,步骤2)中对Ce2Fe14B和NdAl进行快淬甩带之前先进行预熔炼。
7.如权利要求5所述的提高矫顽力和磁能积的铈铁硼磁体合金条带的制备方法,其特征在于,步骤2)中快淬甩带的快淬速率为20m/s。
8.如权利要求5所述的提高矫顽力和磁能积的铈铁硼磁体合金条带的制备方法,其特征在于,步骤1)中x为0.3。
CN201710182543.3A 2017-03-24 2017-03-24 一种提高矫顽力和磁能积的铈铁硼磁体合金条带 Pending CN106920618A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710182543.3A CN106920618A (zh) 2017-03-24 2017-03-24 一种提高矫顽力和磁能积的铈铁硼磁体合金条带

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710182543.3A CN106920618A (zh) 2017-03-24 2017-03-24 一种提高矫顽力和磁能积的铈铁硼磁体合金条带

Publications (1)

Publication Number Publication Date
CN106920618A true CN106920618A (zh) 2017-07-04

Family

ID=59460322

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710182543.3A Pending CN106920618A (zh) 2017-03-24 2017-03-24 一种提高矫顽力和磁能积的铈铁硼磁体合金条带

Country Status (1)

Country Link
CN (1) CN106920618A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6181604A (ja) * 1984-09-04 1986-04-25 Tohoku Metal Ind Ltd 希土類磁石の製造方法
CN106128670A (zh) * 2016-06-12 2016-11-16 钢铁研究总院 一种低成本稀土铁硼永磁体及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6181604A (ja) * 1984-09-04 1986-04-25 Tohoku Metal Ind Ltd 希土類磁石の製造方法
CN106128670A (zh) * 2016-06-12 2016-11-16 钢铁研究总院 一种低成本稀土铁硼永磁体及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J. F. HERBST: "Magnetic hardening of Ce2Fe14B", 《JOURNAL OF APPLIED PHYSICS》 *

Similar Documents

Publication Publication Date Title
CN104505206B (zh) 一种高矫顽力烧结钕铁硼的制备方法及产品
Lixandru et al. A systematic study of HDDR processing conditions for the recycling of end-of-life Nd-Fe-B magnets
CN103903824B (zh) 一种稀土永磁材料及其制备方法
CN103056370B (zh) 一种提高烧结钕铁硼磁材料矫顽力的方法
Xing et al. Anisotropic ternary Ce13Fe80B7 powders prepared by hydrogenation–disproportionation–desorption–recombination process and the diffusion of Ce–Cu eutectic alloys
JP2016509365A (ja) NdFeB系焼結磁石及びその製造方法
CN104112580A (zh) 一种稀土永磁体的制备方法
CN102510782A (zh) 磁体用粉末
CN106710765A (zh) 一种高矫顽力烧结钕铁硼磁体及其制备方法
Jiang et al. Magnetic properties and microstructure of melt-spun Ce17Fe78− xB6Hfx (x= 0–1.0) alloys
Zhang et al. Phase precipitation behavior of melt-spun ternary Ce2Fe14B alloy during rapid quenching and heat treatment
Minxiang et al. Effect of Terbium addition on the coercivity of the sintered NdFeB magnets
CN101699578A (zh) 稀土铁氮高频软磁材料及其复合材料和制备方法
CN102610346B (zh) 一种新型无稀土纳米复合永磁材料及其制备方法
Wang et al. Mössbauer and TEM studies of the phase composition and structure of (Nd 1− x Ce x) 32.7 Fe 66.22 B 1.08 ribbons
CN105336488A (zh) 提高Fe3B/Nd2Fe14B系磁性合金内禀矫顽力的制备方法
CN104733145A (zh) 稀土类磁铁
CN105304250B (zh) 一种镧铈基永磁材料及其制备方法和应用
Huang et al. Effects and regulation mechanisms of post-sinter annealing treatment on magnetic properties and microstructures of Nd-Fe-B sintered magnets with varying boron contents
CN107312982A (zh) 一种纯τ相MnAl基硬磁合金及其制备方法
CN107393670A (zh) 一种高性能MnBi基永磁合金及其制备方法
Zhang et al. Hard magnetic properties in melt-spun Co80Zr18− xMoxB2 alloys
Hou et al. Effects of Nb substitution for Zr on the phases, microstructure and magnetic properties of Co80Zr18− xNbxB2 melt-spun ribbons
Pei et al. Effect of reduction-diffusion time on microstructure and properties of Nd-Fe-B nanoparticles prepared by low-energy chemical method
CN115938771B (zh) 一种SmFexM12-x纳米晶永磁材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170704