CN106881082B - 用于逆水煤气变换反应的Ir基催化剂及其制备和应用 - Google Patents

用于逆水煤气变换反应的Ir基催化剂及其制备和应用 Download PDF

Info

Publication number
CN106881082B
CN106881082B CN201510930544.2A CN201510930544A CN106881082B CN 106881082 B CN106881082 B CN 106881082B CN 201510930544 A CN201510930544 A CN 201510930544A CN 106881082 B CN106881082 B CN 106881082B
Authority
CN
China
Prior art keywords
catalyst
solution
tio
gas
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510930544.2A
Other languages
English (en)
Other versions
CN106881082A (zh
Inventor
黄延强
陈孝东
苏雄
张涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN201510930544.2A priority Critical patent/CN106881082B/zh
Publication of CN106881082A publication Critical patent/CN106881082A/zh
Application granted granted Critical
Publication of CN106881082B publication Critical patent/CN106881082B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)

Abstract

本发明涉及一种用于逆水煤气变换反应的Ir基催化剂及其制备和应用。催化剂活性组分为Ir,载体为具有氧化还原性的金红石相氧化钛,催化剂中活性组分含量为0.1%‑5%。利用Ir与金红石氧化钛具有良好的晶格匹配程度,有利于Ir颗粒在载体表面形成外延式生长,从而抑制Ir颗粒在高温逆水煤气变换反应环境中的迁移聚集长大。本发明特点在于催化剂制备工艺简单,对逆水汽变换反应表现出良好的高温稳定性和活性,具有很好的应用前景。

Description

用于逆水煤气变换反应的Ir基催化剂及其制备和应用
技术领域
本发明涉及一种高温稳定的负载型贵金属催化剂及其制备方法,具体地说是负载型Ir基催化剂的制备及其在逆水汽变换反应中的应用。
背景技术
工业革命以来,化石能源的恣意性使用导致大气中CO2含量逐年增加,破坏了地球生态系统中的碳平衡,严重威胁人类可持续发展。同时,人类日益增长的能源需求与化石能源的不可再生性之间的矛盾导致全球不和谐因素增加。对于CO2资源化利用的研究,无疑为解决能源问题和减少CO2的排放提供了重大的理论价值和现实需求。逆水煤气变换反应(RWGS)是实现CO2资源化利用最为有效途径之一。通过该反应生产CO的路线可能是替代传统煤化工制合成气的最佳方案,有望成为未来发展绿色煤化工技术的基础。RWGS反应在航天领域中有着特殊的应用价值和意义。2007年美国航天航空局发布的“火星探测”计划中,把与RWGS反应相关的催化技术及反应器的设计列为重点攻关项目。该项目旨在利用火星中存在的大量CO2与经太阳能电解水产生的H2通过RWGS反应生产宇航员所必需的H2O以及燃料(CO),增加宇航员在火星上有效活动时间,为进行各种周期性科研考察活动提供极大便利。RWGS反应技术也将为未来在火星上建立一个“人类永久性定居点”提供可能。RWGS反应还参与到许多重要的CO2资源化利用反应,例如,在CO2直接制烯烃、CO2制甲醇、CO2甲烷化,CO2制甲酸的反应过程中,RWGS反应都是其中关键的一个步骤。在固体燃料电池中,通过RWGS催化反应来调变原料气(CO2、CO、H2)中CO/H2的比例,可以以此提高固体燃料电池的电效率。RWGS反应无论从CO2资源利用、航天技术,还是环境保护方面都受到全世界的广泛关注,因此也推动着对于RWGS催化反应机理和实际应用的相关研究。
非贵金属催化剂在应用于RWGS反应中存在高温稳定性差、易烧结失活等现象。虽然通过添加碱性金属、过渡金属等作为电子性助剂和结构性助剂可以一定程度上抑制催化剂失活,但因其高温稳定性较差、寿命时间短而无法达到工业化应用要求。例如,Lin等人对制备10%Cu/SiO2、0.3%Fe/SiO2、Cu-Fe/SiO2(Fe:Cu=10:0.3)催化剂进行RWGS反应寿命测试,虽然Fe的掺入可以抑制反应过程中催化剂比表面积减少,但都表现出不同程度的失活(S S Lin,et al,.Chemical Communication.,2001,1770-1771)。Waller等人研究了Cu-ZnO和Cu-ZnO/Al2O3催化剂,掺入Al2O3后,可以在一定程度上抑制焙烧过程中Cu和Zn颗粒因聚集而造成的催化剂失活(Waller D,et al,.Topics in Catalysis.,Vol.22,Nos.3-4,April 2003)。Liu等人通过不同方法(如共沉淀法、沉积沉淀法、浸渍法)制备出一系列Ni/CeO2催化剂,并考察了它们的RWGS反应性能,通过共沉淀法制备出来的1wt%Ni/CeO2催化剂中存在大量高度分散的NiO和较多的CeO2晶格氧空缺,有利于提高RWGS反应的催化活性(LH Wang,et al,.Journal of rare earths.,Vol.31,No.6,Jun.2013,P.559)。但他们的研究中并没有涉及对催化剂在高温条件下稳定性测试。
近期,贵金属催化剂在逆水煤气变换反应中应用研究越来越受到关注。Hong等制备了不同类型的TiO2负载的Pt催化剂,研究发现,较小的TiO2粒径增大了其可还原性,从而有利于形成新的活性位(S C Hong,et al,.Applied Catalysis A:General.,423-424(2012)100-107)。Kim等人采用浸渍法制备了负载量为1%的Pt/TiO2和Pt/Al2O3催化剂。虽然Pt/Al2O3催化剂的表面暴露出较多的Pt活性位点,BET也较大,但Al2O3载体不具有可还原性,不利于通过SMSI作用形成新的活性位,因此催化剂的活性和CO选择性均较差(S S Kim,et al,.Applied Catalysis B:Environmental.,119-120(2012)100-108)。Kwark等制备了0.1%Pd/Al2O3和10%Pd/Al2O3催化剂,并用于CO2加氢反应,在P=0.1Ma、T=200-500℃,H2/CO2=3、GHSV=72000mL/(h·g)的反应条件下,0.1%Pd/Al2O3催化剂上CO的收率较高,而CH4的收率较低(J H Kwak,et al,.American Chemical Society.,2013,3,2094-2100)。作者又制备了一系列不同负载量的Ru/Al2O3催化剂。在P=0.1Ma、T=150-500℃,H2/CO2=3、GHSV=72000mL/(h·g)的反应条件下,低负载高分散的Ru/Al2O3催化剂有较高的CO产率(JH Kwak,et al,.American Chemical Society.,2013,3,2449-2455)。以上低负载量的贵金属催化剂对逆水煤气变换反应均有较高的催化活性和热稳定性。
目前,已有一些用于该反应的催化剂申请了相关专利。中国专利CN201310120254公布了一种用于逆水煤气变换反应的Cu-Zn基催化剂、其制备方法和应用。该技术制备的CuaZnbMc催化剂在高压条件下表现出较好的低温活性和很高的一氧化碳选择性。同时还可应用于与一氧化碳进行加氢耦合反应生产具有高附加值的烃类、低碳醇和高碳醇等产品。但该技术并没有提供应用于近常压下生产一氧化碳这一低耗能路径的事实。中国专利CN201210538164公布了一种逆水煤气变换催化剂用于逆水汽变换反应的方法。该技术选用镍铈催化剂应用于逆水煤气变换反应,同时采用高纯二氧化碳气体进行活化,活化效果好,催化剂反应具有良好的活性、热稳定性。中国专利CN201210147422公布了一种逆水煤气变换催化剂及其制备方法。该技术以二氧化铈为载体,负载钴作为活性组分、钾为助剂。其制备的催化剂用于逆水煤气变换反应具有活性较高、选择性好和稳定性良好的特点。但是该催化剂因负载量较高、分散度差,而造成大量体相Co原子不能发挥其催化作用。就以上申请的专利而言,仅仅涉及非贵金属催化剂在逆水汽变换反应中应用,但并未见针对逆水煤气变换反应贵金属催化剂的制备方法及应用的相关专利报道。
发明内容:
本发明所要解决的首要技术问题是提供一种逆水煤气变换的贵金属催化剂,该贵金属催化剂用于逆水煤气变换反应具有活性高、选择性好和稳定性良好的特点。
本发明所要解决的另一技术问题是提供一种逆水煤气变换催化剂的制备方法,该催化剂用于逆水煤气变换反应具有活性高、选择性好和稳定性良好的特点。
本发明在解决上述技术问题时所采用的技术方案为:制备一种逆水煤气变换催化剂,其特征在于,催化剂包括自制r-TiO2载体、活性组分Ir,其中活性组分Ir的质量分数为0.1-5%。
本发明解决上述另一个技术问题所采用的技术方案为:一种上述逆水煤气变换催化剂的制备方法,其特征在于步骤过程是:
(1)r-TiO2载体的制备:量取30mlTiCl4溶液至100mL烧杯中,用去离子水稀释至50mL,置于60-80℃水浴中搅拌4-8h后,静置0.5-2h;然后用去离子水洗涤、过滤至滤液为中性,将白色滤饼于80-200℃烘箱中烘干后,在400-800℃下空气气氛中焙烧2-4h,即制得r-TiO2
(2)分别称取相应量的活性组分贵金属前驱体溶液于100ml烧杯中,加去离子水稀释至30ml,将步骤(1)制得的催化剂载体r-TiO2分别称取并添加到配置好的活性组分溶液中并超声分散。
(3)将步骤(2)所得的悬浮液样品置于50-80℃水浴中搅拌至溶液挥发进干。
(4)将步骤(3)获得的样品用超纯水洗涤至中性,洗涤过程中将洗液进行抽滤,所得滤饼置于120℃烘箱中干燥6-24h。
(5)将步骤(4)获得的滤饼在温度为300-800℃空气气氛中焙烧2-6h。
(6)将步骤(5)所得的样品用稀氨水溶液(1molL-1)多次洗涤试样以除去样品中残留的Cl-离子。然后将其在40-80℃烘箱中干燥10-24h。
(7)将步骤(6)所得的样品用还原气在300-500℃条件下还原30-120min,即获得Ir/TiO2催化剂。
本发明中使用的Ti源为TiCl4溶液,TiCl4浓度为0.91molL-1,HCl浓度为3.06molL-1
本发明中使用的贵金属前驱体溶液选自氯铱酸,乙酰丙酮铱及其与过渡金属组成的混合溶液。
本发明中使用的还原气选自经N2稀释的氢气或一氧化碳。
本发明中,制备的Ir基催化剂可应用于300-800℃高温条件下的二氧化碳加氢逆水煤气变换反应。
本发明中所涉及的具体催化剂评价方法为:评价装置采用固定床反应器;原料气体积分数组成为二氧化碳(5%-45%)、氢气(5%-45%)、氮气(10%-90%),催化剂装填量为0.05-0.5g;反应温度为300-800℃,空速为5000-500000h-1。反应在近常压条件下进行,产物采用安捷伦GC-7890B气相色谱仪进行在线分析。对于0.1%-1%的低负载量Ir/r-TiO2催化剂,在300-600℃的温度区间内,一氧化碳始终保持在90%以上选择性;在反应温度大于600℃的条件下,二氧化碳达到热力学平衡转化率,一氧化碳选择性达到100%。
本发明具有如下效果:
(1)该催化剂制备方法简单,性能稳定,易于实现工业方法生产。
(2)该催化剂采用传统的浸渍法,实现了活性组分的良好分散,有利于提高催化剂的活性、选择性和稳定性。
(3)该催化剂负载量低,不但有利于降低催化剂生产成本而且有利于提高RWGS中的CO收率。
附图说明:
图1为本发明实施例1-5所制得的0.1%-5%的Ir/r-TiO2催化剂应用于RWGS反应的催化反应评价装置示意图。
图2为本发明实施例1-5所制得0.1%-5%的Ir/r-TiO2催化剂的STEM照片。
图3为本发明实施例1-5所制得0.1%-5%的Ir/r-TiO2催化剂用于RWGS反应之后的XRD图。
图4为本发明实施例1-5所制得0.1%-5%的Ir/r-TiO2催化剂用于RWGS反应时CO2转化率随温度的变化曲线图。
图5为本发明实施例1-5所制得0.1%-5%的Ir/r-TiO2催化剂用于RWGS反应时CO选择性随温度变化曲线图。
具体实施方式
纯相金红石TiO2载体的制备:量取30mlTiCl4溶液至烧杯中,用去离子水稀释至50mL,置于80℃水浴中搅拌6h后,静置2h;然后用去离子水洗涤、过滤至滤液为中性,将白色滤饼于200℃烘箱中烘干后,在800℃下空气气氛中焙烧4h,即制得r-TiO2
实施例1:
用电子天平称取0.0062g质量百分含量为16.28wt%的H2IrCl4溶液于100mL烧杯中,加去离子水至30mL。将已称好的自制1.0g r-TiO2载体加入H2IrCl4溶液中,超声分散均匀后,置于50℃水浴中搅拌至溶液挥发完全;然后用去离子水洗涤至中性,将滤饼于120℃干燥12h后,在300℃下空气气氛中焙烧4h;接着用稀氨水溶液(1molL-1)多次洗涤样品以除去残留的Cl-1离子,最后将其在60℃烘箱中干燥12h后,在600原料气中还原1h,即制得0.1wt%的Ir/r-TiO2催化剂(附图2(a))。
实施例2:
用电子天平称取0.0307g质量百分含量为16.28wt%的H2IrCl4溶液于100mL烧杯中,加去离子水至30mL。将已称好的自制1.0g r-TiO2载体加入H2IrCl4溶液中,超声分散均匀后,置于50℃水浴中搅拌至溶液挥发完全;然后用去离子水洗涤至中性,将滤饼于120℃干燥12h后,在300℃下空气气氛中焙烧4h;接着用稀氨水溶液(1mol L-1)多次洗涤样品以除去残留的Cl-1离子,最后将其在60℃烘箱中干燥12h后,在600原料气中还原1h,即制得0.5wt%的Ir/r-TiO2催化剂(附图2(b)).
实施例3:
用电子天平称取0.0614g质量百分含量为16.28wt%的H2IrCl4溶液于100mL烧杯中,加去离子水至30mL。将已称好的自制1.0g r-TiO2载体加入H2IrCl4溶液中,超声分散均匀后,置于50℃水浴中搅拌至溶液挥发完全;然后用去离子水洗涤至中性,将滤饼于120℃干燥12h后,在300℃下空气气氛中焙烧4h;接着用稀氨水溶液(1mol L-1)多次洗涤样品以除去残留的Cl-1离子,最后将其在60℃烘箱中干燥12h后,在600原料气中还原1h,即制得1wt%的Ir/r-TiO2催化剂(附图2(c))。
实施例4:
用电子天平称取0.1254g质量百分含量为16.28wt%的H2IrCl4溶液于100mL烧杯中,加去离子水至30mL。将已称好的自制1.0g r-TiO2载体加入H2IrCl4溶液中,超声分散均匀后,置于50℃水浴中搅拌至溶液挥发完全;然后用去离子水洗涤至中性,将滤饼于120℃干燥12h后,在300℃下空气气氛中焙烧4h;接着用稀氨水溶液(1mol L-1)多次洗涤样品以除去残留的Cl-1离子,最后将其在60℃烘箱中干燥12h后,在600原料气中还原1h,即制得2wt%的Ir/r-TiO2催化剂(附图2(d))。
实施例5:
用电子天平称取0.3233g质量百分含量为16.28wt%的H2IrCl4溶液于100mL烧杯中,加去离子水至30mL。将已称好的自制1.0g r-TiO2载体加入H2IrCl4溶液中,超声分散均匀后,置于50℃水浴中搅拌至溶液挥发完全;然后用去离子水洗涤至中性,将滤饼于120℃干燥12h后,在300℃下空气气氛中焙烧4h;接着用稀氨水溶液(1mol L-1)多次洗涤样品以除去残留的Cl-1离子,最后将其在60℃烘箱中干燥12h后,在600原料气中还原1h,即制得5wt%的Ir/r-TiO2催化剂(附图2(e))。
实施例6:
将上述制得的催化剂筛分,称取颗粒度为20-40目的催化剂50mg,在固定床石英管反应器上(附图1)进行性能测试,石英管规格为φ12×1,原料气空速为50000mL/h·gcat。原料气组成为:45vol.%CO2,45vol.%H2,10vol.%N2。样品在50ml/min的N2气氛下从室温升至300℃,转换到原料气开始进行反应。反应温度从300℃到600℃,每升温25℃为一个温度点,每个温度点反应1h。采用安捷伦GC-7890B型气相色谱在线分析,TDX-01柱,TCD检测器。催化剂评价测试结果见附图2、3、4。从XRD图分析得到反应后催化剂活性Ir颗粒高度分散在载体上,600℃时CO2转化率均达到30%以上。与高负载量Ir/TiO2催化剂相比,低负载量Ir/TiO2催化剂显著提高了目标产物CO的收率。

Claims (9)

1.用于逆水煤气变换反应的Ir基催化剂,其特征在于:首先制得了纯相金红石r-TiO2载体,催化剂活性组分为贵金属Ir;催化剂活性组分通过浸渍法制备于载体上,Ir的质量百分含量为0.1%-5%,催化剂的具体制备流程如下:
(1)纯相金红石r-TiO2载体的制备:量取30mlTiCl4溶液至烧杯中,用去离子水稀释至50mL,置于60-80℃水浴中搅拌4-8h后,静置0.5-2h;然后用去离子水洗涤、过滤至滤液为中性,将白色滤饼于80-200℃烘箱中烘干后,在400-800℃下空气气氛中焙烧2-4h,即制得r-TiO2
(2)称取所需量的活性组分Ir前驱体溶液于烧杯中,加去离子水稀释,得活性组分溶液;称取步骤(1)中所得的催化剂载体r-TiO2并添加到配好的活性组分溶液中,超声分散;
(3)将步骤(2)所得的悬浮液样品置于50-80℃水浴中搅拌至溶液完全挥发;
(4)将步骤(3)获得的样品用超纯水洗涤至中性,洗涤过程中将洗液进行抽滤,所得滤饼置于120℃烘箱中干燥6-24h;
(5)将步骤(4)获得的滤饼在300-800℃空气气氛中焙烧2-6h;
(6)将步骤(5)所得的样品用1molL-1稀氨水溶液;洗涤,以除去样品中残留的Cl-离子;然后将其在40-80℃烘箱中干燥10-24h;
(7)将步骤(6)所得的样品用还原气在300-500℃条件下还原30-120min,即获得Ir基催化剂。
2.一种权利要求1所述的Ir基催化剂的制备方法,其特征在于,催化剂的具体制备流程如下:
(1)纯相金红石r-TiO2载体的制备:量取30mlTiCl4溶液至烧杯中,用去离子水稀释至50mL,置于60-80℃水浴中搅拌4-8h后,静置0.5-2h;然后用去离子水洗涤、过滤至滤液为中性,将白色滤饼于80-200℃烘箱中烘干后,在400-800℃下空气气氛中焙烧2-4h,即制得r-TiO2
(2)称取所需量的活性组分Ir前驱体溶液于烧杯中,加去离子水稀释,得活性组分溶液;称取步骤(1)中所得的催化剂载体r-TiO2并添加到配好的活性组分溶液中,超声分散;
(3)将步骤(2)所得的悬浮液样品置于50-80℃水浴中搅拌至溶液完全挥发;
(4)将步骤(3)获得的样品用超纯水洗涤至中性,洗涤过程中将洗液进行抽滤,所得滤饼置于120℃烘箱中干燥6-24h;
(5)将步骤(4)获得的滤饼在300-800℃空气气氛中焙烧2-6h;
(6)将步骤(5)所得的样品用1molL-1稀氨水溶液;洗涤,以除去样品中残留的Cl-离子;然后将其在40-80℃烘箱中干燥10-24h;
(7)将步骤(6)所得的样品用还原气在300-500℃条件下还原30-120min,即获得Ir基催化剂。
3.根据权利要求2所述的制备方法,其特征在于:步骤(1)溶液中TiCl4的浓度为0.5-1molL-1
4.根据权利要求2所述的制备方法,其特征在于:步骤(2)所述Ir前驱体溶液选自氯铱酸和乙酰丙酮铱中的一种或由二者组成的混合溶液。
5.根据权利要求2所述的制备方法,其特征在于:步骤(7)所述的还原气选自经N2稀释的氢气或N2稀释的一氧化碳中的一种或二种,N2的体积含量10-90%。
6.一种权利要求1所述的Ir基催化剂的应用,其特征在于:所述催化剂用于300-800℃高温条件下的二氧化碳加氢逆水煤气变换反应。
7.根据权利要求6所述的催化剂的应用,其特征在于:逆水煤气变换反应评价装置为固定床反应器;原料气体积分数组成为5%-45%二氧化碳、5%-45%氢气、10%-90%氮气,催化剂装填量为0.05-0.5g;反应温度为300-800℃,空速为5000-500000h-1
8.根据权利要求6所述的催化剂的应用,其特征在于:
反应在近常压条件下进行,产物采用安捷伦GC-7890B气相色谱仪进行在线分析,对于0.1%-5%的低负载量Ir/r-TiO2催化剂,在300-600℃的温度区间内,一氧化碳始终保持在90%以上选择性;在反应温度大于600℃的条件下,二氧化碳达到热力学平衡转化率,一氧化碳选择性达到100%。
9.根据权利要求6所述的催化剂的应用,其特征在于:
使用之前,对催化剂预处理温度为200-800℃,处理后的催化剂中Ir的粒径大小基本不发生变化。
CN201510930544.2A 2015-12-15 2015-12-15 用于逆水煤气变换反应的Ir基催化剂及其制备和应用 Active CN106881082B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510930544.2A CN106881082B (zh) 2015-12-15 2015-12-15 用于逆水煤气变换反应的Ir基催化剂及其制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510930544.2A CN106881082B (zh) 2015-12-15 2015-12-15 用于逆水煤气变换反应的Ir基催化剂及其制备和应用

Publications (2)

Publication Number Publication Date
CN106881082A CN106881082A (zh) 2017-06-23
CN106881082B true CN106881082B (zh) 2019-07-26

Family

ID=59174133

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510930544.2A Active CN106881082B (zh) 2015-12-15 2015-12-15 用于逆水煤气变换反应的Ir基催化剂及其制备和应用

Country Status (1)

Country Link
CN (1) CN106881082B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110075831B (zh) * 2019-05-28 2022-07-15 中山大学 一种用于低浓度甲烷催化燃烧的铱负载型催化剂及其制备方法
CN111470542A (zh) * 2020-04-30 2020-07-31 鞍钢股份有限公司 一种逆水煤气氧化锰催化剂的制备方法
CN111547776A (zh) * 2020-04-30 2020-08-18 鞍钢股份有限公司 一种利用氧化铜纳米片制备逆水煤气氧化铁催化剂的方法
CN113926493B (zh) * 2020-07-13 2022-08-19 中国科学院大连化学物理研究所 一种MOFs晶体材料及其制备方法、应用
CN113926451A (zh) * 2020-07-14 2022-01-14 中国科学院大连化学物理研究所 一种催化剂在催化二氧化碳加氢反应中的应用
US11827521B2 (en) 2021-12-14 2023-11-28 Industrial Technology Research Institute Method for selectively chemically reducing CO2 to form CO
CN116351428A (zh) * 2023-02-27 2023-06-30 东莞市振亮精密科技有限公司 一种钠、钾作为助剂的逆水煤气变换催化剂的制备及应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102120184A (zh) * 2011-01-25 2011-07-13 中国科学院山西煤炭化学研究所 一种负载贵金属二氧化钛光催化剂及制法和应用
CN103874542A (zh) * 2011-09-19 2014-06-18 约翰内斯堡威特沃特斯兰德大学 热稳定纳米催化剂

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102120184A (zh) * 2011-01-25 2011-07-13 中国科学院山西煤炭化学研究所 一种负载贵金属二氧化钛光催化剂及制法和应用
CN103874542A (zh) * 2011-09-19 2014-06-18 约翰内斯堡威特沃特斯兰德大学 热稳定纳米催化剂

Also Published As

Publication number Publication date
CN106881082A (zh) 2017-06-23

Similar Documents

Publication Publication Date Title
CN106881082B (zh) 用于逆水煤气变换反应的Ir基催化剂及其制备和应用
Wang et al. Oxygen-vacancy-activated CO2 splitting over amorphous oxide semiconductor photocatalyst
Guo et al. MnOx modified Co3O4-CeO2 catalysts for the preferential oxidation of CO in H2-rich gases
Zou et al. Selective CO oxidation over CuO–CeO2 catalysts doped with transition metal oxides
Shi et al. A new type bimetallic NiMn-MOF-74 as an efficient low-temperatures catalyst for selective catalytic reduction of NO by CO
Cao et al. Autothermal reforming of methane over Rh/Ce0. 5Zr0. 5O2 catalyst: Effects of the crystal structure of the supports
Sun et al. Ethylene glycol and ethanol oxidation on spinel Ni-Co oxides in alkaline
CN109731579A (zh) 一种镍负载的介孔氧化镧催化剂及其制备方法
CN101822989A (zh) 加氧乙醇水蒸气重整用的钙钛矿催化剂及其制备方法
Qihai et al. Effect of ZrO2 crystalline phase on the performance of Ni-B/ZrO2 catalyst for the CO selective methanation
CN106268795B (zh) 金属-氧化铈催化剂的制备方法及其在二氧化碳电催化还原中的应用
CN102671666A (zh) 一种具有高CO-PROX活性的CuOx/CeO2催化剂的制备方法
Zhao et al. Efficient cobalt–manganese oxide catalyst deposited on modified AC with unprecedented catalytic performance in CO preferential oxidation
Al-Akraa et al. Electrocatalysis by nanoparticle: enhanced electro-oxidation of formic acid at NiOx–Pd binary nanocatalysts
CN105709724A (zh) 镁铝氧化物固溶体负载钌甲烷二氧化碳重整催化剂及其制备方法
Fraccari et al. Ce–Mn mixed oxides as supports of copper-and nickel-based catalysts for water–gas shift reaction
He et al. Constructing matched active sites for robust photocatalytic dry reforming of methane
CN108371952A (zh) 一种配位-浸渍法制备甲烷-二氧化碳重整镍基催化剂的方法
Lim et al. The effect of Sn addition on a Pt∕ C electrocatalyst synthesized by borohydride reduction and hydrothermal treatment for a low-temperature fuel cell
Zhang et al. Tuning the CO2 Hydrogenation Activity and Selectivity by Highly Dispersed Ni–In Intermetallic Alloy Compounds
CN102500386A (zh) 一种铈镍复合氧化物催化材料的制备方法
Chen et al. Selective oxidation of CO in excess H2 over Ru/Al2O3 catalysts modified with metal oxide
CN103007979A (zh) 一种用于co选择性氧化反应的负载型铜铈催化剂及其制法
Zhao et al. Ternary Ni–Co–Fe oxides based on Prussian blue analog for efficient photothermal catalytic CO2 reduction to CO and CH4
CN111036199A (zh) 金红石型氧化钛担载的催化剂在二氧化碳加氢反应中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant