CN106840532B - 检测燃气轮机燃料供应系统的燃料回路中的泄漏的方法 - Google Patents

检测燃气轮机燃料供应系统的燃料回路中的泄漏的方法 Download PDF

Info

Publication number
CN106840532B
CN106840532B CN201610692529.3A CN201610692529A CN106840532B CN 106840532 B CN106840532 B CN 106840532B CN 201610692529 A CN201610692529 A CN 201610692529A CN 106840532 B CN106840532 B CN 106840532B
Authority
CN
China
Prior art keywords
supply system
fuel supply
pressure
fuel
leak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610692529.3A
Other languages
English (en)
Other versions
CN106840532A (zh
Inventor
B.发奇希
A.克哈里
J.F.登奥特
T.E.莫登豪尔
M.赖奇
R.P.埃普勒
S.卡斯特劳
郑胜嘉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co PLC
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN106840532A publication Critical patent/CN106840532A/zh
Application granted granted Critical
Publication of CN106840532B publication Critical patent/CN106840532B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/12Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point by observing elastic covers or coatings, e.g. soapy water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/24Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations
    • G01M3/243Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations for pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/025Details with respect to the testing of engines or engine parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D19/00Starting of machines or engines; Regulating, controlling, or safety means in connection therewith
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/14Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for responsive to other specific conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/263Control of fuel supply by means of fuel metering valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/28Regulating systems responsive to plant or ambient parameters, e.g. temperature, pressure, rotor speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/46Emergency fuel control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/42Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof using liquid or gaseous propellants
    • F02K9/44Feeding propellants
    • F02K9/54Leakage detectors; Purging systems; Filtration systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/80Diagnostics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/007Leak detector calibration, standard leaks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/14Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object using acoustic emission techniques

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

本文公开了一种用于检测燃气轮机(10)燃料供应系统(22)的流体连接处的泄漏的方法。该方法包括闭合燃料供应系统(22)的上游端处的流动控制阀(40),以及经由压缩介质供应源(50)利用压缩介质(64)将燃料供应系统(22)加压至目标压力。目标压力小于止回阀(58)的压力阈值,止回阀(58)设置在压缩介质供应源(50)的下游和燃气轮机(10)的对应燃烧器(24)的上游。该方法还包括使超声检测装置(66)的接收器部分(68)指向接近于流体地联接至燃料供应系统(22)的位于止回阀(58)与燃烧器(24)之间的燃料供应系统(22)的至少一个管配件(60)。检测到管配件(60)处的声音水平和/或爆出声音的增大表示管配件处的泄漏。

Description

检测燃气轮机燃料供应系统的燃料回路中的泄漏的方法
相关申请的交叉引用
本申请请求享有具有2015年8月20日的提交日的美国临时专利申请序列第62/207,639号的提交权益,该申请通过引用以其整体并入本文中。
技术领域
本公开内容涉及一种用于检测燃气轮机燃料供应系统的燃料回路中的泄漏的方法。
背景技术
燃气轮机大体上包括成串流顺序的压缩机区段、燃烧区段和涡轮区段。在操作期间,空气经由入口系统进入压缩机,且在其朝压缩机排放口或扩散器壳发送时逐渐地压缩。压缩的空气发送到燃烧区段的独立燃烧器中。压缩的空气的至少一部分与燃料混合且在限定于各个燃烧器内的对应燃烧室内焚烧,由此生成高温和高压燃烧气体。
液体燃料可从燃料供应滑道或系统经由各种管、导管、阀和管配件供应至燃烧器。在安装期间和/或一定时间内,燃料泄漏可在配件周围存在或发生。用于检测燃料泄漏的一个已知方法在于使具有燃料或惰性气体(诸如氮)的燃料回路在完全工作压力下加压,完全工作压力通常从大约500psig起或更大。尽管有效,但该泄漏检测过程具有一些缺陷。例如,一个缺陷在于当前的过程是耗时的。更具体而言,为了完成该检测过程,发送至各个燃烧器或燃烧筒的管必须在对应的止回阀或3通阀上游断开,且在再连接之前单独地测试。其主要原因在于止回阀或3通阀构造成在大约100psig下打开。结果,如果管是连接的,则燃料回路将在压力超过100psig时减压,由此引起测试压力的损失。这还可意味着止回阀或3通阀处的最终连接不可在测试中验证。此外,500psig和更高的测试(尤其是利用可压缩的流体的)可需要针对技术人员的特殊安全性考虑。
因此,所需的是提供用于检测燃气轮机的燃料回路中的泄漏的改善的方法或过程。更具体而言,需要提供用于检测用于燃气轮机燃烧器的燃料系统配件或流体联接泄漏而能够使对应的管或导管留在原地的方法。
发明内容
本发明的方面和优点在以下描述中提出,或可从描述中清楚,或可通过实践本发明学习到。
本发明的一个实施例是用于检测燃气轮机燃料供应系统的流体连接处的泄漏的方法。该方法包括闭合燃料供应系统的上游端处的流动控制阀,以及经由压缩介质供应源利用压缩介质将燃料供应系统加压至目标压力。目标压力小于止回阀的压力阈值,止回阀设置在压缩介质供应源的下游和燃气轮机的对应燃烧器的上游。该方法还包括使超声检测装置的接收器部分指向接近于流体地联接到燃料供应系统上的位于流动控制阀与燃烧器之间的燃料供应系统的至少一个管配件。管配件处的声音水平或的气泡爆出声音的增大的检测表示管配件处的泄漏。
本发明的第一技术方案提供了一种用于检测燃气轮机(10)燃料供应系统(22)的液体流体连接处的泄漏的方法,包括:关闭至所述燃料供应系统(22)的燃料流;经由压缩介质供应源(50)利用压缩介质(64)将所述燃料供应系统(22)加压至目标压力,其中所述目标压力小于止回阀(58)的压力阈值,所述止回阀(58)设置在所述压缩介质供应源(50)下游和所述燃气轮机(10)的对应燃烧器(24)上游;以及使超声检测装置(66)的接收器部分(68)对准接近于所述止回阀(58)与所述燃烧器(24)之间的所述燃料供应系统(22)的至少一个管配件(60),其中所述管配件(60)处的声音水平或的爆出声音的增大的检测表示所述管配件(60)处的泄漏。
本发明的第二技术方案是在第一技术方案中,所述燃料供应系统(22)用所述压缩介质(64)加压至在大约40psig到大约90psig的范围内的目标压力。
本发明的第三技术方案是在第一技术方案中,所述燃料供应系统(22)用所述压缩介质(64)加压至为50psig的目标压力。
本发明的第四技术方案是在第一技术方案中,所述燃料供应系统(22)用所述压缩介质(64)加压至为80psig的目标压力。
本发明的第五技术方案是在第一技术方案中,所述阈值压力在大约100psig到大约130psig的范围内。
本发明的第六技术方案是在第一技术方案中,所述阈值压力为100psig。
本发明的第七技术方案是在第一技术方案中,所述阈值压力为120psig。
本发明的第八技术方案是在第一技术方案中,还包括在加压之后经由压力传感器(44)监测来自所述燃料供应系统(22)的压力的下降。
本发明的第九技术方案是在第一技术方案中,还包括将空气泄漏检测液体施加到一个或更多个管配件(60)上。
本发明的第十技术方案是在第九技术方案中,还包括经由所述超声检测装置(66)检测所述泄漏检测液体的起泡。
本发明的第十一技术方案是在第一技术方案中,还包括经由液体泄漏放大物检测所述管配件(60)处的泄漏。
本领域的普通技术人员将在查阅说明书后更好地认识到此实施例及其它实施例的特征和方面。
附图说明
包括对本领域的技术人员的其最佳模式的本发明的完整且开放的公开内容在包括参照附图的说明书的其余部分中更详细阐释,在附图中:
图1为本发明的范围内的示例性基于燃气轮机的发电设备的功能框图;
图2为可并入本发明的至少一个实施例中的示例性燃料供应系统的简化截面侧视图;以及
图3提供了根据本公开内容的一个实施例的用于检测燃料供应系统的管配件和/或其它流体联接件或连接处的燃料泄漏的方法的流程图。
具体实施方式
现在将详细参照本发明的实施例,其一个或更多个实例在附图中示出。该详细描述使用了数字和字母标号来表示附图中的特征。附图中相似或类似的标记用于表示本发明的相似或类似的部分。如本文中所使用的,用语"第一"、"第二"和"第三"可互换使用,以将一个构件与另一个区分开,且不旨在表示独立构件的位置或重要性。用语"上游"和"下游"是指相对于流体通路中的流体流的相对方向。例如,"上游"是指流体流自的方向,且"下游"指示流体流至的方向。用语"径向地"是指基本垂直于特定构件的轴向中心线的相对方向,且用语"轴向地"是指基本平行于和/或同轴地对准特定构件的轴向中心线的相对方向。
本文中所使用的用语用于仅描述特定实施例的目地,且不旨在限制本发明。如本文中所使用的,单数形式"一个"、"一种"和"该"旨在也包括复数形式,除非下文清楚地另外指出。还将理解的是,用语"包括"和/或"包含"在用于此说明书中时表示指出的特征、整数、步骤、操作、元件和/或构件的存在,但并未排除存在或添加一个或更多个其它特征、整数、步骤、操作、元件、构件和/或其组合。
各个实例通过阐释本发明的方式提供,而不限制本发明。实际上,本领域的技术人员将清楚的是,可在本发明中制作出改型和变型,而不会脱离其范围或精神。例如,示为或描述为一个实施例的一部分的特征可用于另一个实施例上以产生又一个实施例。因此,期望本发明覆盖归入所附权利要求和其等同物的范围内的此类改型和变型。
本发明的实施例采用用于检测燃气轮机的燃料供应回路的燃料配件泄漏的方法的形式。该方法包括使用空气或惰性加压气体(诸如氮)将待测试的燃料回路加压至大约50psig到大约80psig。该方法然后包括使用超声装置来检测各种管配件和/或流体联接件或连接处的泄漏。在此压力下检测的泄漏可在500psig的液体燃料的完全工作压力下等于大约60滴每分钟。泄漏检测方法解决了当前已知的泄漏检测过程可发生的两个问题。首先,不需要沿燃料回路断开任何连接,因为测试压力保持低于特定燃烧器的大约100psig的止回阀破裂压力。第二,大约50psig到大约80psig的范围中的燃料回路压力可减小与在大约psig的完全操作压力下测试相关联的潜在风险。
超声装置大体上设计成检测由配件处的泄漏产生的湍流生成的超声噪音。该方法成功的一个原因在于超声是定向的,且因此可由超声装置检测到,因此允许了操作者快速找到噪音源。利用已知过程,每个独立配件连接(且存在几百个连接)必须以泄漏检测液体(诸如"Snoop")喷淋,且然后目视检测气泡。利用本文提供的方法,超声检测装置可立即找到大的泄漏,且仅具有非常小泄漏的可疑配件可能需要以液体泄漏放大物跟进。此外,如本文提供的方法不需要Snoop施加来很努力地达到连接处,诸如泄漏180与Snoop操作者成180度分离的连接。
现在参看附图,其中相同的数字表示附图各处相同元件,图1提供了可结合本发明的各种实施例的包括燃气轮机10的示例性发电设备地点的功能框图。如图所示,燃气轮机10可大体上包括入口区段12。入口区段12可包括一系列过滤器、冷却盘管、水气分离器和/或用于净化和以其它方式调节空气14或进入燃气轮机10的其它工作流体的其它装置。空气14流至压缩机区段,在该处,压缩机16将动能逐渐给予空气14来产生压缩的空气18。
压缩的空气18与来自燃料供应系统22的燃料20(诸如液体)相混合,以在一个或更多个燃烧器24内形成可燃混合物。可燃混合物焚烧来产生具有高温、高压和高速的燃烧气体26。燃烧气体26流过涡轮区段的涡轮28来产生功。例如,涡轮28可连接到轴30上,以便涡轮28的旋转驱动压缩机16来产生压缩的空气18。作为备选或此外,轴30可将涡轮28连接到发电机32上来用于产生电力。来自涡轮28的排出气体34流过排气区段36,其将涡轮28连接到涡轮28下游的排气器38上。排气区段36可包括例如余热回收蒸汽发生器(未示出),以用于在排出气体34释放到环境之前清洁和获取来自排出气体34的附加热。
图2提供了可并入图1中所示的燃气轮机10中的示例性燃料供应系统22的简化示意图。如图2中所示,燃料供应系统22大体上包括至少流动控制或停止阀40或其它促动类型的阀,其与液体燃料源42流体连通。至少一个压力传感器44(诸如压力变送器或量规)设置在流动控制阀40下游和燃料分配歧管或分流器46上游。通风口或入口端口48定位在压力传感器44与燃料分配歧管46之间。在一个实施例中,入口端口48可设置在燃料分配歧管46下游。在特定实施例中,入口端口48联接到压缩介质供应源50上。在特定实施例中,压缩介质供应源50可包括空气供应源(诸如仪器空气供应源)。在其它实施例中,压缩介质供应源可包括加压流体源。
在各种实施例中,燃料分配歧管46包括与流动控制阀40和/或液体燃料源42流体连通的入口52,以及设置在入口52下游的多个出口54。各个出口54给送对应的燃料回路56。各个燃料回路56将燃料分配歧管46流体地联接到对应的燃烧器24上。尽管六个出口54、六个燃料回路56和六个燃烧器24仅出于图示目的示出,但应当理解的是,燃料分配歧管46可包括取决于特定燃气轮机框架的燃烧器24的数目的任何数目的出口,且本公开内容不限于六个出口54、六个燃料回路56或六个燃烧器24,除非权利要求中另外提供。
各个燃料回路56均包括对应的止回阀58,其提供对应出口54与对应燃烧器24之间的流体连通。在特定实施例中,止回阀58构造成在小于大约100psig的燃料回路54内的压力下保持闭合,由此防止燃料流至对应的燃烧器24。(多个)止回阀58构造成在超过大约100psig的压力下打开,因此允许燃料流至对应的燃烧器24。在特定实施例中,止回阀58可为二通阀、三通阀、四通阀或可为基于流体回路内的压力控制流动的任何类型的阀。
液体燃料供应源42、流动控制阀42、(多个)压力传感器44、(多个)入口端口48、燃料分配歧管46、止回阀58和燃烧器24中的每一个均经由各种流体导管、管道、管和管配件流体地联接。在各种实施例中,多个管配件60设置在各个止回阀58上游和流动控制阀40下游。在特定实施例中,至少一个管配件62可设置在流动控制阀40下游和燃料分配歧管46上游。
在燃气轮机10的点火操作期间,燃料20从液体燃料供应源42流过流动控制阀40且流入燃料分配歧管46。燃料20然后经由多个出口54发送到各种对应的燃料回路56。一旦特定燃料回路56内的压力超过预定阈值压力(诸如100psig),则对应止回阀58自动地打开,因此允许燃料20流入对应的燃烧器24。(多个)压力传感器44提供表示当止回阀58打开(诸如当压力超过预定压力阈值时)时的流动控制阀40与燃烧器24之间的燃料供应系统22内的燃料压力的压力读数。(多个)压力传感器44提供表示当(多个)止回阀58闭合(诸如当压力低于预定阈值压力时)时的流动控制阀40与(多个)止回阀58之间的燃料供应系统22内的燃料压力的压力读数。
在安装期间和/或一定时间内,燃料泄漏可在定位于流动控制阀40与止回阀58之间的各种管配件60处形成。因此,本文中提供了用于检测管配件60和/或其它流体联接件或连接处的泄漏的方法100。图3提供了根据本发明的一个实施例的方法100的流程图。
在步骤102处,方法100包括关闭经由流动控制阀40至燃料供应系统22的燃料流。通过闭合流动控制阀40,来自液体燃料供应源42的燃料流关闭。在闭合流动控制阀40之前或之后,燃料供应系统22可经由吹扫介质(诸如空气)吹扫来清除任何残余液体燃料(特别是在流动控制阀40下游)。
在步骤104处,方法100包括经由压缩介质供应源50用压缩介质64(诸如空气)加压燃料供应系统22。燃料供应系统22应当在小于止回阀58的预定阈值压力的目标压力下加压,使得止回阀不会破裂或打开。结果,压力传感器44将提供表示流动控制阀40与止回阀58之间的压力的压力读数。在一个实施例中,阈值压力在大约100psig到大约130psig的范围内。在一个实施例中,阈值压力为100psig。在一个实施例中,目标压力在大约40psig到大约90psig的范围内。在一个实施例中,目标压力为50psig。在一个实施例中,目标压力为80psig。
一旦流动控制阀40与止回阀58之间的压力达到其目标压力,则压缩介质供应源58应当关闭,且燃料供应系统22内的压力应当被监测,以检测除通风端口48下游的管配件泄漏之外的任何泄漏。例如,压力传感器44处的压力读数的降低可指出有故障的止回阀58、有故障的流体联接件或燃料供应系统22内的其它泄漏。如果在此点检测到泄漏,则燃料供应系统22可减压且解决泄漏。燃料供应系统22然后可再加压且监测来确保已经解决泄漏。如果压力继续下降,则之前的步骤可重复,直到燃料供应系统内的压力读数稳定。如本文中所使用的"稳定"可表示系统中的压力不会每分钟改变大于大约10psig的状态。
在步骤106处,方法100包括使用超声检测装置66(诸如由UE Systems Inc.(Elmsford, New York, U.S.A)提供的Ultraprobe® 9000)来跟踪和/或检测沿燃料供应系统的各种管和/或流体联接件和/或沿燃料分配歧管46与对应止回阀58之间的燃料回路56中的一个或更多个的泄漏。当操作者接近各个管配件60或流体连接/联接件时,超声装置应当运行,由此允许操作者能够听到沿管路行进的泄漏,且确定管路/配件60中的泄漏的存在。此外,操作者将能够限定环境噪音基准,以及从基准的声音的可辨别的阶梯变化将在遇到关于环境背景噪音的配件泄漏或其它泄漏时发生。在其它实施例中,存在屏蔽/隔离技术,其可用于减少竞争的超声噪音,因此有助于提高检测能力和隔离泄漏的位置。
在各个管配件60处,操作者可试图转动管配件60的相关连接螺母(未示出),以确保其不会用手拧紧。在连接处,操作者可使超声检测装置66的接收器部分68瞄准或指向管配件60,且听连接螺母上游和下游两者的管配件60的整个圆周周围。如果连接是接管的或T形的,则这将分别针对所有两个或三个连接来完成。在特定实施例中,操作者可将空气泄漏检测液体或"液体泄漏放大物"(诸如快速汽化液体(即,酒精))喷淋在管配件60中的一个或更多个上。由超声装置检测到的液体起泡和/或'冒泡'声音将指出泄漏。如果你使用LLA或一些增强材料,则可检测的db水平未必增大。结果,可使用以气泡冒出检测的第二模式。在一个实施例中,液体泄漏放大物此外或作为备选用于施加泄漏检测液体。液体泄漏放大物为特别设计成具有高表面张力的流体,使得其在气泡爆开时产生不同的"破裂"声音。生成的气泡非常小,不同于由通常称为"Snoop"的肥皂/水混合物生成的气泡。
应当注意的是,在一些备选实施方式中,步骤中提出的功能可不同于附图中提出或本文所述的顺序发生。例如,取决于涉及的功能,相继示出的两个步骤实际上可基本同时执行,或步骤有时可以以相反顺序执行。尽管本文示出和描述了特定实施例,但应当认识到的是,计算为实现相同目的的任何布置都可置换所示的特定实施例,且本发明在其它环境中具有其它应用。本申请旨在覆盖本发明的任何改变或变型。所附权利要求绝不旨在将本发明的范围限于本文所述的特定实施例。

Claims (11)

1.一种用于检测燃气轮机(10)燃料供应系统(22)的液体流体连接处的泄漏的方法,包括:
关闭至所述燃料供应系统(22)的燃料流;
经由压缩介质供应源(50)利用压缩介质(64)将所述燃料供应系统(22)加压至目标压力,其中所述目标压力小于止回阀(58)的压力阈值,所述止回阀(58)设置在所述压缩介质供应源(50)下游和所述燃气轮机(10)的对应燃烧器(24)上游;以及
使超声检测装置(66)的接收器部分(68)对准接近于所述止回阀(58)与所述燃烧器(24)之间的所述燃料供应系统(22)的至少一个管配件(60),其中所述管配件(60)处的声音水平或爆出声音的增大的检测表示所述管配件(60)处的泄漏。
2.根据权利要求1所述的方法,其特征在于,所述燃料供应系统(22)用所述压缩介质(64)加压至在大约40psig到大约90psig的范围内的目标压力。
3.根据权利要求1所述的方法,其特征在于,所述燃料供应系统(22)用所述压缩介质(64)加压至为50psig的目标压力。
4.根据权利要求1所述的方法,其特征在于,所述燃料供应系统(22)用所述压缩介质(64)加压至为80psig的目标压力。
5.根据权利要求1所述的方法,其特征在于,所述阈值压力在大约100psig到大约130psig的范围内。
6.根据权利要求1所述的方法,其特征在于,所述阈值压力为100psig。
7.根据权利要求1所述的方法,其特征在于,所述阈值压力为120psig。
8.根据权利要求1所述的方法,其特征在于,还包括在加压之后经由压力传感器(44)监测来自所述燃料供应系统(22)的压力的下降。
9.根据权利要求1所述的方法,其特征在于,还包括将空气泄漏检测液体施加到一个或更多个管配件(60)上。
10.根据权利要求9所述的方法,其特征在于,还包括经由所述超声检测装置(66)检测所述泄漏检测液体的起泡。
11.根据权利要求1所述的方法,其特征在于,还包括经由液体泄漏放大物检测所述管配件(60)处的泄漏。
CN201610692529.3A 2015-08-20 2016-08-19 检测燃气轮机燃料供应系统的燃料回路中的泄漏的方法 Active CN106840532B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201562207639P 2015-08-20 2015-08-20
US62/207639 2015-08-20
US14/967,654 US9933327B2 (en) 2015-08-20 2015-12-14 Method for detecting leaks in a fuel circuit of a gas turbine fuel supply system
US14/967654 2015-12-14

Publications (2)

Publication Number Publication Date
CN106840532A CN106840532A (zh) 2017-06-13
CN106840532B true CN106840532B (zh) 2021-01-19

Family

ID=57961516

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610692529.3A Active CN106840532B (zh) 2015-08-20 2016-08-19 检测燃气轮机燃料供应系统的燃料回路中的泄漏的方法

Country Status (4)

Country Link
US (1) US9933327B2 (zh)
JP (1) JP6845635B2 (zh)
CN (1) CN106840532B (zh)
DE (1) DE102016114439A1 (zh)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11624326B2 (en) 2017-05-21 2023-04-11 Bj Energy Solutions, Llc Methods and systems for supplying fuel to gas turbine engines
IT201700073686A1 (it) * 2017-06-30 2018-12-30 Nuovo Pignone Tecnologie Srl Metodo e sistema per l'avvio sicuro di turbine a gas
CN107631881B (zh) * 2017-08-30 2023-06-13 华能国际电力股份有限公司 一种全尺寸多功能燃气轮机燃烧试验系统
EP3460438B1 (en) * 2017-09-26 2021-02-17 General Electric Company Gas turbomachine leak detection system and method
CN108302094B (zh) * 2017-12-11 2020-01-17 广州瑞立科密汽车电子股份有限公司 液压阀内泄漏检测装置及方法
JP2019173643A (ja) * 2018-03-28 2019-10-10 株式会社Ihi 燃料供給装置及びガスタービン
FR3089254B1 (fr) * 2018-11-30 2021-11-12 Ge Energy Products France Snc Circuit de drainage d’une chambre de combustion et procede de determination de defaillance d’un tel circuit
US11486303B2 (en) * 2019-05-15 2022-11-01 Pratt & Whitney Canada Corp. System and method for purging a fuel manifold of a gas turbine engine using a pump
US11603802B2 (en) 2019-08-27 2023-03-14 Pratt & Whitney Canada Corp. Methods and systems for starting a gas turbine engine
US11015594B2 (en) 2019-09-13 2021-05-25 Bj Energy Solutions, Llc Systems and method for use of single mass flywheel alongside torsional vibration damper assembly for single acting reciprocating pump
US10815764B1 (en) 2019-09-13 2020-10-27 Bj Energy Solutions, Llc Methods and systems for operating a fleet of pumps
CA3092868A1 (en) 2019-09-13 2021-03-13 Bj Energy Solutions, Llc Turbine engine exhaust duct system and methods for noise dampening and attenuation
CA3092865C (en) 2019-09-13 2023-07-04 Bj Energy Solutions, Llc Power sources and transmission networks for auxiliary equipment onboard hydraulic fracturing units and associated methods
CA3092829C (en) 2019-09-13 2023-08-15 Bj Energy Solutions, Llc Methods and systems for supplying fuel to gas turbine engines
CA3197583A1 (en) 2019-09-13 2021-03-13 Bj Energy Solutions, Llc Fuel, communications, and power connection systems and related methods
US11002189B2 (en) 2019-09-13 2021-05-11 Bj Energy Solutions, Llc Mobile gas turbine inlet air conditioning system and associated methods
US10895202B1 (en) 2019-09-13 2021-01-19 Bj Energy Solutions, Llc Direct drive unit removal system and associated methods
US11555756B2 (en) * 2019-09-13 2023-01-17 Bj Energy Solutions, Llc Fuel, communications, and power connection systems and related methods
CA3092863C (en) * 2019-09-13 2023-07-18 Bj Energy Solutions, Llc Fuel, communications, and power connection systems and related methods
US11708829B2 (en) 2020-05-12 2023-07-25 Bj Energy Solutions, Llc Cover for fluid systems and related methods
US10968837B1 (en) 2020-05-14 2021-04-06 Bj Energy Solutions, Llc Systems and methods utilizing turbine compressor discharge for hydrostatic manifold purge
US11428165B2 (en) 2020-05-15 2022-08-30 Bj Energy Solutions, Llc Onboard heater of auxiliary systems using exhaust gases and associated methods
US11208880B2 (en) 2020-05-28 2021-12-28 Bj Energy Solutions, Llc Bi-fuel reciprocating engine to power direct drive turbine fracturing pumps onboard auxiliary systems and related methods
US11109508B1 (en) 2020-06-05 2021-08-31 Bj Energy Solutions, Llc Enclosure assembly for enhanced cooling of direct drive unit and related methods
US11208953B1 (en) 2020-06-05 2021-12-28 Bj Energy Solutions, Llc Systems and methods to enhance intake air flow to a gas turbine engine of a hydraulic fracturing unit
US11111768B1 (en) 2020-06-09 2021-09-07 Bj Energy Solutions, Llc Drive equipment and methods for mobile fracturing transportation platforms
US10954770B1 (en) 2020-06-09 2021-03-23 Bj Energy Solutions, Llc Systems and methods for exchanging fracturing components of a hydraulic fracturing unit
US11066915B1 (en) 2020-06-09 2021-07-20 Bj Energy Solutions, Llc Methods for detection and mitigation of well screen out
US11933153B2 (en) 2020-06-22 2024-03-19 Bj Energy Solutions, Llc Systems and methods to operate hydraulic fracturing units using automatic flow rate and/or pressure control
US11939853B2 (en) 2020-06-22 2024-03-26 Bj Energy Solutions, Llc Systems and methods providing a configurable staged rate increase function to operate hydraulic fracturing units
US11125066B1 (en) 2020-06-22 2021-09-21 Bj Energy Solutions, Llc Systems and methods to operate a dual-shaft gas turbine engine for hydraulic fracturing
US11028677B1 (en) 2020-06-22 2021-06-08 Bj Energy Solutions, Llc Stage profiles for operations of hydraulic systems and associated methods
US11473413B2 (en) 2020-06-23 2022-10-18 Bj Energy Solutions, Llc Systems and methods to autonomously operate hydraulic fracturing units
US11466680B2 (en) 2020-06-23 2022-10-11 Bj Energy Solutions, Llc Systems and methods of utilization of a hydraulic fracturing unit profile to operate hydraulic fracturing units
US11149533B1 (en) 2020-06-24 2021-10-19 Bj Energy Solutions, Llc Systems to monitor, detect, and/or intervene relative to cavitation and pulsation events during a hydraulic fracturing operation
US11220895B1 (en) 2020-06-24 2022-01-11 Bj Energy Solutions, Llc Automated diagnostics of electronic instrumentation in a system for fracturing a well and associated methods
US11193360B1 (en) 2020-07-17 2021-12-07 Bj Energy Solutions, Llc Methods, systems, and devices to enhance fracturing fluid delivery to subsurface formations during high-pressure fracturing operations
CN112444397B (zh) * 2020-11-09 2022-10-04 上海中船三井造船柴油机有限公司 用于lgip主机燃气模块的气密性测试设备及方法
CN113125145B (zh) * 2021-04-07 2022-10-14 成都特恩达燃气设备有限公司 一种燃气阀测试装置及测试方法
US11639654B2 (en) 2021-05-24 2023-05-02 Bj Energy Solutions, Llc Hydraulic fracturing pumps to enhance flow of fracturing fluid into wellheads and related methods
US11746711B2 (en) * 2021-08-12 2023-09-05 Pratt & Whitney Canada Corp. Pulse width modulation drive for staged fuel manifolds

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050111988A1 (en) * 2003-10-11 2005-05-26 Michael Griffiths Pump health monitoring
CN103069261A (zh) * 2010-07-05 2013-04-24 国立大学法人山口大学 漏泄检查装置及漏泄检查方法
US20140102179A1 (en) * 2012-10-16 2014-04-17 General Electric Company Turbine leak detection system

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1365719A (en) 1972-10-30 1974-09-04 British Petroleum Co Testing underwater pipelines for leaks
DE2612809C3 (de) 1976-03-25 1978-10-12 Bayer Ag, 5090 Leverkusen Verfahren zur Prüfung von gefüllten Glasbehältern
US4096736A (en) 1977-02-25 1978-06-27 American Can Company Ultrasonic leak hole detection apparatus and method
NL7702461A (nl) 1977-03-08 1978-09-12 Shell Int Research Inrichting voor het inspecteren van een pijpleiding op lekken.
FR2417776A1 (fr) 1978-02-16 1979-09-14 Onera (Off Nat Aerospatiale) Sonde a ultrasons pour la mesure dans les liquides a temperature et a pression elevees
US4365514A (en) 1979-04-19 1982-12-28 Bandag Incorporated Method and apparatus for non-destructive inspection of tires
USRE33977E (en) * 1982-02-10 1992-06-30 U.E. Systems Inc. Ultrasonic leak detecting method and apparatus
US4416145A (en) * 1982-02-10 1983-11-22 Ue Systems, Inc. Ultrasonic leak detecting method and apparatus
US4485739A (en) * 1983-03-02 1984-12-04 H. L. & A. G. Balsinger, Inc. Detonation gas delivery unit
JPS6063438A (ja) * 1983-09-17 1985-04-11 Nichiei Boeki Kk 漏洩探知方法及び装置
GB2204403B (en) 1987-05-05 1991-07-17 David John Howard Peacock "method of detecting leaks"
US4809538A (en) 1987-08-07 1989-03-07 Oakland Engineering Inc. Ultrasonic leak detector
GB8821492D0 (en) 1988-09-14 1988-10-12 Tate & Lyle Plc Leak detecting apparatus
US5016475A (en) 1989-09-20 1991-05-21 Kabushiki Kaisha Kobe Seiko Sho Wiredrawing apparatus including an ultrasonic flaw detector
JPH05172696A (ja) * 1991-12-26 1993-07-09 Hitachi Ltd 弁機構の異常診断装置
DE4227459A1 (de) 1992-08-19 1994-02-24 Siemens Ag Verfahren und Einrichtung zur Ultraschall-Leckage-Ortung
DE4227460A1 (de) 1992-08-19 1994-02-24 Siemens Ag Verfahren und Einrichtung zur Kalibrierung bei der Ultraschall-Leckage-Ortung
DE4227458A1 (de) 1992-08-19 1994-02-24 Siemens Ag Verfahren und Einrichtung zur Ultraschall-Leckage-Ortung
JPH06137988A (ja) * 1992-10-27 1994-05-20 Mitsui Petrochem Ind Ltd 安全弁の作動並びにシート洩れのテスト方法及び装置
GB9305285D0 (en) 1993-03-15 1993-05-05 Leatherhead Food Ra Ultrasonic leak detection
US5710377A (en) * 1995-10-17 1998-01-20 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Ultrasonic leak detection system
US5854422A (en) 1996-07-10 1998-12-29 K-Line Industries, Inc. Ultrasonic detector
US5955670A (en) 1996-11-15 1999-09-21 Ue Systems, Inc Ultrasonic leak detecting apparatus
US6070468A (en) 1997-04-23 2000-06-06 The Board Of Trustees Of The Leland Stanford Junior University Micromachined ultrasonic leaky wave air transducers
US5979239A (en) 1997-04-28 1999-11-09 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Ultrasonic imaging system
US6189384B1 (en) 1998-05-05 2001-02-20 Csi Technology, Inc. Route based ultrasonic monitoring system
JP2000214042A (ja) 1999-01-27 2000-08-04 Mec:Kk 無圧式漏れ検査装置
TW490559B (en) 1999-07-30 2002-06-11 Hitachi Construction Machinery Ultrasonic inspection apparatus and ultrasonic detector
JP2003532106A (ja) * 2000-05-02 2003-10-28 ヴィスタ・リサーチ・インコーポレーテッド 加圧パイピングの漏れを圧力測定システムで検出するための改良された方法
GB0015691D0 (en) 2000-06-28 2000-08-16 Bae Systems Plc Detection of fuel leak sites in aricraft
TW522226B (en) 2001-02-20 2003-03-01 Tlv Co Ltd Portable leak detector
US20030164044A1 (en) 2001-12-17 2003-09-04 Gayle James Edward Ultraphonics array system
US6983642B2 (en) 2002-05-02 2006-01-10 Qst Holdings, L.L.C. System and method for automatically judging the sealing effectiveness of a sealed compartment
US7817050B2 (en) 2002-11-12 2010-10-19 U.E. Systems Inc. Ultrasonic gas leak detector with an electrical power loss and carbon footprint output
JP2005017343A (ja) 2003-06-23 2005-01-20 Matsushita Electric Ind Co Ltd 音響光学素子
WO2005031206A1 (en) 2003-09-26 2005-04-07 Ansul Canada Ltd. Method and apparatus for producing an rf cured hose, and the hose so produced
US7213630B2 (en) 2003-09-26 2007-05-08 Hydro-Quebec Ltee Method and apparatus for producing an RF cured hose, and the hose so produced
US20050069644A1 (en) 2003-09-29 2005-03-31 National Taiwan University Micro-stamping method for photoelectric process
JP3721184B2 (ja) * 2003-10-03 2005-11-30 株式会社テイエルブイ 設備診断用集計システムの動作方法、及び、設備診断用集計システム
ATE329240T1 (de) 2003-10-08 2006-06-15 Innova Airtech Instr As Ultraschallgasleckdetektor mit einer vorrichtung zur detektoruntersuchung
JP2006040597A (ja) 2004-07-23 2006-02-09 Mitsubishi Heavy Ind Ltd ガス供給システム、エネルギ供給システム及びガス供給方法
WO2006069930A2 (de) 2004-12-23 2006-07-06 Endress+Hauser Leitungsnetzwerk zur versorgung mit wasser oder gas und/oder zum abtransport von brauchwasser mit einer hierarchischen struktur, verfahren zur detektion einer leckage in einem solchen leitungsnetz und verfahren zur rechnergestützten bestimmung einer theoretisch verbleibenden lebensdauereiner erneuerbaren energiequelle
US7739899B1 (en) 2005-04-29 2010-06-22 Iowa State University Research Foundation, Inc. Leak detection using structure-borne noise
US20090210175A1 (en) 2007-12-11 2009-08-20 Bilpuch Greg J Ultrasonic Leak Test System and Method
WO2009093738A1 (ja) 2008-01-27 2009-07-30 Kengo Yoshida 流体用容器の漏洩孔の有無を検査するための方法
US7711500B1 (en) 2008-10-24 2010-05-04 General Electric Company Pressure relief valve monitoring
US8261595B2 (en) * 2009-11-03 2012-09-11 General Electric Company Method and system for fluid valve leak detection
US20120048000A1 (en) * 2010-08-31 2012-03-01 Joseph Kirzhner Method and system to detect and measure piping fuel leak
US20120247189A1 (en) 2011-03-30 2012-10-04 Eutectic Solutions Inc. Method of measuring the size of a leak in a pneumatic air circuit and a related device
US8542124B2 (en) 2011-07-21 2013-09-24 Axiom Technologies Inc. Acoustic leak detector
US20130174649A1 (en) * 2012-01-10 2013-07-11 General Electric Company Fluid leak detection system
US9261426B2 (en) * 2012-03-19 2016-02-16 Ulc Robotics, Inc. System and method for automated integrity testing
US8955383B2 (en) 2012-06-27 2015-02-17 General Monitors, Inc. Ultrasonic gas leak detector with false alarm discrimination
US9091613B2 (en) 2012-06-27 2015-07-28 General Monitors, Inc. Multi-spectral ultrasonic gas leak detector
CN103424230A (zh) * 2012-08-22 2013-12-04 上海理工大学 基于超声波的阀门泄漏无线检测装置及方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050111988A1 (en) * 2003-10-11 2005-05-26 Michael Griffiths Pump health monitoring
CN103069261A (zh) * 2010-07-05 2013-04-24 国立大学法人山口大学 漏泄检查装置及漏泄检查方法
US20140102179A1 (en) * 2012-10-16 2014-04-17 General Electric Company Turbine leak detection system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Hydrogen fuel supply system and re-heat gas turbine combustion;Nils Erland L.Haugen;《Energy Procedia》;20120829;第151-160页 *
燃气轮机燃料气系统技术改进和维护方法;尹琦岭;《化工科技市场》;20030731;第14-17页 *

Also Published As

Publication number Publication date
JP6845635B2 (ja) 2021-03-17
JP2017072582A (ja) 2017-04-13
US20170052087A1 (en) 2017-02-23
CN106840532A (zh) 2017-06-13
US9933327B2 (en) 2018-04-03
DE102016114439A1 (de) 2017-02-23

Similar Documents

Publication Publication Date Title
CN106840532B (zh) 检测燃气轮机燃料供应系统的燃料回路中的泄漏的方法
US8231142B2 (en) Fluid conduit coupling with leakage detection
CN101994574B (zh) 燃气涡轮机燃烧动态变化控制系统及方法
US20130000321A1 (en) Gas turbine inlet heating system
JP2015025447A (ja) 燃焼器に燃料を供給するシステム
EP3460438B1 (en) Gas turbomachine leak detection system and method
CN109668737A (zh) 一种火箭发动机喷注器液流试验系统
CA2859442C (en) Conduit connection apparatus with purge gas
EP2738468B1 (en) Valve leak detecting method and combustion equipment
CA2878628C (en) Internal manifold with fuel inlet and leak mitigation
RU2602464C1 (ru) Вакуумный стенд для огневых испытаний жидкостного ракетного двигателя космического назначения
US9581335B2 (en) Fuel nozzle tube retention
US20220349343A1 (en) Sweep flow structures for fuel systems
CN109708004A (zh) 一种低压燃气管道微小泄露在线监测系统及方法
CN106499889B (zh) 一种基于开孔法兰的安全阀压力试验系统
CN102155302A (zh) 用于燃气涡轮发动机中的燃料控制组件的系统和设备
RU2568732C2 (ru) Жидкостный ракетный двигатель
EP3112610B1 (en) System for discharging compressed air from a compressor
CN104791106A (zh) 操作燃气涡轮组件的方法及燃气涡轮组件
RU2649518C1 (ru) Способ содействия обнаружению повреждения трубопровода турбореактивного двигателя
CN117341994B (zh) 一种冷气推冲系统及冷气推冲方法
CN111043615B (zh) 激波吹灰器自配安全便捷管路吹扫装置
CN213510884U (zh) 一种带引射装置的漏油排放系统
CN216078822U (zh) 核电站管道密封装置
CN103364194A (zh) 柴油机试验站空气启动系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20231226

Address after: Swiss Baden

Patentee after: GENERAL ELECTRIC CO. LTD.

Address before: New York State, USA

Patentee before: General Electric Co.