CN106905546A - 一种高强高导电复合纤维增强复合材料的制备方法 - Google Patents

一种高强高导电复合纤维增强复合材料的制备方法 Download PDF

Info

Publication number
CN106905546A
CN106905546A CN201710088664.1A CN201710088664A CN106905546A CN 106905546 A CN106905546 A CN 106905546A CN 201710088664 A CN201710088664 A CN 201710088664A CN 106905546 A CN106905546 A CN 106905546A
Authority
CN
China
Prior art keywords
composite
fibre
carbon
carbon fiber
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710088664.1A
Other languages
English (en)
Other versions
CN106905546B (zh
Inventor
梅辉
夏俊超
张鼎
韩道洋
肖珊珊
成来飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201710088664.1A priority Critical patent/CN106905546B/zh
Publication of CN106905546A publication Critical patent/CN106905546A/zh
Application granted granted Critical
Publication of CN106905546B publication Critical patent/CN106905546B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/047Reinforcing macromolecular compounds with loose or coherent fibrous material with mixed fibrous material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5284Hollow fibers, e.g. nanotubes
    • C04B2235/5288Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/04Condensation polymers of aldehydes or ketones with phenols only
    • C08J2361/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)
  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Inorganic Fibers (AREA)

Abstract

本发明涉及一种高强高导电复合纤维增强复合材料的制备方法,首先通过绕线设备将碳纤维与碳纳米管纤维缠绕在一起形成复合纤维,该复合纤维结合了碳纤维的高强度与碳纳米管纤维的高导电性,同时保持了很好的可编织性能。在该复合纤维上制备陶瓷或树脂基体即可制备一维碳纳米管纤维与碳纤维协同增强复合材料。对复合纤维进行多维编织可制备二维、三维预制体,在预制体上制备陶瓷或树脂基体可制备多维复合材料。该复合材料具有良好的力学性能,同时由于碳纳米管纤维的加入而相较碳纤维增强复合材料具有更好的导电性能与电磁屏蔽性能。该方法开辟了结构功能一体化复合材料制备的新途径。

Description

一种高强高导电复合纤维增强复合材料的制备方法
技术领域
本发明属于纤维增强复合材料制备方法,涉及一种高强高导电复合纤维增强复合材料的制备方法,具体涉及将碳纤维与碳纳米管纤维缠绕形成复合纤维,在复合纤维预制体上制备陶瓷或树脂基体,从而制备结构功能一体化复合材料的方法。
背景技术
碳纤维具有耐高温、轻质、高强度和高模量等特点,具有优异的增强增韧效果,被广泛用于制备树脂或陶瓷基复合材料。碳纤维增强复合材料在众多轻量化材料中具有较高的比强度、比刚性,轻量化效果十分明显,在航空航天、军工产品中得到广泛应用。目前,复合材料发展的趋势是结构功能一体化,碳纤维增强复合材料在力学性能上表现优异,而功能性能上表现一般。
碳纳米管具有优异的导电导热性能,将碳纳米管加入到碳纤维增强复合材料中不仅能有效提高复合材料力学性能,更能提高复合材料的导电性、电磁屏蔽与导热等功能性能。文献“H.Mei,D.Y.Han,S.S.Xiao,et al.Improvement of the electromagneticshielding properties of C/SiC composites by electrophoretic deposition ofcarbon nanotube on carbon fibers[J].Carbon,2016,109:149-153.”公开了一种CNTs/C/SiC复合材料的制备方法,通过电泳沉积的方法将CNTs沉积到C碳纤维表面,再通过CVI方法沉积SiC陶瓷基体,所制备的复合材料电磁屏蔽性能相比C/SiC复合材料提高了56%。中国专利CN201610280043.9公开了一种阵列碳纳米管/碳纤维/碳化硅导热复合材料的制备方法,通过化学气相沉积法在C纤维织物表面生长了碳纳米管,再通过聚合物浸渍裂解制备CNTs/C/SiC复合材料具有优异的导热性能。中国专利CN201210424541.8公开了一种冷冻干燥辅助制备碳纤维/碳纳米管/环氧树脂复合材料制备方法,通过将碳纤维预制体浸入到碳纳米管溶液中后冷冻干燥得到碳纤维与碳纳米管的复合预制体,通过真空辅助RTM工艺制备环氧树脂基体得到碳纤维/碳纳米管/环氧树脂复合材料。通过上述方法均能制备碳纤维与碳纳米管复合预制体,但由于碳纳米管引入量有限,因此复合材料功能性能提高也有限。
碳纳米管纤维是碳纳米管的宏观集合体,其继承了单根碳管优异的导电导热性能,将碳纳米管纤维与碳纤维缠绕形成复合纤维。复合纤维同时继承了碳纤维优异的力学性能以及碳纳米管纤维优异的导电导热性能,且碳纳米管含量高、可控,以此复合纤维为预制体制备复合材料可实现复合材料结构——功能一体化。
发明内容
要解决的技术问题
为了避免现有技术的不足之处,本发明提出一种高强高导电复合纤维增强复合材料的制备方法,将碳纤维与碳纳米管纤维缠绕形成复合纤维,结合两种纤维的优点,克服了单一碳纤维增强复合材料力学性能良好而功能性能不足的缺点。
技术方案
一种高强高导电复合纤维增强复合材料的制备方法,其特征在于步骤如下:
步骤1:将碳纤维与碳纳米管纤维相互缠绕形成复合纤维,复合纤维直径0.5~0.8mm;
步骤2:将绕线完成后的复合纤维放置于化学沉积炉中沉积PyC界面层,沉积温度960℃,压力0.2KPa,丙烯流量500ml/min,Ar气流量300ml/min,沉积时间6h;
步骤3:将沉积完界面层的复合纤维放入化学沉积炉中沉积SiC基体,氢气为载气和稀释气,流量分别为250ml/min和350ml/min,三氯甲基硅烷为反应气体,其与氢气的摩尔比为10:1,沉积温度1060℃,沉积时间40h得到一维碳纤维/碳纳米管纤维/碳化硅陶瓷基复合材料;
或以酒精为溶剂,配置质量分数25%的酚醛树脂溶液;将复合纤维浸入树脂溶液中,浸泡1h后取出,置于空气中12h待溶剂挥发完全后放入200℃烘箱中固化2h得到一维碳纤维/碳纳米管纤维/酚醛树脂基复合材料。
在步骤2之前,将绕线完成后的复合纤维进行二维编织形成纤维布,然后进行步骤3和步骤4,得到三维碳纤维/碳纳米管纤维/碳化硅陶瓷基复合材料或三维碳纤维/碳纳米管纤维/酚醛树脂基复合材料。
所述碳纤维的单根直径5~10μm,碳纤维束K数为1~10。
所述碳纤维为:聚丙烯晴基碳纤维、沥青基碳纤维、黏胶基碳纤维或气相生长碳纤维。
所述碳纳米管纤维为:溶液纺丝纤维、阵列抽丝纤维、浮动CVD直接纺丝纤维或膜捻纤维。
所述碳纳米管纤维直径0.1~0.8mm。
所述将碳纤维与碳纳米管纤维相互缠绕形成复合纤维的方法是:将一束碳纤维与碳纳米管纤维的一端分别固定在绕线装置转盘上,将碳纤维与碳纳米管纤维的另一端固定在绕线装置的定点上;驱动绕线装置转盘转动,转盘转动过程中带动两种纤维一端转动,由于另一端固定,使得两种纤维将缠绕在一起形成复合纤维。
所述绕线装置转盘直径0.5~2cm,转速10~120r/min。
有益效果
本发明提出的一种高强高导电复合纤维增强复合材料的制备方法,首先通过绕线设备将碳纤维与碳纳米管纤维缠绕在一起形成复合纤维,该复合纤维结合了碳纤维的高强度与碳纳米管纤维的高导电性,同时保持了很好的可编织性能。在该复合纤维上制备陶瓷或树脂基体即可制备一维碳纳米管纤维与碳纤维协同增强复合材料。对复合纤维进行多维编织可制备二维、三维预制体,在预制体上制备陶瓷或树脂基体可制备多维复合材料。该复合材料具有良好的力学性能,同时由于碳纳米管纤维的加入而相较碳纤维增强复合材料具有更好的导电性能与电磁屏蔽性能。该方法开辟了结构功能一体化复合材料制备的新途径。
本发明将碳纤维与碳纳米管纤维缠绕形成复合纤维,结合两种纤维的优点,同时复合纤维可编织性能良好。通过对复合纤维进行编织得到预制体,在预制体中制备陶瓷或树脂基体得到结构——功能一体化复合材料。
附图说明
图1:复合纤维制备方法示意图
图2:通过化学气相沉积法制备的复合纤维陶瓷基复合材料宏观照片和微结构照片;
a,复合纤维SiC陶瓷基复合材料的数码照片;
b,复合纤维SiC陶瓷基复合材料侧面微结构;
c,复合纤维SiC陶瓷基复合材料端面微结构;
d,碳纤维为碳纳米管纤维间结合结构。
具体实施方式
现结合实施例、附图对本发明作进一步描述:
实施例1:
将碳纳米管膜裁成5mm条,加捻形成碳纳米管纤维,纤维直径约0.4mm。碳纤维选择T300纤维,K数3,纤维直径7μm。采用图1所示的简易绕线设备,AB两点间间距1cm,将碳纤维与碳纳米管纤维的一端固定在图中C点处,另一端分别固定在A点与B点处。启动步进电机,控制其转速20r/min,对两种纤维进行绕线。将绕线完成后的复合纤维放置于化学沉积炉中沉积PyC界面层,沉积温度960℃,压力0.2KPa,丙烯流量500ml/min,Ar气流量300ml/min,沉积时间6h。将沉积完界面层的复合纤维放入化学沉积炉中沉积SiC基体,氢气为载气和稀释气,流量分别为250ml/min和350ml/min,三氯甲基硅烷为反应气体,其与氢气的摩尔比为10:1,沉积温度1060℃,沉积时间40h得到一维碳纤维/碳纳米管纤维/碳化硅陶瓷基复合材料。
实施例2:
将碳纳米管膜裁成5mm条,加捻形成碳纳米管纤维,纤维直径约0.4mm。碳纤维选择T300纤维,K数3,纤维直径7μm。采用图1所示的简易绕线设备,AB两点间间距1cm,将碳纤维与碳纳米管纤维的一端固定在图中C点处,另一端分别固定在A点与B点处。启动步进电机,控制其转速20r/min,对两种纤维进行绕线。以酒精为溶剂,配置质量分数25%的酚醛树脂溶液。将复合纤维浸入树脂溶液中,浸泡1h后取出,置于空气中12h待溶剂挥发完全后放入200℃烘箱中固化2h得到一维碳纤维/碳纳米管纤维/酚醛树脂基复合材料。
实施例3:
将碳纳米管膜裁成5mm条,加捻形成碳纳米管纤维,纤维直径约0.4mm。碳纤维选择T300纤维,K数3,纤维直径7μm。采用图1所示的简易绕线设备,AB两点间间距1cm,将碳纤维与碳纳米管纤维的一端固定在图中C点处,另一端分别固定在A点与B点处。启动步进电机,控制其转速20r/min,对两种纤维进行绕线。将绕线完成后的复合纤维进行二维编织形成纤维布,将纤维布铺层后放置于化学沉积炉中沉积PyC界面层,沉积温度960℃,压力0.2KPa,丙烯流量500ml/min,Ar气流量300ml/min,沉积时间6h。将沉积完界面层的纤维布铺层预制体放入化学沉积炉中沉积SiC基体,氢气为载气和稀释气,流量分别为250ml/min和350ml/min,三氯甲基硅烷为反应气体,其与氢气的摩尔比为10:1,沉积温度1060℃,沉积时间40h得到三维碳纤维/碳纳米管纤维/碳化硅陶瓷基复合材料。
实施例4:
将碳纳米管膜裁成5mm条,加捻形成碳纳米管纤维,纤维直径约0.4mm。碳纤维选择T300纤维,K数3,纤维直径7μm。采用图1所示的简易绕线设备,AB两点间间距1cm,将碳纤维与碳纳米管纤维的一端固定在图中C点处,另一端分别固定在A点与B点处。启动步进电机,控制其转速20r/min,对两种纤维进行绕线,将绕线完成后的复合纤维进行二维编织形成纤维布并铺层。以酒精为溶剂,配置质量分数25%的酚醛树脂溶液。将纤维布铺层预制体浸入树脂溶液中,浸泡1h后取出,置于空气中12h待溶剂挥发完全后放入200℃烘箱中固化2h得到三维碳纤维/碳纳米管纤维/酚醛树脂基复合材料。

Claims (10)

1.一种高强高导电复合纤维增强复合材料的制备方法,其特征在于步骤如下:
步骤1:将碳纤维与碳纳米管纤维相互缠绕形成复合纤维,复合纤维直径0.5~0.8mm;
步骤2:将绕线完成后的复合纤维放置于化学沉积炉中沉积PyC界面层;
步骤3:将沉积完界面层的复合纤维放入化学沉积炉中沉积SiC基体,得到一维碳纤维/碳纳米管纤维/碳化硅陶瓷基复合材料;
或以酒精为溶剂,配置质量分数25%的酚醛树脂溶液;将复合纤维浸入树脂溶液中,浸泡1h后取出,置于空气中12h待溶剂挥发完全后放入200℃烘箱中固化2h得到一维碳纤维/碳纳米管纤维/酚醛树脂基复合材料。
2.根据权利要求1所述高强高导电复合纤维增强复合材料的制备方法,其特征在于:在步骤2之前,将绕线完成后的复合纤维进行二维编织形成纤维布,然后进行步骤3和步骤4,得到三维碳纤维/碳纳米管纤维/碳化硅陶瓷基复合材料或三维碳纤维/碳纳米管纤维/酚醛树脂基复合材料。
3.根据权利要求1所述高强高导电复合纤维增强复合材料的制备方法,其特征在于:所述步骤2沉积PyC界面层的工艺:沉积温度960℃,压力0.2KPa,丙烯流量500ml/min,Ar气流量300ml/min,沉积时间6h。
4.根据权利要求1所述高强高导电复合纤维增强复合材料的制备方法,其特征在于:所述步骤3沉积SiC基体的工艺:氢气为载气和稀释气,流量分别为250ml/min和350ml/min,三氯甲基硅烷为反应气体,其与氢气的摩尔比为10:1,沉积温度1060℃,沉积时间40h。
5.根据权利要求1所述高强高导电复合纤维增强复合材料的制备方法,其特征在于:所述碳纤维的单根直径5~10μm,碳纤维束K数为1~10。
6.根据权利要求1或3所述高强高导电复合纤维增强复合材料的制备方法,其特征在于:所述碳纤维为:聚丙烯晴基碳纤维、沥青基碳纤维、黏胶基碳纤维或气相生长碳纤维。
7.根据权利要求1或3所述高强高导电复合纤维增强复合材料的制备方法,其特征在于:所述碳纳米管纤维为:溶液纺丝纤维、阵列抽丝纤维、浮动CVD直接纺丝纤维或膜捻纤维。
8.根据权利要求1或3所述高强高导电复合纤维增强复合材料的制备方法,其特征在于:所述碳纳米管纤维直径0.1~0.8mm。
9.根据权利要求1或3所述高强高导电复合纤维增强复合材料的制备方法,其特征在于:所述将碳纤维与碳纳米管纤维相互缠绕形成复合纤维的方法是:将一束碳纤维与碳纳米管纤维的一端分别固定在绕线装置转盘上,将碳纤维与碳纳米管纤维的另一端固定在绕线装置的定点上;驱动绕线装置转盘转动,转盘转动过程中带动两种纤维一端转动,由于另一端固定,使得两种纤维将缠绕在一起形成复合纤维。
10.根据权利要求7所述高强高导电复合纤维增强复合材料的制备方法,其特征在于:所述绕线装置转盘直径0.5~2cm,转速10~120r/min。
CN201710088664.1A 2017-02-20 2017-02-20 一种高强高导电复合纤维增强复合材料的制备方法 Expired - Fee Related CN106905546B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710088664.1A CN106905546B (zh) 2017-02-20 2017-02-20 一种高强高导电复合纤维增强复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710088664.1A CN106905546B (zh) 2017-02-20 2017-02-20 一种高强高导电复合纤维增强复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN106905546A true CN106905546A (zh) 2017-06-30
CN106905546B CN106905546B (zh) 2020-08-07

Family

ID=59207917

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710088664.1A Expired - Fee Related CN106905546B (zh) 2017-02-20 2017-02-20 一种高强高导电复合纤维增强复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN106905546B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108059475A (zh) * 2017-12-08 2018-05-22 南京航空航天大学 一种碳纳米管增强Cf/SiC复合材料及其制备方法
CN108863434A (zh) * 2017-05-09 2018-11-23 天津大学 一种高含量碳纳米管增强先驱体陶瓷复合材料及其制备方法
CN109113942A (zh) * 2018-10-12 2019-01-01 中国地质大学(武汉) 碳纳米管纤维复合形状记忆合金型驱动器
CN110669329A (zh) * 2019-10-30 2020-01-10 陈海艳 一种磁流变弹性体的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0368312A2 (en) * 1988-11-10 1990-05-16 Toho Rayon Co., Ltd. Carbon fiber chopped strands and method of production thereof
EP0589286A1 (en) * 1992-09-08 1994-03-30 Toray Industries, Inc. Carbon fiber woven fabric, its weaving method and weaving apparatus
JP2006070153A (ja) * 2004-09-02 2006-03-16 Honda Motor Co Ltd 炭素繊維強化プラスチック成形体およびその製造方法
US20110070989A1 (en) * 2009-09-24 2011-03-24 The Gates Corporation CVT Belt
CN102344573A (zh) * 2010-07-27 2012-02-08 江苏恒神碳纤维复合材料工程研究中心有限公司 一种绞合型纤维增强复合芯预浸料法生产工艺
US20130048337A1 (en) * 2011-08-24 2013-02-28 Tyco Electronics Corporation Carbon-based substrates with organometallic fillers

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0368312A2 (en) * 1988-11-10 1990-05-16 Toho Rayon Co., Ltd. Carbon fiber chopped strands and method of production thereof
EP0589286A1 (en) * 1992-09-08 1994-03-30 Toray Industries, Inc. Carbon fiber woven fabric, its weaving method and weaving apparatus
JP2006070153A (ja) * 2004-09-02 2006-03-16 Honda Motor Co Ltd 炭素繊維強化プラスチック成形体およびその製造方法
US20110070989A1 (en) * 2009-09-24 2011-03-24 The Gates Corporation CVT Belt
CN102344573A (zh) * 2010-07-27 2012-02-08 江苏恒神碳纤维复合材料工程研究中心有限公司 一种绞合型纤维增强复合芯预浸料法生产工艺
US20130048337A1 (en) * 2011-08-24 2013-02-28 Tyco Electronics Corporation Carbon-based substrates with organometallic fillers

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108863434A (zh) * 2017-05-09 2018-11-23 天津大学 一种高含量碳纳米管增强先驱体陶瓷复合材料及其制备方法
CN108059475A (zh) * 2017-12-08 2018-05-22 南京航空航天大学 一种碳纳米管增强Cf/SiC复合材料及其制备方法
CN109113942A (zh) * 2018-10-12 2019-01-01 中国地质大学(武汉) 碳纳米管纤维复合形状记忆合金型驱动器
CN109113942B (zh) * 2018-10-12 2023-08-29 中国地质大学(武汉) 碳纳米管纤维复合形状记忆合金型驱动器
CN110669329A (zh) * 2019-10-30 2020-01-10 陈海艳 一种磁流变弹性体的制备方法

Also Published As

Publication number Publication date
CN106905546B (zh) 2020-08-07

Similar Documents

Publication Publication Date Title
AU2021107656A4 (en) Hybrid woven fiber preform-reinforced composite material and preparation method thereof
CN106671525B (zh) 杂化改性的高导电及高增韧结构复合材料及其制备方法
CN106905546A (zh) 一种高强高导电复合纤维增强复合材料的制备方法
US7407901B2 (en) Impact resistant, thin ply composite structures and method of manufacturing same
US20100021682A1 (en) Composite material and method for increasing z-axis thermal conductivity of composite sheet material
CN103964883B (zh) 一维纳米纤维增强增韧碳陶复合材料薄壁或楔形构件的制备方法
EP2660385A1 (en) Methods of making nanoreinforced carbon fiber and components comprising nanoreinforced carbon fiber
US20080020193A1 (en) Hybrid fiber tows containning both nano-fillers and continuous fibers, hybrid composites, and their production processes
WO2012075282A2 (en) Articles and methods related to the formation of nanostructure reinforced structures
Sun et al. Improvement of out-of-plane thermal conductivity of composite laminate by electrostatic flocking
CN102741465A (zh) 包含平行排列的碳纳米管的碳纳米管并入的纤维材料、其制造方法及从其衍生的复合材料
JP2012525476A (ja) 複合材料構造体を除氷するためのcntベース抵抗加熱
Hu et al. Process and mechanical properties of carbon/carbon–silicon carbide composite reinforced with carbon nanotubes grown in situ
JP2017137231A (ja) セラミック繊維を加工処理する方法
JP2014506192A5 (zh)
CN1990920A (zh) 一种增强烧蚀防热复合材料及其制作方法
CN111058187A (zh) 一种附着界面层的SiC纤维预浸带的制备方法及设备
Natarajan Processing-structure-mechanical property relationships in direct formed carbon nanotube articles and their composites: A review
JP2017095347A (ja) セラミック繊維を加工処理するための機器及び方法
CN105693263A (zh) 一种碳纳米管多维编织预制体陶瓷基复合材料的制备方法
CA3162330A1 (en) System and method for coating ceramic fiber
Shioya et al. Synthetic textile fibres: non-polymer fibres
KR101038475B1 (ko) 농도구배를 갖는 탄화규소 일차원 나노구조의 성장에 의한균일한 밀도의 섬유강화 복합체의 제조방법 및 이를이용하여 제조된 섬유강화 복합체
CN105859303A (zh) 一种碳/碳复合材料预制体及其制备方法
US5137781A (en) Protected brittle fiber yarns

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200807

Termination date: 20210220

CF01 Termination of patent right due to non-payment of annual fee