CN106898643A - 一种高迁移率沟道双纳米线场效应晶体管及其制备方法 - Google Patents

一种高迁移率沟道双纳米线场效应晶体管及其制备方法 Download PDF

Info

Publication number
CN106898643A
CN106898643A CN201710156417.0A CN201710156417A CN106898643A CN 106898643 A CN106898643 A CN 106898643A CN 201710156417 A CN201710156417 A CN 201710156417A CN 106898643 A CN106898643 A CN 106898643A
Authority
CN
China
Prior art keywords
germanium
silicon
layer
preparation
germanium silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710156417.0A
Other languages
English (en)
Other versions
CN106898643B (zh
Inventor
安霞
张冰馨
胡向阳
黎明
黄如
张兴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN201710156417.0A priority Critical patent/CN106898643B/zh
Publication of CN106898643A publication Critical patent/CN106898643A/zh
Application granted granted Critical
Publication of CN106898643B publication Critical patent/CN106898643B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1037Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure and non-planar channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Nanotechnology (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明公布了一种高迁移率沟道双纳米线场效应晶体管及其制备方法。首先在Fin条底部、顶部和侧壁形成锗扩散阻挡层,对锗硅Fin条进行氧化,利用锗硅在氧化硅上氧化时趋于形成纳米线结构的特点,在Fin条顶部和底部分别形成纳米线结构;同时,利用锗聚集技术,使锗向Fin条顶部和底部扩散,提高沟道中锗组分,进而提高载流子迁移率,从而提高驱动电流。另外,双纳米线结构可以在提高驱动电流的同时节省芯片面积。

Description

一种高迁移率沟道双纳米线场效应晶体管及其制备方法
技术领域
本发明涉及一种高迁移率沟道双纳米线场效应晶体管及其制备方法,属于超大规模集成电路制造技术领域。
背景技术
集成电路产业一直遵循着摩尔定律不断前进。当器件的特征尺寸进入纳米尺度,受到短沟道效应、寄生效应等问题的影响,器件性能不再随尺寸的缩小以预测的程度提高。因此,新结构器件成为重要的解决方案。其中,围栅纳米线场效应晶体管具有最强的栅控能力和输运特性,被认为是10nm技术节点之后最有潜力的器件结构。首先,围栅硅纳米线器件的沟道完全被栅包裹,使整个沟道区的电势得到控制,减少泄漏电流。其次,围栅纳米线沟道中的量子限域效应使得反型层远离沟道表面,散射减少,有利于提高迁移率。
为了进一步提高器件的驱动能力,高迁移率沟道材料,如锗硅、锗和Ⅲ-Ⅴ族化合物半导体,也受到了广泛关注。因此,多栅器件与高迁移率沟道材料相结合是未来的主要趋势。
发明内容
针对以上问题,本发明提出了一种高迁移率沟道双纳米线场效应晶体管及其制备方法。首先在Fin条底部、顶部和侧壁形成锗扩散阻挡层,对锗硅Fin条进行氧化,利用锗硅在氧化硅上氧化时趋于形成纳米线结构的特点,在Fin条顶部和底部分别形成纳米线结构;同时,利用锗聚集技术,使锗向Fin条顶部和底部扩散,提高沟道中锗组分,进而提高载流子迁移率,从而提高驱动电流。另外,双纳米线结构可以在提高驱动电流的同时节省芯片面积。
本发明提供的高迁移率沟道双纳米线场效应晶体管,包括半导体衬底和半导体衬底上悬空的双纳米线,其特征在于,该双纳米线为锗硅材料,纳米线的中部为沟道,沟道被栅介质层和栅电极围绕形成围栅结构,沟道长度小于纳米线长度;源、漏位于沟道两端;纳米线两端的半导体材料与衬底之间有一层氧化硅绝缘层。
本发明还提供一种高迁移率沟道双纳米线场效应晶体管的制备方法,包括以下步骤:
1)在半导体衬底上淀积一层氧化硅,在氧化硅上形成单晶锗硅层,定义器件有源区;
2)在单晶锗硅层上淀积硬掩膜,通过光刻定义Fin条图形,刻蚀硬掩膜,露出Fin条两侧的单晶锗硅层表面,然后刻蚀单晶锗硅层至一定深度,去除光刻胶;
3)淀积侧墙材料并干法刻蚀,在单晶锗硅Fin条两侧形成侧墙;
4)继续刻蚀单晶锗硅层和底部的氧化硅,停止在半导体衬底表面;
5)对Fin条进行热氧化,在Fin条中形成一层氧化层,热氧化过程中锗向Fin条顶部和底部扩散,聚集形成两条高锗组分的锗硅纳米线,两条锗硅纳米线被氧化硅包裹;
6)湿法腐蚀硬掩膜、侧墙和热氧化产生的氧化硅,使纳米线悬空;
7)进行多次牺牲氧化及氧化层腐蚀,使纳米线变圆、变细;
8)围绕两条纳米线形成围栅结构,掺杂并退火形成源漏。
上述制备方法中,步骤1)中淀积的氧化硅作为氧化过程中锗扩散的底部阻挡层。所述半导体衬底可以是体硅衬底、体锗衬底、超薄硅膜SOI衬底等,若为超薄硅膜SOI衬底,可以在衬底上直接外延单晶锗硅层。
步骤1)中淀积氧化硅可以采用低压化学气相淀积(Low Pressure ChemicalVapor Deposition,LPCVD)、等离子体增强化学气相沉积(Plasma Enhanced ChemicalVapor Deposition,PECVD)等方法,氧化硅阻挡层的厚度优选为10~50nm。
步骤1)在氧化硅上生长多晶或非晶锗硅层,退火形成单晶锗硅层。所述单晶锗硅层可以是锗硅、锗硅/锗叠层等,但不局限于上述材料,厚度优选为5~100nm。生长多晶层或非晶层可以采用低压化学气相淀积(LPCVD)、等离子体增强化学气相沉积(PECVD)等方法;退火工艺可以采用快速热退火(Rapid Thermal Annealing,RTA)、激光退火(LaserAnnealing,LA)等方法。
步骤2)中所述硬掩膜可以为氧化硅、氮化硅等材料,淀积硬掩膜可以采用低压化学气相淀积(LPCVD)、等离子体增强化学气相沉积(PECVD)等方法,其厚度可以为10~50nm。光刻采用电子束光刻或193nm浸没式光刻等能形成纳米尺度线条的先进光刻技术。刻蚀硬掩膜形成“H”图形,中间的腰部即为Fin条图形,Fin条宽度可以在100nm以下。
优选的,步骤2)刻蚀单晶锗硅层的深度决定了两条纳米线的直径,刻蚀深度应小于单晶锗硅层厚度,优选为单晶锗硅层厚度的一半。
步骤3)中所述侧墙材料可以为氧化硅、氮化硅等材料,淀积侧墙材料可以采用低压化学气相淀积(LPCVD)、等离子体增强化学气相沉积(PECVD)等方法。
在步骤5)热氧化使得两条锗硅纳米线之间,以及纳米线与硬掩膜、侧墙之间形成氧化硅。所述热氧化工艺可以采用湿氧氧化、氢氧合成氧化、等离子体氧化等,氧化时间应根据刻蚀后Fin条宽度、氧化速率以及所需纳米线中锗组分而定,应保证形成一个隔离Fin条顶部与底部的氧化硅层。
步骤8)为常规的后续工艺,形成栅介质层、栅电极及侧墙,掺杂并退火形成源漏,光刻、刻蚀接触孔,溅射金属,光刻、刻蚀形成金属互连,合金,钝化。
本发明优点如下:
1)利用锗聚集技术,提高沟道中锗组分,进而提高沟道中载流子迁移率,从而提高驱动电流。
2)采用垂直双纳米线结构,在提高驱动电流的同时节省了芯片面积。
附图说明
图1-图9为实施例制备双锗硅纳米线场效应晶体管的关键工艺流程示意图,各图中(a)为垂直于沟道方向的剖面图,(b)为沿沟道方向的剖面图,(c)为俯视图(其中AA’为垂直于沟道方向,BB’为平行于沟道方向)。
其中:1-硅衬底;2-底部氧化硅阻挡层;3-单晶锗硅层;4-作硬掩膜的氧化硅层;5-保护锗硅Fin条的氧化硅侧墙;6-锗硅纳米线;7-包裹纳米线的氧化硅层;8-栅介质;9-栅电极;10-氧化硅侧墙;11-源;12-漏。
具体实施方式
本发明方法首先在Fin条底部、顶部和侧壁形成锗扩散阻挡层,对锗硅Fin条进行氧化,利用锗硅在氧化硅上氧化时趋于形成纳米线结构的特点,在Fin条顶部和底部分别形成纳米线结构;同时,利用锗聚集技术,使锗向Fin条顶部和底部扩散,提高纳米线中锗组分,进而提高载流子迁移率,从而提高驱动电流。另外,双纳米线结构可以在提高驱动电流的同时节省芯片面积。下面结合附图对本发明进行详细说明。
根据下列步骤可以实现双锗硅纳米线场效应晶体管:
步骤1.在P型(100)硅衬底1上CVD淀积20nm氧化硅阻挡层2,用LPCVD淀积50nm多晶锗硅层,退火形成单晶锗硅层3,如图1所示;
步骤2.PECVD淀积30nm氧化硅,光刻定义有源区及Fin条图形,刻蚀形成作硬掩膜的氧化硅层4,作硬掩膜的氧化硅层4呈“H”形,面积小于单晶锗硅层3面积,如图2所示;
步骤3.刻蚀单晶锗硅层3,刻蚀深度为25nm,去胶,如图3所示;刻蚀深度为单晶锗硅层3的一半;
步骤4.PECVD淀积氧化硅,并干法刻蚀形成氧化硅侧墙5,作为氧化时锗扩散的阻挡层,如图4所示;
步骤5.进一步刻蚀锗硅和底部氧化硅,露出硅衬底表面,如图5所示;
步骤6.对Fin条进行热氧化,在Fin条中间形成一层氧化层,热氧化过程中锗向Fin条顶部和底部扩散,聚集形成两条垂直排列的高锗组分的纳米线6,两条锗硅纳米线6被氧化硅层7包裹,如图6所示;
步骤7.用稀释的HF溶液腐蚀氧化硅层7,得到2根悬空的锗硅纳米线6,如图7所示;
步骤8.进行多次牺牲氧化及氧化层腐蚀,使锗硅纳米线6变圆、变细,如图8所示;
步骤9.整片淀积高k栅介质,淀积60nmTiN,CMP平坦化,形成栅介质层8和栅电极9,如图9所示;
步骤10.形成侧墙10,源漏掺杂P,注入剂量为2E15cm-2,能量为20keV。采用RTA退火950℃,30s,激活杂质,具体退火条件根据锗组分改变;
步骤11.进行后续工艺,淀积氧化硅作为层间介质,光刻、刻蚀形成栅、源、漏各端的接触孔,溅射金属,光刻、刻蚀形成金属线,合金,钝化。
综上所述,这种方法首先在Fin条底部、顶部和侧壁形成锗扩散阻挡层,对锗硅Fin条进行氧化,利用锗硅在氧化硅上氧化时趋于形成纳米线结构的特点,在Fin条顶部和底部分别形成纳米线结构;同时,利用锗聚集技术,使锗向Fin条顶部和底部扩散,提高纳米线中锗组分,进而提高载流子迁移率,从而提高驱动电流。另外,双纳米线结构可以在提高驱动电流的同时节省了芯片面积。

Claims (10)

1.一种高迁移率沟道双纳米线场效应晶体管,包括半导体衬底和半导体衬底上悬空的双纳米线,其特征在于,该双纳米线为锗硅材料,纳米线的中部为沟道,沟道被栅介质层和栅电极围绕形成围栅结构,沟道长度小于纳米线长度;源、漏位于沟道两端;纳米线两端的半导体材料与衬底之间有一层氧化硅绝缘层。
2.一种高迁移率沟道双纳米线场效应晶体管的制备方法,包括以下步骤:
1)在半导体衬底上淀积一层氧化硅,在氧化硅上形成单晶锗硅层,定义器件有源区;
2)在单晶锗硅层上淀积硬掩膜,通过光刻定义Fin条图形,刻蚀硬掩膜,露出Fin条两侧的单晶锗硅层表面,然后刻蚀单晶锗硅层至一定深度,去除光刻胶;
3)淀积侧墙材料并干法刻蚀,在单晶锗硅Fin条两侧形成侧墙;
4)继续刻蚀单晶锗硅层和底部的氧化硅,停止在半导体衬底表面;
5)对Fin条进行热氧化,在Fin条中形成一层氧化层,热氧化过程中锗向Fin条顶部和底部扩散,聚集形成两条高锗组分的锗硅纳米线,两条锗硅纳米线被氧化硅包裹;
6)湿法腐蚀硬掩膜、侧墙和热氧化产生的氧化硅,使纳米线悬空;
7)进行多次牺牲氧化及氧化层腐蚀,使纳米线变圆、变细;
8)围绕两条纳米线形成围栅结构,掺杂并退火形成源漏。
3.如权利要求2所述的制备方法,其特征在于,步骤1)所述半导体衬底是体硅衬底、体锗衬底或超薄硅膜SOI衬底。
4.如权利要求2所述的制备方法,其特征在于,步骤1)中淀积的氧化硅厚度为10~50nm。
5.如权利要求2所述的制备方法,其特征在于,步骤1)在氧化硅上生长多晶或非晶锗硅层,退火形成单晶锗硅层,单晶锗硅层厚度为5~100nm。
6.如权利要求2所述的制备方法,其特征在于,步骤2)中所述硬掩膜为氧化硅或氮化硅材料,厚度为10~50nm;光刻采用电子束光刻或193nm浸没式光刻技术,Fin条宽度在100nm以下。
7.如权利要求2所述的制备方法,其特征在于,步骤2)刻蚀单晶锗硅层的深度为单晶锗硅层厚度的一半。
8.如权利要求2所述的制备方法,其特征在于,步骤3)中所述侧墙材料为氧化硅或氮化硅。
9.如权利要求2所述的制备方法,其特征在于,步骤5)中热氧化采用湿氧氧化、氢氧合成氧化或等离子体氧化;氧化时间根据刻蚀后Fin条宽度、氧化速率以及所需纳米线中锗组分而定,保证形成一个隔离Fin条顶部与底部的氧化硅层。
10.如权利要求2所述的制备方法,其特征在于,步骤1)中淀积氧化硅,步骤2)中淀积硬掩膜和步骤3)中淀积侧墙材料采用低压化学气相淀积或等离子体增强化学气相沉积。
CN201710156417.0A 2017-03-16 2017-03-16 一种高迁移率沟道双纳米线场效应晶体管及其制备方法 Active CN106898643B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710156417.0A CN106898643B (zh) 2017-03-16 2017-03-16 一种高迁移率沟道双纳米线场效应晶体管及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710156417.0A CN106898643B (zh) 2017-03-16 2017-03-16 一种高迁移率沟道双纳米线场效应晶体管及其制备方法

Publications (2)

Publication Number Publication Date
CN106898643A true CN106898643A (zh) 2017-06-27
CN106898643B CN106898643B (zh) 2020-06-02

Family

ID=59194119

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710156417.0A Active CN106898643B (zh) 2017-03-16 2017-03-16 一种高迁移率沟道双纳米线场效应晶体管及其制备方法

Country Status (1)

Country Link
CN (1) CN106898643B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110620033A (zh) * 2019-08-26 2019-12-27 中国科学院微电子研究所 一种金属纳米线或片的制作方法及纳米线或片
CN111128676A (zh) * 2019-12-12 2020-05-08 中国科学院微电子研究所 一种纳米线及其制作方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
S. BALAKUMAR: "Germanium-Rich SiGe Nanowires Formed Through Oxidation of Patterned SiGe FINs on Insulator", 《JOURNAL OF ELECTRONIC MATERIALS》 *
Y. JIANG, N. SINGH, T. Y. LIOW: "Ge-Rich (70%) SiGe Nanowire MOSFET Fabricated Using Pattern-Dependent Ge-Condensation Technique", 《IEEE ELECTRON DEVICE LETTERS,》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110620033A (zh) * 2019-08-26 2019-12-27 中国科学院微电子研究所 一种金属纳米线或片的制作方法及纳米线或片
CN111128676A (zh) * 2019-12-12 2020-05-08 中国科学院微电子研究所 一种纳米线及其制作方法
CN111128676B (zh) * 2019-12-12 2023-02-03 中国科学院微电子研究所 一种纳米线及其制作方法

Also Published As

Publication number Publication date
CN106898643B (zh) 2020-06-02

Similar Documents

Publication Publication Date Title
US8927405B2 (en) Accurate control of distance between suspended semiconductor nanowires and substrate surface
US6897098B2 (en) Method of fabricating an ultra-narrow channel semiconductor device
CN102623321B (zh) 基于体硅的纵向堆叠式后栅型SiNWFET制备方法
TW201025605A (en) FinFET with longitudinal stress in a channel
CN104299905B (zh) 无结晶体管及其制造方法
CN101894842A (zh) 场效应晶体管反相器以及制造方法
US20140370667A1 (en) Tapered nanowire structure with reduced off current
CN105336620B (zh) 半导体结构及其形成方法
WO2012159424A1 (zh) 一种基于湿法腐蚀制备硅纳米线场效应晶体管的方法
CN102983171B (zh) 垂直无结环栅mosfet器件的结构及其制造方法
CN106158636A (zh) 晶体管及其形成方法
TW201727892A (zh) 用於iii-v族奈米線穿隧fet之方法及結構
CN102623322B (zh) 基于体硅的纵向堆叠式SiNWFET制备方法
CN102623382B (zh) 基于soi的三维阵列式硅纳米线场效应晶体管制备方法
CN106898643A (zh) 一种高迁移率沟道双纳米线场效应晶体管及其制备方法
CN102610529A (zh) 基于体硅的三维阵列式后栅型SiNWFET制备方法
CN106952959A (zh) 一种锗硅沟道鳍式场效应晶体管及其制备方法
CN104992972B (zh) 基于soi衬底的横向纳米线叉指结构晶体管及制备方法
CN102646643B (zh) 基于SOI的积累型Si-NWFET制备方法
CN102623347B (zh) 基于体硅的三维阵列式SiNWFET制备方法
CN102623383A (zh) 基于体硅的纵向堆叠式后栅型SiNWFET制备方法
CN102623338B (zh) 基于soi的纵向堆叠式硅纳米线场效应晶体管制备方法
CN102646598A (zh) 基于SOI的纵向堆叠式后栅型Si-NWFET制造方法
CN102637605B (zh) 基于SOI的后栅型积累模式Si-NWFET制备方法
CN102646624B (zh) 基于SOI的三维阵列式后栅型Si-NWFET制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant