CN106865624A - 一种硫化钴材料、制备方法及其用途 - Google Patents

一种硫化钴材料、制备方法及其用途 Download PDF

Info

Publication number
CN106865624A
CN106865624A CN201710053803.7A CN201710053803A CN106865624A CN 106865624 A CN106865624 A CN 106865624A CN 201710053803 A CN201710053803 A CN 201710053803A CN 106865624 A CN106865624 A CN 106865624A
Authority
CN
China
Prior art keywords
sulfide material
cobalt sulfide
preparation
water
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710053803.7A
Other languages
English (en)
Other versions
CN106865624B (zh
Inventor
金辉乐
王舜
刘爱丽
余小春
王继昌
凌鹏生
董小妹
余国东
徐雪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wenzhou University
Original Assignee
Wenzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wenzhou University filed Critical Wenzhou University
Priority to CN201710053803.7A priority Critical patent/CN106865624B/zh
Publication of CN106865624A publication Critical patent/CN106865624A/zh
Application granted granted Critical
Publication of CN106865624B publication Critical patent/CN106865624B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/043Sulfides with iron group metals or platinum group metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供一种硫化钴材料、制备方法及其用途。硫化钴材料通过以下步骤制备:(1)将二甲基二硫代氨基甲酸钠与六水合氯化钴按2:1的摩尔比于水中混合,反应后得到第一产物;(2)在惰性气体保护下,将干燥后的第一产物于500~900℃下反应2~3小时得到硫化钴材料。本发明的硫化钴材料可应用于电催化水制氢领域。

Description

一种硫化钴材料、制备方法及其用途
技术领域
本发明涉及一种硫化钴材料、其制备方法以及用途。
背景技术
全球能源供应不足以及化石能源的燃烧导致的坏境污染问题作为21世纪最大的挑战之一,正受到越来越多的关注。因此,寻找一种清洁能源逐步代替化石能源迫在眉睫。氢能作为一种可持续生产、安全、无污染的可替代清洁能源正越来越得到研究。然而,氢能只有以一种高效、低价、坏境友好的方式被生产时才可以被应用起来。电化学产氢作为一种极具吸引力的方法可以很好的满足以上条件。
传统的电化学产氢材料主要以贵金属(比如Pt、Pd等)居多。但是,贵金属稀少、昂贵的原因在一定程度上限制了贵金属作为电化学产氢材料的实际应用。近年来,大量的研究致力于寻找可替代贵金属、储存丰富的的电化学产氢材料,包括碳材料、硒化物、过渡金属磷化物、过渡金属硫化物复合材料等。其中,过渡金属硫化物,例如MoS2、WS2、CoS2等,因为具有相符合的能带结构,良好的电化学产氢性能正日益得到重视。
过渡金属硫化物的合成方法有多种。例如,通过剥离法和化学气相沉积法的结合合成的1T-MoS2-Si材料,和其它材料负载在Si上相比,1T-MoS2-Si材料在产氢电位时表现出了最高的电流密度以及较低的阻抗;利用水热法合成的MoS2-CoS2-carbon cloth纳米线复合材料,其起始电化学产氢电位在-0.1v左右,塔菲尔斜率为73.4mv/dec,表现出了高效的电化学产氢性能,另外循环1000圈以后仍保持着很好的稳定性。
但是以上方法合成的过渡金属硫化物多为简单的的金属二硫化物,且合成方法比较复杂。过渡金属多硫化物材料作为电化学产氢催化剂却很少涉及,因此设计一种操作简便,方法简单的合成过渡金属多硫化物的方法具有重要的实用意义。
发明内容
本发明的目的在于解决现有技术存在的上述缺点,提供一种硫化钴材料,以及该硫化钴材料在电催化制氢领域的应用。
为达到以上目的,本发明提供一种硫化钴材料的制备方法,包括以下步骤:
(1)将二甲基二硫代氨基甲酸钠与六水合氯化钴按2:1的摩尔比于水中混合,反应后得到第一产物;
(2)在惰性气体保护下,将干燥后的所述第一产物于500~900℃下反应2~3小时得到所述硫化钴材料。
优选地,步骤(1)中,二甲基二硫代氨基甲酸钠、六水合氯化钴和水混合后,于室温下搅拌反应10min~30min,反应后得到的第一产物于100℃下烘干8~12小时。
优选地,步骤(2)中,干燥后的所述第一产物于800℃下反应2~3小时。
优选地,步骤(2)中,升温速率为5℃/min。
优选地,所述硫化钴材料为Co9S8
本发明还提供一种所述硫化钴材料的用途,即应用于电催化水制氢领域。
作为在电催化水制氢领域的具体应用,本发明还提供一种电催化制氢电极的制备方法,包括以下步骤:
(a)将玻碳电极在粒度为0.3~0.7μm的氧化铝水浆中打磨、抛光,然后依次在丙酮、无水乙醇和高纯水中超声洗涤20~40秒,氮气吹干,获得预处理玻碳电极;
(b)将所述硫化钴材料分散在水和乙醇比为4:1的混合溶液中,超声分散15~30分钟,获得混合均匀的溶液;
(c)将步骤(b)得到的混合溶液滴到步骤(a)的预处理玻碳电极上,室温干燥;
(d)在玻碳电极上滴加nafion乙醇溶液,室温干燥,即得所述电极。
本发明具备以下有益效果:本发明提供的方法制备得到过渡金属多硫化物,填充了该研究领域的空白,且得到的硫化钴材料具有良好的电催化活性,能够有效地电催化水产生氢,其制备方法简单、成本低廉,反应时间短,本发明对缓解能源危机和环境问题具有重要的意义。
附图说明
图1是实施例1-4的硫化钴材料的塔菲尔曲线图。
图2是实施例1-4的硫化钴材料的线性扫描伏安图。
图3是实施例3的硫化钴材料的低倍扫描电镜图(SEM)。
图4a、4b、4c是实施例3的硫化钴材料的X射线光电子能谱。
图5是实施例3的硫化钴材料的阻抗图。
图6a是实施例3的硫化钴材料制备的电极的线性扫描伏安图,图6b是市售的20%Pt/C电极的线性扫描伏安图。
图7是实施例3的硫化钴材料的X射线衍射图(XRD)。
具体实施方式
下面通过具体的实施例对本发明进行详细说明,但这些例举性实施方式的用途和目的仅用来例举本发明,并非对本发明的实际保护范围构成任何形式的任何限定,更非将本发明的保护范围局限于此。
实施例1
硫化钴材料通过以下步骤制备:
(1)二甲基二硫代氨基甲酸钠和六水合氯化钴按2:1摩尔比混合于500ml烧杯中,加入200ml~400ml水,室温下搅拌10min~30min,抽滤得到固体样品,将固体样品于100℃的烘箱中烘干8h~12h;
(2)将步骤(1)得到的产物1g放置在管式炉中,在氩气保护下,以5℃/min的升温速率从室温升到500℃,并在此温度下保温2小时,冷却到室温后取出样品,得到硫化钴材料。
实施例2
硫化钴材料的制备方法参照实施例1,不同之处在于步骤(2)中,产物在管式炉中,以5℃/min的升温速率从室温升到600℃。
实施例3
硫化钴材料的制备方法参照实施例1,不同之处在于步骤(2)中,产物在管式炉中,以5℃/min的升温速率从室温升到800℃。
实施例4
硫化钴材料的制备方法参照实施例1,不同之处在于步骤(2)中,产物在管式炉中,以5℃/min的升温速率从室温升到900℃。
利用实施例1-4制得的硫化钴材料制备电极,电极的制备方法包括以下步骤:
(a)将玻碳电极在粒度为0.3~0.7μm的氧化铝水浆中打磨、抛光,然后依次在丙酮、无水乙醇和高纯水中超声洗涤20~40秒,氮气吹干,获得预处理玻碳电极;
(b)将每一实施例得到的硫化钴材料分散在水和乙醇比为4:1的混合溶液中,超声分散15~30分钟,获得混合均匀的溶液;
(c)将步骤(b)得到的混合溶液滴到步骤(a)的预处理玻碳电极上,室温干燥;
(d)在玻碳电极上滴加nafion乙醇溶液,室温干燥,即得到电极。
图1对比了实施例1-4得到的硫化钴材料的塔菲尔曲线,其中实施例3的硫化钴材料(也即加热温度为800℃下得到的产物)的塔菲尔斜率最小,为89.7mv/dec,电化学产氢时表现出了良好的动力学活性。
图2对比了实施例1-4的LSV曲线,从图中可以看出,800℃高温处理得到的产物的LSV图的起始析氢电位最低,进一步说明实施例3的产氢性能最优。
图3是实施例3的硫化钴材料的SEM图,可以看出制得的硫化钴材料为蓬松的絮状结构。
图4a-4c是实施例3的硫化钴材料的X射线光电子能谱图,从图4a可以看出实施例3的产物中含有硫、钴元素,图4b和4c分别是硫元素和钴元素的价态分布,拟合后表明实施例3获得的产物即为Co9S8
图5是实施例3的硫化钴材料的阻抗图,从图中可以看出所获得的产物具有较小的电阻,进一步说明材料具有很好的导电性。
对比图6a和图6b可以发现,本发明实施例3制得的电催化制氢电极与市售的20%Pt/C制氢电极的电化学产氢性能相差较小。
图7是实施例3的产物的XRD图,衍射峰与Co9S8的标准卡片一致,进一步说明实施例3获得的材料是Co9S8

Claims (8)

1.一种硫化钴材料的制备方法,其特征在于,包括以下步骤:
(1)将二甲基二硫代氨基甲酸钠与六水合氯化钴按2:1的摩尔比于水中混合,反应后得到第一产物;
(2)在惰性气体保护下,将干燥后的所述第一产物于500~900℃下反应2~3小时得到所述硫化钴材料。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)中,二甲基二硫代氨基甲酸钠、六水合氯化钴和水混合后,于室温下搅拌反应10min~30min,反应后得到的第一产物于100℃下烘干8~12小时。
3.根据权利要求1或2所述的制备方法,其特征在于,步骤(2)中,干燥后的所述第一产物于800℃下反应2~3小时。
4.根据权利要求3所述的制备方法,其特征在于,步骤(2)中,升温速率为5℃/min。
5.一种硫化钴材料,其特征在于,通过权利要求1-4任一所述的制备方法制得。
6.根据权利要求5所述的硫化钴材料,其特征在于,所述硫化钴材料为Co9S8
7.权利要求5或6所述的硫化钴材料在电催化水制氢领域的应用。
8.一种电催化制氢电极的制备方法,其特征在于,包括以下步骤:
(a)将玻碳电极在粒度为0.3~0.7μm的氧化铝水浆中打磨、抛光,然后依次在丙酮、无水乙醇和高纯水中超声洗涤20~40秒,氮气吹干,获得预处理玻碳电极;
(b)将权利要求5或6所述的硫化钴材料分散在水和乙醇比为4:1的混合溶液中,超声分散15~30分钟,获得混合均匀的溶液;
(c)将步骤(b)得到的混合溶液滴到步骤(a)的预处理玻碳电极上,室温干燥;
(d)在玻碳电极上滴加nafion乙醇溶液,室温干燥,即得所述电极。
CN201710053803.7A 2017-01-22 2017-01-22 一种硫化钴材料、制备方法及其用途 Active CN106865624B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710053803.7A CN106865624B (zh) 2017-01-22 2017-01-22 一种硫化钴材料、制备方法及其用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710053803.7A CN106865624B (zh) 2017-01-22 2017-01-22 一种硫化钴材料、制备方法及其用途

Publications (2)

Publication Number Publication Date
CN106865624A true CN106865624A (zh) 2017-06-20
CN106865624B CN106865624B (zh) 2018-12-11

Family

ID=59158767

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710053803.7A Active CN106865624B (zh) 2017-01-22 2017-01-22 一种硫化钴材料、制备方法及其用途

Country Status (1)

Country Link
CN (1) CN106865624B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107731558A (zh) * 2017-09-06 2018-02-23 华中科技大学 一种Co9S8‑C超级电容器复合电极材料的制备方法
CN107744817A (zh) * 2017-09-29 2018-03-02 东北师范大学 一种利用超声喷雾技术制备CoS电催化剂的方法
CN109616670A (zh) * 2018-12-12 2019-04-12 湖南工业大学 一种形貌可控的硫化钴及其制备方法和一种硫化钴/氮掺杂碳纳米管催化剂及其应用
CN110354870A (zh) * 2019-06-06 2019-10-22 江苏大学 一种高性能的银掺杂的硫化钴析氧催化剂的制备方法及其应用
CN110760882A (zh) * 2019-11-05 2020-02-07 沈阳工业大学 一种纳米Ag/CoS柔性电极材料的制备方法及应用
CN112259745A (zh) * 2020-09-09 2021-01-22 温州大学新材料与产业技术研究院 基于氮硫共掺杂碳微球/碳片材料的氧还原电催化剂及其应用
CN112357901A (zh) * 2020-09-09 2021-02-12 温州大学新材料与产业技术研究院 一种氮硫共掺杂微介孔碳球/片材料的制备方法及其产品和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102020320A (zh) * 2010-12-31 2011-04-20 桂林电子科技大学 一种二硫化钴的合成方法
CN104399494A (zh) * 2014-12-10 2015-03-11 吉林大学 一种碳包覆硫化钴材料、制备方法及其在水裂解产氢方面的应用
CN105692719A (zh) * 2016-03-10 2016-06-22 太原理工大学 一种硫化钴纳米材料制备及其检测过氧化氢的方法
CN106238072A (zh) * 2016-08-01 2016-12-21 湖南大学 硫化钴光催化剂及其制备方法和应用
CN106298247A (zh) * 2016-08-10 2017-01-04 三峡大学 染料敏化太阳能电池XS(X=Co、Ni)对电极的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102020320A (zh) * 2010-12-31 2011-04-20 桂林电子科技大学 一种二硫化钴的合成方法
CN104399494A (zh) * 2014-12-10 2015-03-11 吉林大学 一种碳包覆硫化钴材料、制备方法及其在水裂解产氢方面的应用
CN105692719A (zh) * 2016-03-10 2016-06-22 太原理工大学 一种硫化钴纳米材料制备及其检测过氧化氢的方法
CN106238072A (zh) * 2016-08-01 2016-12-21 湖南大学 硫化钴光催化剂及其制备方法和应用
CN106298247A (zh) * 2016-08-10 2017-01-04 三峡大学 染料敏化太阳能电池XS(X=Co、Ni)对电极的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUA CUI ET AL.: ""Syntheses of Ni3S2,Co9S8,and ZnS by the decomposition of diethyldithiocarbamate complexes"", 《JOURNAL OF SOLID CHEMISTRY》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107731558A (zh) * 2017-09-06 2018-02-23 华中科技大学 一种Co9S8‑C超级电容器复合电极材料的制备方法
CN107744817A (zh) * 2017-09-29 2018-03-02 东北师范大学 一种利用超声喷雾技术制备CoS电催化剂的方法
CN107744817B (zh) * 2017-09-29 2021-01-19 东北师范大学 一种利用超声喷雾技术制备CoS电催化剂的方法
CN109616670A (zh) * 2018-12-12 2019-04-12 湖南工业大学 一种形貌可控的硫化钴及其制备方法和一种硫化钴/氮掺杂碳纳米管催化剂及其应用
CN109616670B (zh) * 2018-12-12 2020-08-18 湖南工业大学 一种形貌可控的硫化钴及其制备方法和一种硫化钴/氮掺杂碳纳米管催化剂及其应用
CN110354870A (zh) * 2019-06-06 2019-10-22 江苏大学 一种高性能的银掺杂的硫化钴析氧催化剂的制备方法及其应用
CN110354870B (zh) * 2019-06-06 2022-06-21 江苏大学 一种高性能的银掺杂的硫化钴析氧催化剂的制备方法及其应用
CN110760882A (zh) * 2019-11-05 2020-02-07 沈阳工业大学 一种纳米Ag/CoS柔性电极材料的制备方法及应用
CN110760882B (zh) * 2019-11-05 2022-02-15 沈阳工业大学 一种纳米Ag/CoS柔性电极材料的制备方法及应用
CN112259745A (zh) * 2020-09-09 2021-01-22 温州大学新材料与产业技术研究院 基于氮硫共掺杂碳微球/碳片材料的氧还原电催化剂及其应用
CN112357901A (zh) * 2020-09-09 2021-02-12 温州大学新材料与产业技术研究院 一种氮硫共掺杂微介孔碳球/片材料的制备方法及其产品和应用
CN112357901B (zh) * 2020-09-09 2022-07-19 温州大学新材料与产业技术研究院 一种氮硫共掺杂微介孔碳球/片材料的制备方法及其产品和应用

Also Published As

Publication number Publication date
CN106865624B (zh) 2018-12-11

Similar Documents

Publication Publication Date Title
Li et al. Iron doped cobalt fluoride derived from CoFe layered double hydroxide for efficient oxygen evolution reaction
CN106865624A (zh) 一种硫化钴材料、制备方法及其用途
Chen et al. Enhanced PEC performance of hematite photoanode coupled with bimetallic oxyhydroxide NiFeOOH through a simple electroless method
Zhang et al. Iron-facilitated surface reconstruction to in-situ generate nickel–iron oxyhydroxide on self-supported FeNi alloy fiber paper for efficient oxygen evolution reaction
Wang et al. Layered bimetallic iron–nickel alkoxide microspheres as high-performance electrocatalysts for oxygen evolution reaction in alkaline media
Sun et al. A pn heterojunction of CuI/TiO2 with enhanced photoelectrocatalytic activity for methanol electro-oxidation
Lee et al. Orthorhombic NiSe2 nanocrystals on Si nanowires for efficient photoelectrochemical water splitting
Cao et al. Improved hydrogen generation via a urea-assisted method over 3D hierarchical NiMo-based composite microrod arrays
Yu et al. Cd0. 5Zn0. 5S/Ni2P noble-metal-free photocatalyst for high-efficient photocatalytic hydrogen production: Ni2P boosting separation of photocarriers
Ma et al. Novel noble-metal-free Co2P/CdIn2S4 heterojunction photocatalysts for elevated photocatalytic H2 production: Light absorption, charge separation and active site
CN110327946B (zh) 一种二硫化钼/硒化镍复合材料及其制备方法和应用
CN109499600A (zh) 一种双金属氮掺杂碳/二硫化钼复合电催化剂材料、制备方法及其应用
CN108325544A (zh) 一种三元Cu-Co-P纳米棒及其制备方法与应用
Zheng et al. In situ growing CNTs encapsulating nickel compounds on Ni foils with ethanol flame method as superior counter electrodes of dye-sensitized solar cells
CN113042087B (zh) 一种电催化双功能氮掺杂碳负载碳包覆磷化钴核壳纳米材料的制备方法
CN110252369A (zh) 硒化钴镍氮掺杂碳纳米纤维复合材料及其制备方法与应用
Zhu et al. NiFe2O4@ Co3O4 heterostructure with abundant oxygen vacancies as a bifunctional electrocatalyst for overall water splitting
Qian et al. Free-standing bimetallic CoNiTe2 nanosheets as efficient catalysts with high stability at large current density for oxygen evolution reaction
Meng et al. Rational construction of uniform CoS/NiFe2O4 heterostructure as efficient bifunctional electrocatalysts for hydrogen evolution and oxygen evolution reactions
Ye et al. In-situ porous flake heterostructured NiCoP/Ni foam as electrocatalyst for hydrogen evolution reaction
Jiang et al. 2D coordination polymer-derived CoSe 2–NiSe 2/CN nanosheets: the dual-phase synergistic effect and ultrathin structure to enhance the hydrogen evolution reaction
Yang et al. Electrochemical deposition of CeO2 nanocrystals on Co3O4 nanoneedle arrays for efficient oxygen evolution
Zahran et al. Nickel sulfate as an influential precursor of amorphous high-valent Ni (III) oxides for efficient water oxidation in preparation via a mixed metal-imidazole casting method
Liang et al. Defect engineering induces Mo-regulated Co9Se8/FeNiSe heterostructures with selenium vacancy for enhanced electrocatalytic overall water splitting in alkaline
Jiang et al. Cobalt supported on biomass carbon tubes derived from cotton fibers towards high-efficient electrocatalytic overall water-splitting

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170620

Assignee: WENZHOU JIUYUAN LITHIUM BATTERY TECHNOLOGY DEVELOPMENT Co.,Ltd.

Assignor: Wenzhou University

Contract record no.: X2020330000100

Denomination of invention: A cobalt sulfide material, preparation method and application thereof

Granted publication date: 20181211

License type: Common License

Record date: 20201115

EE01 Entry into force of recordation of patent licensing contract