CN106910681B - 一种室温环境下激励砷化镓中金属原子扩散的方法 - Google Patents

一种室温环境下激励砷化镓中金属原子扩散的方法 Download PDF

Info

Publication number
CN106910681B
CN106910681B CN201510977322.6A CN201510977322A CN106910681B CN 106910681 B CN106910681 B CN 106910681B CN 201510977322 A CN201510977322 A CN 201510977322A CN 106910681 B CN106910681 B CN 106910681B
Authority
CN
China
Prior art keywords
gallium arsenide
metal atoms
room temperature
inductively coupled
coupled plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510977322.6A
Other languages
English (en)
Other versions
CN106910681A (zh
Inventor
秦国刚
李磊
侯瑞祥
姚利
徐万劲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Naura Microelectronics Equipment Co Ltd
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN201510977322.6A priority Critical patent/CN106910681B/zh
Publication of CN106910681A publication Critical patent/CN106910681A/zh
Application granted granted Critical
Publication of CN106910681B publication Critical patent/CN106910681B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/223Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a gaseous phase
    • H01L21/2233Diffusion into or out of AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/223Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a gaseous phase
    • H01L21/2236Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a gaseous phase from or into a plasma phase

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开了一种激励砷化镓中金属原子扩散的方法,是在室温环境下对砷化镓材料或砷化镓器件进行电感耦合等离子体(ICP)处理,激励砷化镓中的金属原子发生扩散。该方法简单快捷,在室温环境下实现,不仅可用于改善砷化镓材料的性能,还可用于改善砷化镓器件的性能。

Description

一种室温环境下激励砷化镓中金属原子扩散的方法
技术领域
本发明涉及激励砷化镓中金属杂质扩散的方法,特别涉及一种在室温而非高温的环境下激励砷化镓单晶中的金属原子扩散的方法。
背景技术
砷化镓中含有如锰、铬、镁,锌和铝等微量金属杂质,且器件在制备过程中不可避免地掺进一些金属杂质,特别是过渡金属杂质在砷化镓中往往表现为深能级中心并且对材料的电学性质有很大影响。深能级中心可以影响器件的性能和可靠性。它的存在有利有弊,有些金属杂质会补偿决定材料导电类型和导电率的浅杂质,并降低非平衡载流子寿命,对砷化镓材料和器件的性能有不利影响。另一方面,在有些砷化镓器件的制造过程中,过渡金属杂质在砷化镓中的扩散是不可少的一步。例如,铬在砷化镓器件中能级位于禁带中央附近,掺入后可补偿浅杂质,使GaAs变成电阻率很高的半绝缘GaAs。
金属杂质在砷化镓中的室温扩散系数很小,室温下,砷化镓中几乎观察不到金属杂质的扩散。金属杂质在高温才有明显的扩散,扩散的温度往往高达七八百摄氏度。由于砷化镓中的砷易挥发性,当温度接近700摄氏度时,砷的挥发使砷化镓单晶产生大量砷空位,可能导致砷化镓材料和器件的性能严重退化。为在砷化镓中进行杂质的高温扩散,须在其表面生长一层二氧化硅或氮化硅等介质保护膜。即使这样,高温下,砷化镓中的镓和砷容易和氧发生反应,另外,杂质和缺陷之间也可能发生相互作用,从而引入了新的杂质-缺陷复合物,影响砷化镓材料和器件的性能。
发明内容
本发明的目的在于提供一种在室温环境下简单便捷的激励砷化镓材料中金属原子扩散的方法。
本发明的技术方案如下:
一种激励砷化镓中金属原子扩散的方法,在室温环境下对砷化镓材料或砷化镓器件进行电感耦合等离子体(Inductively Coupled Plasma,以下简称ICP)处理,激励砷化镓中的金属原子发生扩散。
ICP处理的载气为惰性气体,例如氦气,真空度至少为1E-2Pa,通常在5E-3Pa左右。
进一步的,ICP处理的功率为50~5000W,优选为100~1000W,更优选为500~1000W;处理时间为30sec~30min,优选为1min~5min。
所述金属原子包括过渡金属原子和非过渡金属原子,过渡金属原子包括Ti、Cr、Fe、Cu等过渡金属原子,非过渡金属原子包括Al、Ca、Mg、Li等非过渡金属原子。
实验证据表明,较大功率的ICP处理不仅能够在砷化镓材料(或砷化镓器件)的表面形成缺陷区,而且还能驱动许多金属杂质向所形成的表面缺陷区扩散。也就是说,室温环境下,采用较大功率的ICP处理可以激励砷化镓中金属原子扩散。
本发明的室温环境下通过ICP激励砷化镓中金属原子扩散的方法,其可能的原理如下:
以载气为氦气为例,在ICP处理过程中,ICP中13.6MHz射频和磁场将电子加速,电子与载气中He原子碰撞,将其离化成He+离子和电子等离子体。砷化镓片受He+离子轰击,其表面形成许多空位型缺陷。在等离子体中电子温度很高,可达2000-10000K。等离子体中的正离子和电子撞击砷化镓片表面,导致表面空位型缺陷区。在砷化镓中金属杂质主要以代位形式存在:杂质原子M处于Ga原子位,记为MGa;M取代As原子位,记为MAs。杂质原子处于间隙时记为MI。处于代位的杂质原子浓度[MGa]﹢[MAs]>>M处于间隙的浓度[MI]。在砷化镓中MI的扩散系数大于MGa和MAs的扩散系数,这是因为处于代位的杂质原子的扩散要以近邻存在空位为前提,而MI的扩散不需要此前提。由液封直拉法生长的砷化镓中体内含氧量为1016cm-3左右,砷化镓中大部分金属杂质Fe、Mn、Cr等金属原子易被氧化,金属杂质原子与氧结合后形成金属杂质氧化物,其扩散系数远比代位的金属杂质为低。当ICP产生的空位VGa和VAs运动到上述氧化物旁边时,镓空位和砷空位将氧化物中的氧夺去,形成氧空位VGaO或VAsO,而M被还原,进入代位位置,成为MGa或MAs,它们的扩散系数远大于金属杂质氧化物。另外,ICP产生的空位型缺陷能产生大量空位,其存在大大有利于代位金属杂质原子在硅中扩散,使室温扩散成为可能。
如前所述,ICP处理的砷化镓表面存在许多空位型缺陷,MI进入这些缺陷,其浓度降低,导致表面MI的密度比体内为少,这就解释了该实验中金属原子的扩散方向是从体内到表面。
本发明在室温环境下利用较大功率的电感耦合等离子体来处理砷化镓样品,激励了金属原子的扩散。由于本方法在室温环境下实现,不仅有可能用于改善砷化镓材料的性能,还可能用于改善砷化镓器件的性能。
附图说明
图1.ICP 750W 2min处理和不做任何处理的n型砷化镓中Mn原子浓度分布的SIMS测量结果。
图2.ICP 750W 2min处理和不做任何处理的n型砷化镓中Cr原子浓度分布的SIMS测量结果。
图3.ICP 750W 2min处理和不做任何处理的n型砷化镓中Mg原子浓度分布的SIMS测量结果。
具体实施方式
下面结合实施例对本发明作进一步说明,但不以任何方式限制本发明的范围。
实施例1:
选用液封直拉法生长的n型砷化镓单晶,单面抛光,电阻率106Ω·cm。首先将砷化镓用丙酮、乙醇、去离子水分别进行超声清洗10min。接着对砷化镓片的抛光面进行ICP处理,载气为氦气,流量22sccm,真空度5E-3Pa左右,处理时间2min,功率选用750W。之后利用SIMS手段得到经ICP处理后的样品中Mn杂质浓度随深度的分布,结果如图1所示。由图1可以看出,表面附近Mn的浓度大大增加,说明体内的Mn在ICP激励下从体内扩散到表面,从而证实了室温环境下ICP激励砷化镓中Mn杂质的扩散。
实施例2:
选用液封直拉法生长的n型砷化镓单晶,单面抛光,电阻率106Ω·cm。首先将砷化镓用丙酮、乙醇、去离子水分别进行超声清洗10min。接着对砷化镓片的抛光面进行ICP处理,载气为氦气,流量22sccm,真空度5E-3Pa左右,处理时间2min,功率选用750W。之后利用SIMS手段得到经ICP处理后的样品中Cr杂质浓度随深度的分布,结果如图2所示。由图2可以看出,表面附近Cr的浓度大大增加,说明体内的Cr在ICP激励下从体内扩散到表面,从而证实了室温环境下ICP激励砷化镓中Cr杂质扩散。
实施例3:
选用液封直拉法生长的n型砷化镓单晶,单面抛光,电阻率106Ω·cm。首先将砷化镓用丙酮、乙醇、去离子水分别进行超声清洗10min。接着对砷化镓片的抛光面进行ICP处理,载气为氦气,流量22sccm,真空度5E-3Pa左右,处理时间2min,功率选用750W。之后利用SIMS手段得到经ICP处理后的样品中Mg杂质浓度随深度的分布,结果如图3所示。由图3可以看出,表面附近Mg的浓度大大增加,说明体内的Mg在ICP激励下从体内扩散到表面,从而证实了室温环境下ICP激励砷化镓中Mg杂质的扩散。

Claims (10)

1.一种激励砷化镓中金属原子扩散的方法,其特征在于,在室温环境下对砷化镓材料或砷化镓器件进行电感耦合等离子体处理,激励砷化镓中的金属原子发生扩散。
2.如权利要求1所述的方法,其特征在于,进行电感耦合等离子体处理的载气为惰性气体,真空度至少为1E-2Pa。
3.如权利要求2所述的方法,其特征在于,进行电感耦合等离子体处理的载气为氦气。
4.如权利要求1所述的方法,其特征在于,电感耦合等离子体处理的功率为50~5000W。
5.如权利要求4所述的方法,其特征在于,电感耦合等离子体处理的功率为100~1000W。
6.如权利要求5所述的方法,其特征在于,电感耦合等离子体处理的功率为500~1000W。
7.如权利要求1所述的方法,其特征在于,电感耦合等离子体处理的时间为30sec~30min。
8.如权利要求7所述的方法,其特征在于,电感耦合等离子体处理的时间为1min~5min。
9.如权利要求1所述的方法,其特征在于,所述金属原子包括过渡金属原子和非过渡金属原子。
10.如权利要求9所述的方法,其特征在于,所述过渡金属原子包括下列元素中的一种或多种:Ti、Cr、Fe和Cu;所述非过渡金属原子包括下列元素中的一种或多种:Al、Ca、Mg和Li。
CN201510977322.6A 2015-12-23 2015-12-23 一种室温环境下激励砷化镓中金属原子扩散的方法 Active CN106910681B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510977322.6A CN106910681B (zh) 2015-12-23 2015-12-23 一种室温环境下激励砷化镓中金属原子扩散的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510977322.6A CN106910681B (zh) 2015-12-23 2015-12-23 一种室温环境下激励砷化镓中金属原子扩散的方法

Publications (2)

Publication Number Publication Date
CN106910681A CN106910681A (zh) 2017-06-30
CN106910681B true CN106910681B (zh) 2019-12-13

Family

ID=59199443

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510977322.6A Active CN106910681B (zh) 2015-12-23 2015-12-23 一种室温环境下激励砷化镓中金属原子扩散的方法

Country Status (1)

Country Link
CN (1) CN106910681B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101471408A (zh) * 2007-12-28 2009-07-01 北京大学 镁掺杂氮化镓基材料和发光二极管p型氮化镓的激活方法
CN103794473A (zh) * 2014-01-28 2014-05-14 北京大学 一种室温下吸除硅晶片或硅器件中过渡金属杂质的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102906305B (zh) * 2010-04-15 2016-01-13 诺发系统公司 气体和液体的喷射的方法和装置
CN104882377A (zh) * 2015-04-21 2015-09-02 北京大学 一种室温下吸除硅材料中金属杂质的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101471408A (zh) * 2007-12-28 2009-07-01 北京大学 镁掺杂氮化镓基材料和发光二极管p型氮化镓的激活方法
CN103794473A (zh) * 2014-01-28 2014-05-14 北京大学 一种室温下吸除硅晶片或硅器件中过渡金属杂质的方法

Also Published As

Publication number Publication date
CN106910681A (zh) 2017-06-30

Similar Documents

Publication Publication Date Title
US20240297201A1 (en) Method of producing semiconductor epitaxial wafer, semiconductor epitaxial wafer, and method of producing solid-state image sensing device
Park et al. Dry etching of ZnO films and plasma-induced damage to optical properties
Dorofeev et al. Erbium luminescence in porous silicon doped from spin‐on films
US20240282801A1 (en) Method of producing semiconductor epitaxial wafer, semiconductor epitaxial wafer, and method of producing solid-state image sensing device
JP4184789B2 (ja) M’nベース物質の生成装置及び生成方法
EP2471981A1 (en) Sic single crystal wafer and process for production thereof
Huh et al. Effective sulfur passivation of an n-type GaN surface by an alcohol-based sulfide solution
KR20180034318A (ko) 결정질 산화물 반도체 박막, 결정질 산화물 반도체 박막의 제조 방법 및 박막 트랜지스터
CN109904054B (zh) 腔室环境恢复方法及刻蚀方法
Lee et al. Removal of dry etch damage in p-type GaN by wet etching of sacrificial oxide layer
CN105931951B (zh) 一种在室温环境下向砷化镓材料引入杂质的方法
CN106910681B (zh) 一种室温环境下激励砷化镓中金属原子扩散的方法
Senzaki et al. Influences of postimplantation annealing conditions on resistance lowering in high-phosphorus-implanted 4H–SiC
Basak et al. Effect of reactive ion etching on the yellow luminescence of GaN
CN114496721A (zh) 一种碳化硅器件正面结构保护方法和装置
US11626492B2 (en) Semiconductor epitaxial wafer and method of producing the same
CN106328474A (zh) 一种在室温环境下向氮化镓中引入杂质的方法
KR20160146665A (ko) 산화물 소결체, 스퍼터링용 타겟, 및 그것을 이용하여 얻어지는 산화물 반도체 박막
CN105513948B (zh) 一种砷化镓材料表面的改性方法
CN113223929A (zh) 基于非平衡激光等离子体的氧化镓高效掺杂方法
Oder et al. Properties of zno thin films codoped with lithium and phosphorus
CN113555283A (zh) 一种刻蚀GaN基高电子迁移率晶体管异质结的方法
CN109473346B (zh) 一种向砷化镓材料引入杂质并加以激活的方法
Wang et al. The effect of argon plasma cleaning on the surface characteristics of GaAs substrate
Basak et al. Characterization of reactive ion etched surface of GaN using methane gas with chlorine plasma

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230912

Address after: 100176 Beijing Daxing District Beijing economic and Technological Development Zone Wenchang Road 8

Patentee after: BEIJING NAURA MICROELECTRONICS EQUIPMENT Co.,Ltd.

Address before: 100871 No. 5, the Summer Palace Road, Beijing, Haidian District

Patentee before: Peking University