CN106898675A - 具有像素级偏置控制的spad阵列 - Google Patents

具有像素级偏置控制的spad阵列 Download PDF

Info

Publication number
CN106898675A
CN106898675A CN201611176089.2A CN201611176089A CN106898675A CN 106898675 A CN106898675 A CN 106898675A CN 201611176089 A CN201611176089 A CN 201611176089A CN 106898675 A CN106898675 A CN 106898675A
Authority
CN
China
Prior art keywords
sensing element
bias
voltage
circuit
bias voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611176089.2A
Other languages
English (en)
Other versions
CN106898675B (zh
Inventor
G·A·阿干诺夫
M·C·瓦尔登
万代新悟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Apple Inc
Original Assignee
Apple Computer Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apple Computer Inc filed Critical Apple Computer Inc
Publication of CN106898675A publication Critical patent/CN106898675A/zh
Application granted granted Critical
Publication of CN106898675B publication Critical patent/CN106898675B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/63Noise processing, e.g. detecting, correcting, reducing or removing noise applied to dark current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • G01S7/4863Detector arrays, e.g. charge-transfer gates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14641Electronic components shared by two or more pixel-elements, e.g. one amplifier shared by two pixel elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier working in avalanche mode, e.g. avalanche photodiode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/74Circuitry for scanning or addressing the pixel array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • G01J2001/4446Type of detector
    • G01J2001/446Photodiode
    • G01J2001/4466Avalanche

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Light Receiving Elements (AREA)

Abstract

公开了具有像素级偏置控制的spad阵列。本发明提供了一种包括感测元件的阵列的感测设备。每个感测元件包括:光电二极管,该光电二极管包括p‑n结;以及局部偏置电路,该局部偏置电路经耦接以在偏置电压下对p‑n结进行反向偏置,该偏置电压比p‑n结的击穿电压大一裕量,该裕量足以使得入射在p‑n结上的单个光子触发从感测元件输出的雪崩脉冲;以及偏置控制电路,该偏置控制电路经耦接以将感测元件中的不同感测元件中的偏置电压设置为大于击穿电压的不同的相应值。

Description

具有像素级偏置控制的spad阵列
技术领域
本发明整体涉及光电设备,并且具体地涉及高灵敏度检测器阵列。
背景技术
也被称为盖革(Geiger)模式雪崩光电二极管(GAPD)的单光子雪崩二极管(SPAD)是能够以几十皮秒量级的极高到达时间分辨率来捕获单个光子的检测器。它们可采用专用半导体工艺或标准CMOS技术制造。在单个芯片上制造的SPAD传感器阵列已实验性地用于3D成像相机中。Charbon等人在TOF Range-Imaging Cameras(Springer-Verlag,2013年)中发表的“SPAD-Based Sensors”中提供SPAD技术的有用综述,在此其以引用方式并入本文。
在SPAD中,在远高于p-n结的击穿电压的电平下对p-n结进行反向偏置。在这种偏置下,电场非常高,使得注入到耗尽层中的单个载流子由于入射光子的原因可能触发自持雪崩。雪崩电流脉冲的前沿标志着检测到的光子的到达时间。电流一直持续直到通过将偏置电压降低到击穿电压或低于击穿电压而使雪崩淬灭。这后一种功能是由淬灭电路执行的,该淬灭电路可简单地包括与SPAD串联的高电阻镇流负载,或者可另选地包括有源电路元件。
发明内容
下文描述的本发明的实施方案提供了改进的单光子感测阵列和用于其操作的方法。
因此,根据本发明的一个实施方案,提供了一种包括感测元件的阵列的感测设备。每个感测元件包括:光电二极管,该光电二极管包括p-n结;以及局部偏置电路,该局部偏置电路经耦接以在偏置电压下对p-n结进行反向偏置,该偏置电压比p-n结的击穿电压大一裕量,该裕量足以使得入射在p-n结上的单个光子触发从感测元件输出的雪崩脉冲。偏置控制电路经耦接以将感测元件中的不同感测元件中的偏置电压设置为大于击穿电压的不同的相应值。
在一些实施方案中,该设备包括全局偏置发生器,该全局偏置发生器经耦接以向阵列中的所有感测元件施加全局偏置电压,其中每个感测元件中的局部偏置电路被配置为施加过量偏置,使得每个p-n结两端的偏置电压是全局偏置电压和过量偏置之和。典型地,每个感测元件包括淬灭电路,并且每个感测元件中的光电二极管、局部偏置电路和淬灭电路是串联耦接在一起的。
在所公开的实施方案中,局部偏置电路包括电压加法器,该电压加法器耦接到多个电压线,提供相应的输入电压,并被配置为选择输入电压并对输入电压进行求和,以便向p-n结提供偏置电压。
在一些实施方案中,偏置控制电路被配置为设置感测元件中的不同感测元件中的偏置电压,以便均衡感测元件对入射光子的灵敏度。除此之外或另选地,偏置控制电路被配置为识别具有高于指定极限的噪声水平的感测元件中的一个或多个感测元件,并设置所识别的感测元件的偏置电压,以便降低噪声水平。
进一步除此之外或另选地,偏置控制电路被配置为提高阵列的所选择的区域中的感测元件的偏置电压,使得所选择的区域中的感测元件具有的对入射光子的灵敏度大于指定区域外部的感测元件的灵敏度。在一个实施方案中,偏置控制电路被配置为修改感测元件的偏置电压,以便使所选择的区域横扫阵列。
在一个公开的实施方案中,感测元件的阵列包括在第一半导体芯片上形成的感测元件的第一二维矩阵,并且偏置控制电路包括偏置控制元件的在第二半导体芯片上形成并且在感测元件和偏置控制元件之间一一对应地耦接到第一矩阵的第二二维矩阵。典型地,第二半导体芯片包括经耦接以从感测元件接收相应输出脉冲的处理电路,其中gai处理电路包括耦接到每个感测元件的相应时间到数字转换器(TDC)。
根据本发明的一个实施方案,还提供了一种用于感测的方法,该方法包括提供感测元件的阵列,每个感测元件包括:光电二极管,该光电二极管包括p-n结;以及偏置电路,该偏置电路经耦接以在偏置电压下对p-n结进行反向偏置,该偏置电压比p-n结的击穿电压大一裕量,该裕量足以使得入射在p-n结上的单个光子触发从感测元件输出的雪崩脉冲。将感测元件中的不同感测元件中的偏置电压设置为大于击穿电压的不同的相应值。
结合附图根据下文中对本发明的实施方案的详细描述将更完全地理解本发明,在附图中:
附图说明
图1是示意性地示出了根据本发明的实施方案的基于SPAD的感测设备的框图;
图2是示出了根据本发明的实施方案的SPAD阵列中的感测元件的部件的框图;
图3是示意性地示出了根据本发明的实施方案的SPAD阵列中的检测器对作为偏置的函数的入射光子的响应的曲线图;
图4A-图4C是示意性地示出了根据本发明三个不同实施方案的SPAD阵列中的像素的部件的电路图;
图5是示意性地示出了根据本发明的实施方案的局部偏置控制器的电路图。
图6是示意性地示出了根据本发明的实施方案的具有可变灵敏度的SPAD阵列的框图。
图7是示意性地示出了根据本发明的实施方案的具有被扫描的灵敏度区域的SPAD阵列的框图。
具体实施方式
SPAD感测元件上的偏置电压超过击穿电压的裕量确定感测元件的量子效率和暗噪声两者。(量子效率和暗噪声两者随着过两偏置电压而增大。)同时,SPAD阵列中的感测元件的击穿电压通常由于例如几何形态和掺杂剂浓度的局部变化而在元件之间有所变化。因此,在全局施加偏置时,每个光电二极管两端具有相同的总偏置电压,偏置电压超过击穿电压的裕量将随元件而变化,从而还导致感测元件之间的在灵敏度和噪声水平方面的变化。
本文描述的本发明的实施方案通过使得阵列中不同感测元件的偏置电压能够设置为不同的值来解决这个问题。这个特征不仅能够用于均衡阵列上方的灵敏度并使像素噪声减弱,而且还可以引入人为的灵敏度变化,以便更有选择性和有效率地利用阵列的检测能力。例如,可在SPAD成像阵列中诸如用于基于飞行时间(TOF)测量的3D相机以及硅光倍增管(SiPM)设备和其他种类的雪崩二极管阵列中的那些SPAD成像阵列中应用本发明的原理。
在公开的实施方案中,感测设备包括感测元件的阵列,每个感测元件包括光电二极管和偏置电路。每个感测元件中的偏置电路能够在偏置电压下对光电二极管的p-n结进行反向偏置,该偏置电压比p-n结的击穿电压大一裕量,该裕量足以使得入射在p-n结上的单个光子触发从感测元件输出的雪崩脉冲。偏置控制电路将不同感测元件中的偏置电压设置为大于击穿电压的不同的相应值。
在一些实施方案中,全局偏置发生器向阵列中的所有感测元件施加全局偏置电压,而每个感测元件中的局部偏置电路施加除全局偏置之外的过量偏置。因此,每个p-n结两端的偏置电压是全局偏置电压和过量偏置之和(其中根据电路配置,该过量偏置可相对于全局偏置为正或负)。典型地,每个感测元件还包括淬灭电路,每个感测元件中的光电二极管、偏置电路和淬灭电路是串联耦接在一起的。
偏置控制电路可在不同感测元件中设置不同的偏置电压值,以实现各种目的。例如,在一个实施方案中,设置偏置电压以便补偿击穿电压的差异,并且因此均衡感测元件对入射光子的灵敏度。另选地或除此之外,偏置控制电路可识别具有高于指定极限的噪声水平的感测元件中的一个或多个感测元件,并可以设置这些已识别的感测元件的偏置电压,以便降低噪声水平,可能降低到彻底关闭有噪声的感测元件的程度。
在其他实施方案中,偏置控制电路增大阵列的特定所选择的区域中的感测元件的偏置电压,使得这个区域中的感测元件具有的对入射光子的灵敏度大于该区域外部的感测元件。如前所述,在例如通过将阵列的敏感区域调节到照明光束或被成像场景中的感兴趣区域的形状来更有效率地利用阵列的检测能力时,这个特征可能是有用的。在一些实施方案中,偏置控制电路可动态地修改感测元件的偏置电压,以便使所选择的区域横扫阵列。
图1是示意性地示出了根据本发明的实施方案的感测设备20的框图。设备20包括感测元件24(也被称为像素)的阵列22,每个感测元件包括SPAD以及相关联的偏置和处理电路,如下文进一步所述的。全局高压偏置发生器26向阵列22中的所有感测元件24施加全局偏置电压。此外,每个感测元件24中的局部偏置电路28施加过量偏置,该过量偏置与感测元件中的全局偏置相加。像素偏置控制电路30将由局部偏置电路28施加的过量偏置电压设置为不同感测元件中的不同的相应值。
图2是示出了根据本发明的实施方案的位于阵列22中的感测元件24中的一个感测元件的部件的框图。该实施方案中的阵列22包括在第一半导体芯片32上形成的感测元件的二维矩阵,具有在第二半导体芯片34上形成的偏置控制和处理电路的第二二维矩阵。(仅示出了两个矩阵中的每个矩阵的单个元件。)芯片32和34耦接在一起,使得两个矩阵一一对应,由此芯片32上的每个感测元件与芯片34上的对应偏置控制和处理元件接触。
芯片32和34两者连同本文所述的伴随的偏置控制和处理电路可使用熟知的CMOS制造工艺基于在本领域中已知的SPAD传感器设计由硅晶片制得。另选地,可使用其他材料和工艺(加以必要的修改)来实施本文描述的检测的设计和原理。例如,图2中所示的所有部件可被形成在单个芯片上,或者部件在芯片之间的分布可不同。所有此类另选的具体实施被视为在本发明的范围内。
感测元件24包括SPAD 36,该SPAD 36包括光敏p-n结,如本领域中所公知的。包括淬灭电路38和局部偏置电路28的外围电路通常与SPAD一起被定位在芯片32上。如上所述,被施加到SPAD 36的实际偏置是由偏置发生器26(图1)提供的全局V偏置和由偏置电路28施加的过量偏置之和。像素偏置控制电路30通过设置芯片34上的偏置存储器40中的对应数字值来设置要施加在每个像素中的过量偏置。
响应于每个所捕获的光子,SPAD 36输出雪崩脉冲,该雪崩脉冲被芯片34上的处理电路接收,该处理电路包括数字逻辑部件42和被配置作为输出缓冲器44的存储器。例如,这些处理元件可被配置为充当时间到数字转换器(TDC),该TDC测量由SPAD 36输出的每个脉冲相对于参考时间的延迟并输出与该延迟对应的数字数据值。另选地或除此之外,逻辑器42和缓冲器44可测量并输出其他种类的值,包括(但不限于)脉冲延迟时间的柱状图。
图3是示意性地示出了根据本发明的实施方案的该SPAD 36对作为由局部偏置电路28施加的偏置的函数的入射光子的响应的曲线图。这幅图示出了用于表示SPAD 36在偏置电路28的三种不同过量偏置设置下输出的脉冲的三条曲线50,52,54。
曲线50对应于其中过量偏置被设置为给出显著大于击穿电压的p-n结两端的总偏置电压的情况。在这种设置下,感测元件24具有高灵敏度,并且SPAD 36响应于入射光子而输出的雪崩脉冲因此具有高幅度。
曲线52表示中间偏置设置,该中间偏置设置下,输出脉冲具有更低幅度,这意味着更低的灵敏度。同时,这种偏置设置下的暗噪声将通常比曲线50的设置更低。
曲线54表示设置过量偏置使得总偏置电压低于p-n结两端的击穿电压的情况。在这种偏置电平下,感测元件24基本被截止,但还向设备20贡献很少或不贡献暗噪声。这种低的总偏置设置可用于通过关闭在当前感兴趣区域外部的像素来减轻像素噪声,以及减小设备20的总功率消耗。
在一个实施方案中,偏置控制电路30参与在将设备20投入操作之前的校准流程。在此类过程中,利用某一预定义的测试模式(可简单地包括均匀低水平照明)来照射阵列,并评估感测元件24的输出。在校准结果表明感测元件之间有灵敏度变化时,偏置控制电路30可设置个体像素偏置电压,以便通过例如增大表现出低灵敏度的感测元件的总电压来均衡灵敏度,和/或反之亦然。除此之外或另选地,在偏置控制电路识别到某一感测元件噪声特别大时(例如,具有高于指定极限的暗噪声水平),其可设置由局部偏置电路28在感测元件24中施加的过量偏置电压,以便降低噪声水平,包括完全关闭感测元件,如曲线54所示的。
图4A-图4C是示意性地示出了根据本发明的三个不同实施方案的阵列22中的芯片32中的感测元件32的部件的电路图。在全部实施方案中,光电二极管36、局部偏置电路28和淬灭电路38是串联耦接在一起的。全局偏置电压V偏置(或等价地,图4B中的负偏置Vbd)被全局偏置发生器26施加到所有感测元件24。局部偏置电路28施加过量偏置Vq,该过量偏置与SPAD 36两端的全局偏置求和。如前所述,如在本说明书和权利要求中的上下文中使用的那样,术语“和”包括正极性求和和负极性求和。因此,图4A和图4C中SPAD 36两端的实际偏置为V偏置–Vq;并且在这些实施方案中,电路28增大Vq导致SPAD上的更低的净偏置。淬灭电路38可类似地耦接到SPAD 36的阳极或阴极,并且来自SPAD的脉冲输出可以是AC耦接的(如图4A和图4C)或DC耦接的(如图4B)。
图5是示意性地示出了根据本发明的实施方案的局部偏置电路28的详情的电路图。在该示例性具体实施中,局部偏置电路28包括耦接到多个电压线的电压加法器,该电压加法器经由相应的输入电阻器50来提供相应的输入电压:Voff(即,基线电压)、V1、V2、…、Vn。开关52被设置到打开或关闭位置,以便选择要相加的输入电压,从而给出期望的过量偏置,同时具有反馈电阻56的运算放大器54对输入电压求和,以便向SPAD 36提供偏置电压Vq
这种具体实施是有利的,因为它使得像素偏置控制电路30能够从较大范围的值选择要由每个感测元件24施加的偏置,同时使必须要实际供应到阵列22的电压线数量最小化。开关52的设置通常被存储在偏置存储器40中并被读出,以便在每个帧中设置开关。开关设置可经过预校准,如上所述,或者它们可另选地或除此之外在设备20工作期间被动态修改,如下所述。另选地,局部偏置电路28可包括其他种类的电压控制机构,如在本领域中已知的那样。
图6是示意性地示出了根据本发明的实施方案的在阵列22中的感测元件之间具有变化的灵敏度的设备20的配置的框图。在该实施方案中,偏置控制电路30设置由局部偏置电路28施加的过量偏置电压,使得感测元件的净偏置电压并且因此还有灵敏度在阵列的特定区域中比该区域外部更高。具体地,偏置电压和灵敏度在像素60中最大,在周围像素62中更低,并且在周边像素64中还要更低。设置所选择的区域外部的像素66中的偏置,从而关闭这些像素。尽管在这种情况下所选择的区域是阵列22的中心中的大致圆形区域,但可通过这种方式选择任何适当形状的任何区域。
如前所述,在将阵列22的敏感区域调节成照明光束或被成像场景中的感兴趣区域的形状时,该实施方案尤其是有用的。在硅光电倍增管(SiPM)应用中,例如感测元件24的输出端连接在一起,图6的配置在相对于功率消耗使设备20的灵敏度最大化时尤其有用,同时减少来自对信号将没有贡献的像素的背景噪声。
图7是示意性地示出了根据本发明的实施方案的具有灵敏度的扫描区域70的SPAD阵列22的框图。在这种情况下,偏置控制电路30将区域70内的像素60和62的偏置电压设置为比阵列22中的其余像素更高的值。然而,偏置控制电路30动态修改感测元件24的偏置电压,以便使区域70横扫阵列,如图中箭头所示。电路30例如可在光栅扫描中扫过区域70,与其同步,在要成像到阵列22上的场景上方扫描激光束。
在一个另选的实施方案(图中未示出)中,偏置控制电路30设置局部偏置电压,使得区域70具有线性形状,沿着阵列22的一个或多个列延伸,并匹配照明光束的线性形状。电路30然后可与照明光束同步地扫过阵列22上的线性区域70。另选地,可实施包括常规性和自适应扫描模式两者的其他扫描模式。
应当理解,上文所描述的实施方案以举例的方式被引用,并且本发明不限于上文已特别示出或描述的内容。相反,本发明的范围包括上文所述的各种特征的组合和子组合,以及本领域的技术人员在阅读以上描述之后会想到的在现有技术中没有公开的其变型形式和修改形式。

Claims (20)

1.一种感测设备,包括:
感测元件的阵列,每个感测元件包括:
光电二极管,所述光电二极管包括p-n结;和
局部偏置电路,所述局部偏置电路经耦接以在偏置电压下对所述p-n结进行反向偏置,所述偏置电压比所述p-n结的击穿电压大一裕量,所述裕量足以使得入射在所述p-n结上的单个光子触发从所述感测元件输出的雪崩脉冲;和
偏置控制电路,所述偏置控制电路经耦接以将所述感测元件中的不同感测元件中的所述偏置电压设置为大于所述击穿电压的不同的相应值。
2.根据权利要求1所述的设备,并且包括全局偏置发生器,所述全局偏置发生器经耦接以向所述阵列中的所有所述感测元件施加全局偏置电压,其中每个感测元件中的所述局部偏置电路被配置为施加过量偏置,使得每个p-n结两端的所述偏置电压是所述全局偏置电压和所述过量偏置之和。
3.根据权利要求2所述的设备,其中每个感测元件包括淬灭电路,并且其中每个感测元件中的所述光电二极管、所述局部偏置电路和所述淬灭电路是串联耦接在一起的。
4.根据权利要求1所述的设备,其中所述局部偏置电路包括电压加法器,所述电压加法器耦接到多个电压线,提供相应的输入电压,并被配置为选择所述输入电压并对所述输入电压进行求和,以便向所述p-n结提供所述偏置电压。
5.根据权利要求1所述的设备,其中所述偏置控制电路被配置为设置所述感测元件中的所述不同感测元件中的所述偏置电压,以便均衡所述感测元件对入射光子的灵敏度。
6.根据权利要求1所述的设备,其中所述偏置控制电路被配置为识别具有高于指定极限的噪声水平的所述感测元件中的一个或多个感测元件,并设置所识别的感测元件的所述偏置电压,以便降低所述噪声水平。
7.根据权利要求1所述的设备,其中所述偏置控制电路被配置为提高所述阵列的所选择的区域中的所述感测元件的所述偏置电压,使得所选择的区域中的所述感测元件对入射光子的灵敏度大于所指定区域外部的所述感测元件的所述灵敏度。
8.根据权利要求7所述的设备,其中所述偏置控制电路被配置为修改所述感测元件的所述偏置电压,以便使所选择的区域横扫所述阵列。
9.根据权利要求1至8中任一项所述的设备,其中所述感测元件的所述阵列包括在第一半导体芯片上形成的所述感测元件的第一二维矩阵,并且其中所述偏置控制电路包括在第二半导体芯片上形成并且以在所述感测元件和所述偏置控制元件之间一一对应的方式耦接到所述第一矩阵的偏置控制元件的第二二维矩阵。
10.根据权利要求9所述的设备,其中所述第二半导体芯片包括经耦接以从所述感测元件接收相应输出脉冲的处理电路,其中所述处理电路包括耦接到每个感测元件的相应时间到数字转换器(TDC)。
11.一种用于感测的方法,包括:
提供感测元件的阵列,每个感测元件包括:光电二极管,所述光电二极管包括p-n结;以及偏置电路,所述偏置电路经耦接以在偏置电压下对所述p-n结进行反向偏置,所述偏置电压比所述p-n结的击穿电压大一裕量,所述裕量足以使得入射在所述p-n结上的单个光子触发从所述感测元件输出的雪崩脉冲;以及
将所述感测元件中的不同感测元件中的所述偏置电压设置为大于所述击穿电压的不同的相应值。
12.根据权利要求11所述的方法,其中设置所述偏置电压包括向所述阵列中的所有所述感测元件施加全局偏置电压,并在每个感测元件中设置局部偏置电路以施加过量偏置,使得每个p-n结两端的所述偏置电压是所述全局偏置电压和所述过量偏置之和。
13.根据权利要求12所述的方法,其中每个感测元件包括淬灭电路,并且其中提供所述阵列包括将每个感测元件中的所述光电二极管、所述局部偏置电路和所述淬灭电路串联耦接在一起。
14.根据权利要求11所述的方法,其中所述局部偏置电路包括电压加法器,所述电压加法器耦接到多个电压线,提供相应的输入电压,并且其中设置所述偏置电压包括选择所述输入电压并对所述输入电压进行求和,以便向所述p-n结提供所述偏置电压。
15.根据权利要求11所述的方法,其中设置所述感测元件中的所述不同感测元件中的所述偏置电压,以便均衡所述感测元件对入射光子的灵敏度。
16.根据权利要求11所述的方法,其中设置所述偏置电压包括识别具有高于指定极限的噪声水平的所述感测元件中的一个或多个感测元件,并设置所识别的感测元件的所述偏置电压,以便降低所述噪声水平。
17.根据权利要求11所述的方法,其中设置所述偏置电压包括提高所述阵列的所选择的区域中的所述感测元件的所述偏置电压,使得所选择的区域中的所述感测元件具有的对入射光子的灵敏度大于所指定区域外部的所述感测元件的所述灵敏度。
18.根据权利要求17所述的方法,其中提高所述偏置电压包括修改所述感测元件的所述偏置电压,以便使所选择的区域横扫所述阵列。
19.根据权利要求11至18中任一项所述的方法,其中提供所述感测元件的所述阵列包括提供在第一半导体芯片上形成的所述感测元件的第一二维矩阵,以及提供在第二半导体芯片上形成并且以在所述感测元件和所述偏置控制元件之间一一对应的方式耦接到所述第一矩阵的偏置控制元件的第二二维矩阵。
20.根据权利要求19所述的方法,其中所述第二半导体芯片包括经耦接以从所述感测元件接收相应输出脉冲的处理电路,其中所述处理电路包括耦接到每个感测元件的相应时间到数字转换器(TDC)。
CN201611176089.2A 2015-12-20 2016-12-19 具有像素级偏置控制的spad阵列 Active CN106898675B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/975,790 US9997551B2 (en) 2015-12-20 2015-12-20 Spad array with pixel-level bias control
US14/975,790 2015-12-20

Publications (2)

Publication Number Publication Date
CN106898675A true CN106898675A (zh) 2017-06-27
CN106898675B CN106898675B (zh) 2018-10-19

Family

ID=57714323

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201611176089.2A Active CN106898675B (zh) 2015-12-20 2016-12-19 具有像素级偏置控制的spad阵列
CN201621393179.2U Active CN206401341U (zh) 2015-12-20 2016-12-19 感测设备

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201621393179.2U Active CN206401341U (zh) 2015-12-20 2016-12-19 感测设备

Country Status (5)

Country Link
US (1) US9997551B2 (zh)
EP (1) EP3182154A1 (zh)
KR (1) KR101901033B1 (zh)
CN (2) CN106898675B (zh)
TW (1) TWI628785B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108874020A (zh) * 2018-08-27 2018-11-23 东南大学 一种电流模式阵列spad增益均匀性自适应控制电路
CN109239694A (zh) * 2017-07-11 2019-01-18 布鲁诺凯斯勒基金会 用于测量距离的光电传感器和方法
CN109710009A (zh) * 2018-11-15 2019-05-03 深圳市速腾聚创科技有限公司 偏置电压调节方法及装置
CN110686774A (zh) * 2018-07-05 2020-01-14 意法半导体(R&D)有限公司 光学传感器和操作光学传感器的方法
CN111766592A (zh) * 2019-03-13 2020-10-13 株式会社东芝 传感器以及距离测量装置
CN112567260A (zh) * 2018-08-09 2021-03-26 株式会社电装 光测距装置
CN113330328A (zh) * 2019-02-11 2021-08-31 苹果公司 使用脉冲束稀疏阵列的深度感测

Families Citing this family (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110187878A1 (en) 2010-02-02 2011-08-04 Primesense Ltd. Synchronization of projected illumination with rolling shutter of image sensor
US10075702B2 (en) * 2016-07-07 2018-09-11 Stmicroelectronics Sa Electronic device with an upscaling processor and associated methods
US10540750B2 (en) * 2016-07-07 2020-01-21 Stmicroelectronics Sa Electronic device with an upscaling processor and associated method
US10890649B2 (en) * 2016-08-11 2021-01-12 Qualcomm Incorporated System and method for measuring reference and returned light beams in an optical system
CN109791195B (zh) 2016-09-22 2023-02-03 苹果公司 用于光达的自适应发射功率控制
US10962647B2 (en) 2016-11-30 2021-03-30 Yujin Robot Co., Ltd. Lidar apparatus based on time of flight and moving object
EP3339886B1 (de) * 2016-12-22 2019-02-13 Sick AG Lichtempfänger mit einer vielzahl von lawinenphotodiodenelementen und verfahren zur versorgung mit einer vorspannung
EP3339887B1 (de) * 2016-12-22 2019-04-03 Sick AG Lichtempfänger mit einer vielzahl von lawinenphotodioden und verfahren zum erfassen von licht
US10760960B2 (en) * 2017-03-10 2020-09-01 Sensl Technologies Ltd. Coincidence resolving time readout circuit
JP6929671B2 (ja) * 2017-03-17 2021-09-01 キヤノン株式会社 撮像装置及び撮像システム
EP3646057A1 (en) 2017-06-29 2020-05-06 Apple Inc. Time-of-flight depth mapping with parallax compensation
EP3428574A1 (en) 2017-07-11 2019-01-16 Fondazione Bruno Kessler Device for measuring a distance and method for measuring said distance
US11579298B2 (en) 2017-09-20 2023-02-14 Yujin Robot Co., Ltd. Hybrid sensor and compact Lidar sensor
US10955552B2 (en) 2017-09-27 2021-03-23 Apple Inc. Waveform design for a LiDAR system with closely-spaced pulses
KR20230020571A (ko) 2017-11-15 2023-02-10 프로틴텍스 엘티디. 집적 회로 마진 측정 및 고장 예측 장치
US11391771B2 (en) * 2017-11-23 2022-07-19 Proteantecs Ltd. Integrated circuit pad failure detection
WO2019125349A1 (en) 2017-12-18 2019-06-27 Montrose Laboratories Llc Time-of-flight sensing using an addressable array of emitters
US11740281B2 (en) 2018-01-08 2023-08-29 Proteantecs Ltd. Integrated circuit degradation estimation and time-of-failure prediction using workload and margin sensing
US10447424B2 (en) 2018-01-18 2019-10-15 Apple Inc. Spatial multiplexing scheme
JP6862386B2 (ja) * 2018-03-22 2021-04-21 株式会社東芝 光検出器、ライダー装置、及び光検出器の製造方法
US11221400B2 (en) * 2018-03-27 2022-01-11 Omnivision Technologies, Inc. Dual mode stacked photomultipliers suitable for use in long range time of flight applications
US10877285B2 (en) 2018-03-28 2020-12-29 Apple Inc. Wavelength-based spatial multiplexing scheme
TWI828676B (zh) 2018-04-16 2024-01-11 以色列商普騰泰克斯有限公司 用於積體電路剖析及異常檢測之方法和相關的電腦程式產品
US11874399B2 (en) 2018-05-16 2024-01-16 Yujin Robot Co., Ltd. 3D scanning LIDAR sensor
US10340408B1 (en) 2018-05-17 2019-07-02 Hi Llc Non-invasive wearable brain interface systems including a headgear and a plurality of self-contained photodetector units configured to removably attach to the headgear
US10158038B1 (en) * 2018-05-17 2018-12-18 Hi Llc Fast-gated photodetector architectures comprising dual voltage sources with a switch configuration
WO2019221799A1 (en) 2018-05-17 2019-11-21 Hi Llc Stacked photodetector assemblies
US10420498B1 (en) 2018-06-20 2019-09-24 Hi Llc Spatial and temporal-based diffusive correlation spectroscopy systems and methods
CN112424639A (zh) * 2018-06-22 2021-02-26 ams有限公司 使用飞行时间和伪随机比特序列测量到物体的距离
US11213206B2 (en) 2018-07-17 2022-01-04 Hi Llc Non-invasive measurement systems with single-photon counting camera
EP3608688B1 (en) 2018-08-09 2021-01-27 OMRON Corporation Distance measuring device
DE102018120141A1 (de) * 2018-08-17 2020-02-20 Sick Ag Erfassen von Licht mit einer Vielzahl von Lawinenphotodiodenelementen
US11493606B1 (en) 2018-09-12 2022-11-08 Apple Inc. Multi-beam scanning system
CN112689776A (zh) 2018-09-16 2021-04-20 苹果公司 使用彩色图像数据校准深度感测阵列
US11006876B2 (en) 2018-12-21 2021-05-18 Hi Llc Biofeedback for awareness and modulation of mental state using a non-invasive brain interface system and method
WO2020141516A1 (en) 2018-12-30 2020-07-09 Proteantecs Ltd. Integrated circuit i/o integrity and degradation monitoring
US20220075171A1 (en) * 2019-01-25 2022-03-10 Carl Zeiss Microscopy Gmbh Light microscope with photon-counting detector elements and imaging method
JP6949067B2 (ja) * 2019-03-05 2021-10-13 キヤノン株式会社 撮像素子及びその制御方法、撮像装置、及び、画像処理装置
CN110044479B (zh) * 2019-03-11 2020-07-31 西安电子科技大学 一种基于无时钟电流舵dac结构的硅光电倍增管
JP7344667B2 (ja) * 2019-04-18 2023-09-14 キヤノン株式会社 撮像素子及びその制御方法、及び撮像装置
JP2022533553A (ja) 2019-05-06 2022-07-25 エイチアイ エルエルシー 時間相関単一光子計数法向けの光検出器アーキテクチャ
US11081611B2 (en) 2019-05-21 2021-08-03 Hi Llc Photodetector architectures for efficient fast-gating comprising a control system controlling a current drawn by an array of photodetectors with a single photon avalanche diode
WO2020247185A1 (en) 2019-06-06 2020-12-10 Hi Llc Photodetector systems with low-power time-to-digital converter architectures
US11500094B2 (en) 2019-06-10 2022-11-15 Apple Inc. Selection of pulse repetition intervals for sensing time of flight
US11555900B1 (en) 2019-07-17 2023-01-17 Apple Inc. LiDAR system with enhanced area coverage
DE102019127775A1 (de) * 2019-10-15 2021-04-15 Carl Zeiss Microscopy Gmbh Lichtmikroskop und Verfahren zur Bildaufnahme mit einem Lichtmikroskop
US11733359B2 (en) 2019-12-03 2023-08-22 Apple Inc. Configurable array of single-photon detectors
EP4070315A4 (en) 2019-12-04 2023-11-29 Proteantecs Ltd. MONITORING DEGRADATION OF A STORAGE DEVICE
US11349042B2 (en) * 2019-12-18 2022-05-31 Stmicroelectronics (Research & Development) Limited Anode sensing circuit for single photon avalanche diodes
US11771362B2 (en) 2020-02-21 2023-10-03 Hi Llc Integrated detector assemblies for a wearable module of an optical measurement system
WO2021167876A1 (en) 2020-02-21 2021-08-26 Hi Llc Methods and systems for initiating and conducting a customized computer-enabled brain research study
US11950879B2 (en) 2020-02-21 2024-04-09 Hi Llc Estimation of source-detector separation in an optical measurement system
US11096620B1 (en) 2020-02-21 2021-08-24 Hi Llc Wearable module assemblies for an optical measurement system
US11969259B2 (en) 2020-02-21 2024-04-30 Hi Llc Detector assemblies for a wearable module of an optical measurement system and including spring-loaded light-receiving members
US11883181B2 (en) 2020-02-21 2024-01-30 Hi Llc Multimodal wearable measurement systems and methods
WO2021167892A1 (en) 2020-02-21 2021-08-26 Hi Llc Wearable devices and wearable assemblies with adjustable positioning for use in an optical measurement system
US11877825B2 (en) 2020-03-20 2024-01-23 Hi Llc Device enumeration in an optical measurement system
WO2021188496A1 (en) 2020-03-20 2021-09-23 Hi Llc Photodetector calibration of an optical measurement system
US11187575B2 (en) 2020-03-20 2021-11-30 Hi Llc High density optical measurement systems with minimal number of light sources
US11864867B2 (en) 2020-03-20 2024-01-09 Hi Llc Control circuit for a light source in an optical measurement system by applying voltage with a first polarity to start an emission of a light pulse and applying voltage with a second polarity to stop the emission of the light pulse
WO2021188485A1 (en) 2020-03-20 2021-09-23 Hi Llc Maintaining consistent photodetector sensitivity in an optical measurement system
US11857348B2 (en) 2020-03-20 2024-01-02 Hi Llc Techniques for determining a timing uncertainty of a component of an optical measurement system
US11645483B2 (en) 2020-03-20 2023-05-09 Hi Llc Phase lock loop circuit based adjustment of a measurement time window in an optical measurement system
US11245404B2 (en) 2020-03-20 2022-02-08 Hi Llc Phase lock loop circuit based signal generation in an optical measurement system
US20210290147A1 (en) * 2020-03-20 2021-09-23 Hi Llc Maintaining Consistent Photodetector Sensitivity in an Optical Measurement System
US20210294129A1 (en) * 2020-03-20 2021-09-23 Hi Llc Bias Voltage Generation in an Optical Measurement System
US11607132B2 (en) 2020-03-20 2023-03-21 Hi Llc Temporal resolution control for temporal point spread function generation in an optical measurement system
US11941857B2 (en) 2020-05-26 2024-03-26 Hi Llc Systems and methods for data representation in an optical measurement system
TWI759213B (zh) * 2020-07-10 2022-03-21 大陸商廣州印芯半導體技術有限公司 光感測器及其感測方法
JPWO2022059397A1 (zh) * 2020-09-15 2022-03-24
US11789533B2 (en) 2020-09-22 2023-10-17 Hi Llc Synchronization between brain interface system and extended reality system
US11452470B2 (en) 2021-01-06 2022-09-27 Hi Llc Devices, systems, and methods using wearable time domain-based activity tracker
US11612808B2 (en) 2021-02-26 2023-03-28 Hi Llc Brain activity tracking during electronic gaming
JP2022168739A (ja) * 2021-04-26 2022-11-08 キヤノン株式会社 測距装置および計測ユニット
US11543885B2 (en) 2021-05-26 2023-01-03 Hi Llc Graphical emotion symbol determination based on brain measurement data for use during an electronic messaging session
US11681028B2 (en) 2021-07-18 2023-06-20 Apple Inc. Close-range measurement of time of flight using parallax shift
CN117059632A (zh) * 2022-05-05 2023-11-14 浙桂(杭州)半导体科技有限责任公司 一种低探测盲区雪崩二极管传感器
US20230395641A1 (en) * 2022-06-03 2023-12-07 Lg Innotek Co., Ltd. Systems and Methods for Breakdown Voltage Correction in Geiger-Mode Avalanche Photodiode (APD) Focal Plane Arrays (FPA)
US20230396893A1 (en) * 2022-06-06 2023-12-07 Lg Innotek Co., Ltd. Systems and Methods for Pixel On-Off Switching in Focal Plane Arrays
US11815551B1 (en) 2022-06-07 2023-11-14 Proteantecs Ltd. Die-to-die connectivity monitoring using a clocked receiver
CN114994642B (zh) * 2022-07-29 2022-10-28 南京信息工程大学 一种多路探测的激光雷达

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010149593A1 (en) * 2009-06-22 2010-12-29 Toyota Motor Europe Nv/Sa Pulsed light optical rangefinder
US20140191115A1 (en) * 2013-01-09 2014-07-10 The University Court Of The Uniersity Of Edinburgh Spad sensor circuit with biasing circuit
CN104779259A (zh) * 2014-01-15 2015-07-15 全视科技有限公司 用于互补金属氧化物半导体堆叠式芯片应用的单光子雪崩二极管成像传感器
US20150285625A1 (en) * 2014-04-07 2015-10-08 Samsung Electronics Co., Ltd. High resolution, high frame rate, low power image sensor

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1316793B1 (it) 2000-03-09 2003-05-12 Milano Politecnico Circuito monolitico di spegnimento attivo e ripristino attivo perfotodiodi a valanga
US20020070443A1 (en) 2000-12-08 2002-06-13 Xiao-Chun Mu Microelectronic package having an integrated heat sink and build-up layers
US7126218B1 (en) 2001-08-07 2006-10-24 Amkor Technology, Inc. Embedded heat spreader ball grid array
US7899339B2 (en) 2002-07-30 2011-03-01 Amplification Technologies Inc. High-sensitivity, high-resolution detector devices and arrays
US7303005B2 (en) 2005-11-04 2007-12-04 Graftech International Holdings Inc. Heat spreaders with vias
US8355117B2 (en) 2005-12-21 2013-01-15 Ecole Polytechnique Federale De Lausanne Method and arrangement for measuring the distance to an object
US20070262441A1 (en) 2006-05-09 2007-11-15 Chi-Ming Chen Heat sink structure for embedded chips and method for fabricating the same
US8259293B2 (en) 2007-03-15 2012-09-04 Johns Hopkins University Deep submicron and nano CMOS single photon photodetector pixel with event based circuits for readout data-rate reduction communication system
US7652252B1 (en) 2007-10-08 2010-01-26 Hrl Laboratories, Llc Electronically tunable and reconfigurable hyperspectral photon detector
US8026471B2 (en) 2008-07-23 2011-09-27 Princeton Lightwave, Inc. Single-photon avalanche detector-based focal plane array
IL200332A0 (en) 2008-08-19 2010-04-29 Rosemount Aerospace Inc Lidar system using a pseudo-random pulse sequence
IT1392366B1 (it) 2008-12-17 2012-02-28 St Microelectronics Rousset Fotodiodo operante in modalita' geiger con resistore di soppressione integrato e controllabile, schiera di fotodiodi e relativo procedimento di fabbricazione
CN101923173B (zh) 2009-06-10 2014-10-01 圣戈本陶瓷及塑料股份有限公司 闪烁体以及检测器组件
DE102010003843A1 (de) 2010-04-12 2011-10-13 Robert Bosch Gmbh Entfernungsmessgerät mit homogenisierender Messauswertung
GB2486165A (en) 2010-11-30 2012-06-13 St Microelectronics Res & Dev Oven using a Single Photon Avalanche Diode (SPAD) array
EP2469301A1 (en) 2010-12-23 2012-06-27 André Borowski Methods and devices for generating a representation of a 3D scene at very high speed
EP2477043A1 (en) 2011-01-12 2012-07-18 Sony Corporation 3D time-of-flight camera and method
JP5834416B2 (ja) 2011-02-01 2015-12-24 セイコーエプソン株式会社 画像形成装置
DE102011107645A1 (de) 2011-07-12 2013-01-17 Leica Microsystems Cms Gmbh Vorrichtung und Verfahren zum Detektieren von Licht
US20130092846A1 (en) 2011-10-18 2013-04-18 Uwm Research Foundation, Inc. Fiber-optic sensors for real-time monitoring
US9024246B2 (en) 2011-12-19 2015-05-05 Princeton Lightwave, Inc. Two-state negative feedback avalanche diode having a control element for determining load state
FR2984522B1 (fr) 2011-12-20 2014-02-14 St Microelectronics Grenoble 2 Dispositif de detection de la proximite d'un objet, comprenant des photodiodes spad
US9052356B2 (en) 2012-02-15 2015-06-09 International Business Machines Corporation Embedded photon emission calibration (EPEC)
US20130342835A1 (en) 2012-06-25 2013-12-26 California Institute Of Technology Time resolved laser raman spectroscopy using a single photon avalanche diode array
GB2510890A (en) 2013-02-18 2014-08-20 St Microelectronics Res & Dev Method and apparatus
DE202013101039U1 (de) 2013-03-11 2014-03-12 Sick Ag Optoelektronischer Sensor zur Entfernungsmessung
JP6383516B2 (ja) 2013-04-19 2018-08-29 ライトスピン テクノロジーズ、インク. 集積アバランシェ・フォトダイオード・アレイ
GB2513408B (en) 2013-04-26 2017-12-13 Toshiba Res Europe Limited A photon detector and a photon detection method
GB2514576A (en) 2013-05-29 2014-12-03 St Microelectronics Res & Dev Methods and apparatus
GB2520232A (en) 2013-08-06 2015-05-20 Univ Edinburgh Multiple Event Time to Digital Converter
US9210350B2 (en) 2013-12-09 2015-12-08 Omnivision Technologies, Inc. Low power imaging system with single photon avalanche diode photon counters and ghost image reduction
US9331116B2 (en) 2014-01-15 2016-05-03 Omnivision Technologies, Inc. Back side illuminated single photon avalanche diode imaging sensor with high short wavelength detection efficiency
CN103763485A (zh) 2014-02-17 2014-04-30 苏州超锐微电子有限公司 一种用于智能图像传感器的单光子级分辨率图像采集芯片前端电路模块

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010149593A1 (en) * 2009-06-22 2010-12-29 Toyota Motor Europe Nv/Sa Pulsed light optical rangefinder
US20140191115A1 (en) * 2013-01-09 2014-07-10 The University Court Of The Uniersity Of Edinburgh Spad sensor circuit with biasing circuit
CN104779259A (zh) * 2014-01-15 2015-07-15 全视科技有限公司 用于互补金属氧化物半导体堆叠式芯片应用的单光子雪崩二极管成像传感器
US20150285625A1 (en) * 2014-04-07 2015-10-08 Samsung Electronics Co., Ltd. High resolution, high frame rate, low power image sensor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109239694A (zh) * 2017-07-11 2019-01-18 布鲁诺凯斯勒基金会 用于测量距离的光电传感器和方法
CN109239694B (zh) * 2017-07-11 2024-01-19 布鲁诺凯斯勒基金会 用于测量距离的光电传感器和方法
CN110686774A (zh) * 2018-07-05 2020-01-14 意法半导体(R&D)有限公司 光学传感器和操作光学传感器的方法
US11402263B2 (en) 2018-07-05 2022-08-02 Stmicroelectronics (Research & Development) Limited Optical sensor and method of operating an optical sensor
US11913831B2 (en) 2018-07-05 2024-02-27 Stmicroelectronics (Research & Development) Limited Optical sensor and method of operating an optical sensor
CN112567260A (zh) * 2018-08-09 2021-03-26 株式会社电装 光测距装置
CN108874020A (zh) * 2018-08-27 2018-11-23 东南大学 一种电流模式阵列spad增益均匀性自适应控制电路
CN109710009A (zh) * 2018-11-15 2019-05-03 深圳市速腾聚创科技有限公司 偏置电压调节方法及装置
CN113330328A (zh) * 2019-02-11 2021-08-31 苹果公司 使用脉冲束稀疏阵列的深度感测
CN111766592A (zh) * 2019-03-13 2020-10-13 株式会社东芝 传感器以及距离测量装置

Also Published As

Publication number Publication date
US9997551B2 (en) 2018-06-12
CN206401341U (zh) 2017-08-11
US20170179173A1 (en) 2017-06-22
KR20170073515A (ko) 2017-06-28
KR101901033B1 (ko) 2018-09-20
CN106898675B (zh) 2018-10-19
EP3182154A1 (en) 2017-06-21
TW201735333A (zh) 2017-10-01
TWI628785B (zh) 2018-07-01

Similar Documents

Publication Publication Date Title
CN206401341U (zh) 感测设备
JP7145201B2 (ja) フォトセンサーにおける高強度光を検出すること
JP4585694B2 (ja) 画像形成アレイに関する周囲光検出技術
JP5635937B2 (ja) 固体撮像装置
US7489355B2 (en) CMOS active pixel with hard and soft reset
US6797933B1 (en) On-chip design-for-testing structure for CMOS APS (active pixel sensor) image sensor
TWI400761B (zh) 少數載子擴散長度判定技術
US10497737B2 (en) Enhanced dynamic range imaging
JP2018511793A (ja) 少なくとも1つの対象物の光学的検出のための検出器
CN106664379A (zh) 高动态范围像素和用于操作高动态范围像素的方法
TWI578788B (zh) 具有非破壞性讀出之影像感測器像素單元
Savuskan et al. An estimation of single photon avalanche diode (SPAD) photon detection efficiency (PDE) nonuniformity
JP2017107132A (ja) 電子機器
CN110531343A (zh) 时间测量装置
US10612974B2 (en) Detection circuit and method to mitigate 1/F noise in single detectors and in image sensors
US6839407B2 (en) Arrangement of sensor elements
CN110729315B (zh) 像素架构和图像传感器
Tabet Double sampling techniques for CMOS image sensors
CN104378557B (zh) 固态成像器件、电子装置以及检查装置
Beck et al. A highly sensitive multi-element HgCdTe e-APD detector for IPDA lidar applications
Kong et al. SPAD Sensors with $256\times 2$ Linear Array for Time Delay Integration Demonstration
KR102598514B1 (ko) 시간 종속 이미지 데이터를 검출하는 이미지 센서 및 센서 장치
Chou et al. Linear and single-photon avalanche diode dual-mode CMOS optical sensor with high frame rate operation
US20100097477A1 (en) Method of detecting defects in image sensor, tester for the method, and control signal generator for the method
Ng et al. A Pulse Modulation CMOS Image Sensor with 120 dB Dynamic Range and 1 nW/cm2 Resolution for Bioimaging Applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant