CN106833763B - 处理石化类燃烧排放物的减霾及生成碳氢燃料甲醇的方法 - Google Patents

处理石化类燃烧排放物的减霾及生成碳氢燃料甲醇的方法 Download PDF

Info

Publication number
CN106833763B
CN106833763B CN201710028779.1A CN201710028779A CN106833763B CN 106833763 B CN106833763 B CN 106833763B CN 201710028779 A CN201710028779 A CN 201710028779A CN 106833763 B CN106833763 B CN 106833763B
Authority
CN
China
Prior art keywords
reactor
water
photochemical catalyst
photo catalysis
petrochemical industry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710028779.1A
Other languages
English (en)
Other versions
CN106833763A (zh
Inventor
胡英
李小龙
何亨洋
赵晓东
王千
王千一
徐良友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201710028779.1A priority Critical patent/CN106833763B/zh
Publication of CN106833763A publication Critical patent/CN106833763A/zh
Application granted granted Critical
Publication of CN106833763B publication Critical patent/CN106833763B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/127Sunlight; Visible light
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/159Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with reducing agents other than hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/12Regeneration of a solvent, catalyst, adsorbent or any other component used to treat or prepare a fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明属于环境工程领域,具体涉及处理石化类燃烧排放物的减霾及生成碳氢燃料甲醇的方法,其包括以下步骤:(1)预处理;(2)将步骤(1)得到的CO2气体通过管道送入盛有SrTi1‑ xFexO3‑δ(0≤x≤1,0<δ<1)粉体的饱和NaOH水溶液的光催化反应器中,控制光催化剂反应器中的压力,待光催化剂反应器中溶液的pH值为8.3~8.4时,停止输送CO2气体;(3)进行光催化反应,待光催化剂反应器中的溶液pH值为11~14时反应结束;(4)对光催化反应器中生成的碳氢燃料在所置于的水循环恒温浴中进行蒸馏冷凝收集反应。

Description

处理石化类燃烧排放物的减霾及生成碳氢燃料甲醇的方法
技术领域
本发明属于环境工程领域,具体涉及处理石化类燃烧排放物的减霾及生成碳氢燃料甲醇的方法。
背景技术
能源、环境、气候是人类所面临的三大问题。目前所用能源的90%以上都来至于石化类。石化类能源的最终产物主要以CO2为主,此外还含有少量氮氧化物及硫氧化物等。大量CO2的排放造成环境污染、含碳排放偏高、气候变暖等;氮氧化物、硫氧化物、粉尘等是形成雾霾的主要源头。
如何高效合理的处理石化类能源的最终产物是解决环境中高含碳排放和雾霾的关键。
石化类能源最终产物主要来源于传统的煤炭行业、火力发电、燃油交通工具等,石化类能源最终产物主要是通过其使用设备终端排放的空气中,控制好终端的排放气体并对其进行高效合理化处理是目前石化类能源体系所面临和解决的问题所在。
空气中CO2的正常含量为0.03%,传统的煤炭行业、火力发电、燃油汽车使得含碳排放大大超标。我国火力发电占总发电量83.2%,煤炭消费总量的49%用于发电。因此火力发电中煤炭燃烧所造成的含碳排放几乎占据一半的煤炭消耗量。以燃煤火力发电为参考,计算电力的排放系数。使用1度(kWh)电(折算标准煤0.4kg)的排放系数(kg)为:碳排放/0.272、CO2排放/0.997、SO2排放/0.03、0.015排放/NOX,其中CO2占主体,含少量SO2和NOX。CO2主要用在食品加工、灭火材料及油田开采等方面。由于煤炭燃烧排放的CO2中含有SO2和NOX等成分,不易直接用于食品加工及灭火材料,未处理的排放气体还是造成雾霾的元凶。
目前对煤炭燃烧产生的CO2及附带气体主要采用地下封存或作为油田开采注入气体等。CO2气体被地下封存并没有将CO2消耗或转换掉,并且封存CO2对地质条件要求较高,封存过程需要消耗大量能源,不是处理石化类燃料最终产物的较优方法。
近年来各国逐渐采用太阳光等其它形式的自然资源低成本将CO2捕获并有效还原成可利用的碳氢燃料较为理想的方法,但该类方法主要难点为(1)CO2稳定不易捕获;(2)CO2光催化重要活性物质·CO2 -还原电位CO2/·CO2 -高达-1.9V(PH=7)不易进行;(3)现有较成熟的光催化剂TiO2(禁带宽度3.2eV)为紫外光催化剂对太阳光的利用率太低(紫外光占太阳光4%以下),催化效果不佳。
发明内容
发明目的:本发明针对上述现有技术存在的问题做出改进,即本发明公开了处理石化类燃烧排放物的减霾及生成碳氢燃料甲醇的方法。甲醇是燃值最高的含碳氢氧的燃料。
技术方案:处理石化类燃烧排放物的减霾及生成碳氢燃料甲醇的方法,包括以下步骤:
(1)预处理
将石化类燃料燃烧产物通过管道依次经过两个盛有CaCO3粉体与水的混合物的密封玻璃容器腔体,得到提纯的CO2气体;
(2)将步骤(1)得到的CO2气体通过管道送入盛有SrTi1-xFexO3-δ(0≤x≤1,0<δ<1)粉体的饱和NaOH水溶液的光催化反应器中,光催化反应器置于水循环恒温浴中,控制光催化反应器中的气压在1~1.5atm,通过pH酸度计实时监测光催化剂反应器中溶液的pH值,待光催化剂反应器中溶液的pH值为8.3~8.4时,停止向光催化剂反应器输送CO2气体,其中:
光催化反应器为透明的玻璃光催化反应器;
(3)光催化反应器置于室内打开日光灯照射或置于室外打开位于光催化反应器垂直上方的太阳能聚光器,让光催化剂反应器中溶液进行反应,在光催化反应过程中,水循环恒温浴温度处于室温,水循环泵开关处于关闭状态,控制光催化剂反应器中的气压在1~1.5atm,待光催化剂反应器中的溶液pH值为11~14,关闭日光灯或太阳能聚光器;
(4)打开光催化反应器所置于的水循环恒温浴的水循环泵开关,温度通过水循环水温调节温度,并将光催化剂反应器的顶部与冷凝器通过冷凝管相连,待催化剂反应器中的压力恒定不变且冷凝器中的液体不变时,水循环泵开关,停止反应,则在冷凝器中得到产物液体甲醇,其中:
水循环恒温浴中的水温维持65~70℃循环。
进一步地,步骤(1)中CaCO3粉体与水的质量比为(2~3):10。
进一步地,步骤(2)中SrTi1-xFexO3-δ粉体的浓度为0.5~2g/L。
有益效果:本发明公开的处理石化类燃烧排放物的减霾及生成碳氢燃料甲醇的方法具有以下有益效果:
不仅降低了雾霾的影响,更重要的是利用太阳光光催化半导体材料低成本、低功耗将排放气中占主要成分的CO2还原为碳氢燃料,这不仅可以减少空气中CO2排放量,降低温室效应的影响,而且产物碳氢燃料可以作为二次能源人们被再次利用。
附图说明
图1为石化类燃烧排放物脱硫氧化物、氮氧化物装置示意图;
图2为SrTi1-xFexO3-δ(0≤x≤1,0<δ<1)系列材料不同样品对不同波长光的相对吸收强度的示意图;
图3为SrTi1-xFeXO3-δ(0≤x≤1,0<δ<1)光催化效果对比示意图;
图4为甲醇产量随光催化剂浓度的变化示意图;
图5为甲醇产量随反应时间的变化示意图。
具体实施方式:
下面对本发明的具体实施方式详细说明。
具体实施例1
处理石化类燃烧排放物的减霾及生成碳氢燃料甲醇的方法,包括以下步骤:
(1)预处理
将石化类燃料燃烧产物通过管道依次经过两个盛有CaCO3粉体与水的混合物的密封玻璃容器腔体(如图1所示),得到提纯的CO2气体,其中:
基本机理如下:
SO2+CaCO3=CaSO3↓+CO2↑ (式-1)
NO2+NO+CaCO3=Ca(NO2)2+CO2↑ (式-2)
2CaCO3+4NO2=Ca(NO2)2+Ca(NO3)2+2CO2↑ (式-3)
(2)将步骤(1)得到的CO2气体通过管道送入盛有SrTi1-xFexO3-δ(0≤x≤1,0<δ<1)粉体的饱和NaOH水溶液的光催化反应器中,光催化反应器置于水循环恒温浴中,控制光催化反应器中的气压在1atm,通过pH酸度计实时监测光催化剂反应器中溶液的pH值,待光催化剂反应器中溶液的pH值为8.3时,停止向光催化剂反应器输送CO2气体,其中:
光催化反应器为透明的玻璃光催化反应器;
基本机理如下:
CO2↑+2NaOH=Na2CO3+H2O (式-4)
Na2CO3+CO2↑+H2O=2NaHCO3 (式-5)
总反应方程式:
2CO2↑+2NaOH=2NaHCO3 (式-6)
(3)打开处于室内位于光催化反应器垂直上方的40W日光灯(照度120lm),让光催化剂反应器中溶液进行反应,在光催化反应过程中,水循环恒温浴温度处于室温,水循环泵开关处于关闭状态,控制光催化剂反应器中的气压在1atm,待光催化剂反应器中的溶液pH值为11,关闭日光灯;
基本机理如下:
(4)打开光催化反应器所置于的水循环恒温浴的水循环泵开关,温度通过水循环水温调节温度,并将光催化剂反应器的顶部与冷凝器通过冷凝管相连,待催化剂反应器中的压力恒定不变且冷凝器中的液体不变时,关闭水循环泵开关,停止反应,则在冷凝器中得到产物液体甲醇,其中:
水循环恒温浴中的水温维持65℃循环。
进一步地,步骤(1)中CaCO3粉体与水的质量比为2:10。
进一步地,步骤(2)中SrTi1-xFexO3-δ粉体的浓度为1g/L.
如图2所示,SrTi1-xFexO3-δ(0≤x≤1,0<δ<1)系列材料的吸收光谱覆盖大部分可见光(400-700nm),因此该系列光催化材料可充分利用太阳光中占43%的可见光部分用于光催化反应,对太阳光的利用率远高于传统的光催化材料TiO2只可利用太阳中占太阳光4%的紫外光部分。
图3为SrTi1-xFexO3-δ(0≤x≤1,0<δ<1)光催化效果对比试验示意图
1)在相同40W的日光灯光照下,对相同浓度的NaHCO3溶液分别放入和不放入光催化材料SrTi1-xFeXO3-δ,实验结果表明有NaHCO3溶液有光催化材料及光照情况下有甲醇产生;而没放光催化材料的NaHCO3溶液在同样光照情况下没有甲醇产生。
2)分别对具有相同量光催化材料SrTi1-xFe3-δ的相同浓度的NaHCO3溶液进行光照和不光照对比试验,实验结果表明有光照的有甲醇产生;而没光照的无甲醇产生。
因此,HCO3 -在光催化剂SrTi1-xFeXO3-δ(0≤x≤1,0<δ<1)及光照情况下,产生甲醇。
图4表示所加光催化剂浓度为对所产甲醇量的影响,光催化剂浓度为1g/L,时,甲醇产量最多。
图5为HCO3 -在光催化剂SrTi1-xFeXO3-δ(0≤x≤1,0<δ<1)在40W的日光灯照射下,甲醇产量在半小时最多,过后减少,是由于转为其它碳氢燃料,因为甲醇的燃值在碳氢氧有机燃料中最高,因此光催化HCO3 -转甲醇为最优选择。
具体实施例2
处理石化类燃烧排放物的减霾及生成碳氢燃料甲醇的方法,包括以下步骤:
(1)预处理
将石化类燃料燃烧产物通过管道依次经过两个盛有CaCO3粉体与水的混合物的密封玻璃容器腔体,得到提纯的CO2气体;
(2)将步骤(1)得到的CO2气体通过管道送入盛有SrTi1-xFexO3-δ(0≤x≤1,0<δ<1)粉体的饱和NaOH水溶液的光催化反应器中,光催化反应器置于水循环恒温浴中,控制光催化反应器中的气压在1.5atm,通过pH酸度计实时监测光催化剂反应器中溶液的pH值,待光催化剂反应器中溶液的pH值为8.4时,停止向光催化剂反应器输送CO2气体,其中:
光催化反应器为透明的玻璃光催化反应器;
(3)将光催化反应器置于室外通过太阳光照射(照度为105lm),让光催化剂反应器中溶液进行反应,在光催化反应过程中,水循环恒温浴温度处于室温,水循环泵开关处于关闭状态,控制光催化剂反应器中的气压在1.5atm,待光催化剂反应器中的溶液pH值为14,进入步骤(4);
(4)打开光催化反应器所置于的水循环恒温浴的水循环泵开关,温度通过水循环水温调节温度,并将光催化剂反应器的顶部与冷凝器通过冷凝管相连,待催化剂反应器中的压力恒定不变且冷凝器中的液体不变时,关闭水循环泵开关,停止反应,则在冷凝器中得到产物液体甲醇,其中:
水循环恒温浴中的水温维持70℃循环。
进一步地,步骤(1)中CaCO3粉体与水的质量比为3:10。
进一步地,步骤(2)中SrTi1-xFexO3-δ粉体的浓度为2g/L。
具体实施例3
处理石化类燃烧排放物的减霾及生成碳氢燃料甲醇的方法,包括以下步骤:
(1)预处理
将石化类燃料燃烧产物通过管道依次经过两个盛有CaCO3粉体与水的混合物的密封玻璃容器腔体,得到提纯的CO2气体;
(2)将步骤(1)得到的CO2气体通过管道送入盛有SrTi1-xFexO3-δ(0≤x≤1,0<δ<1)粉体的饱和NaOH水溶液的光催化反应器中,光催化反应器置于水循环恒温浴中,控制光催化反应器中的气压在1.2atm,通过pH酸度计实时监测光催化剂反应器中溶液的pH值,待光催化剂反应器中溶液的pH值为8.4时,停止向光催化剂反应器输送CO2气体,其中:
光催化反应器为透明的玻璃光催化反应器;
(3)打开位于室外的光催化反应器垂直上方的太阳能聚光器,让光催化剂反应器中溶液进行反应,在光催化反应过程中,水循环恒温浴温度处于室温,水循环泵开关处于关闭状态,控制光催化剂反应器中的气压在1.25atm,待光催化剂反应器中的溶液pH值为12,关闭太阳能聚光器;
(4)打开光催化反应器所置于的水循环恒温浴的水循环泵开关,温度通过水循环水温调节温度,并将光催化剂反应器的顶部与冷凝器通过冷凝管相连,待催化剂反应器中的压力恒定不变且冷凝器中的液体不变时,关闭水循环泵开关,停止反应,则在冷凝器中得到产物液体甲醇,其中:
水循环恒温浴中的水温维持67℃循环。
进一步地,步骤(1)中CaCO3粉体与水的质量比为2.5:10。
进一步地,步骤(2)中SrTi1-xFexO3-δ粉体的浓度为0.5g/L。
进一步地,步骤(3)中太阳能聚光器将太阳光照度提高了八倍,达到8x105lm。
上面对本发明的实施方式做了详细说明。但是本发明并不限于上述实施方式,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下做出各种变化。

Claims (3)

1.处理石化类燃烧排放物的减霾及生成碳氢燃料甲醇的方法,其特征在于,包括以下步骤:
(1)预处理
将石化类燃料燃烧产物通过管道依次经过两个盛有CaCO3粉体与水的混合物的密封玻璃容器腔体,得到提纯的CO2气体;
(2)将步骤(1)得到的CO2气体通过管道送入盛有SrTi1-xFexO3-δ(0≤x≤1,0<δ<1)粉体的饱和NaOH水溶液的光催化反应器中,光催化反应器置于水循环恒温浴中,控制光催化反应器中的气压在1~1.5atm,通过pH酸度计实时监测光催化剂反应器中溶液的pH值,待光催化剂反应器中溶液的pH值为8.3~8.4时,停止向光催化剂反应器输送CO2气体,其中:
光催化反应器为透明的玻璃光催化反应器;
(3)光催化反应器置于室内并打开日光灯照射或置于室外打开位于光催化反应器垂直上方的太阳能聚光器,让光催化剂反应器中溶液进行反应,在光催化反应过程中,水循环恒温浴温度处于室温,水循环泵开关处于关闭状态,控制光催化剂反应器中的气压在1~1.5atm,待光催化剂反应器中的溶液pH值为11~14,关闭日光灯或太阳能聚光器;
(4)打开光催化反应器所置于的水循环恒温浴的水循环泵开关,温度通过水循环水温调节温度,并将光催化剂反应器的顶部与冷凝器通过冷凝管相连,待催化剂反应器中的压力恒定不变且冷凝器中的液体不变时,水循环泵开关,停止反应,则在冷凝器中得到产物液体甲醇,其中:
水循环恒温浴中的水温维持65~70℃循环。
2.根据权利要求1所述的处理石化类燃烧排放物的减霾及生成碳氢燃料甲醇的方法,其特征在于,步骤(1)中CaCO3粉体与水的质量比为(2~3):10。
3.根据权利要求1所述的处理石化类燃烧排放物的减霾及生成碳氢燃料甲醇的方法,其特征在于,步骤(2)中SrTi1-xFexO3-δ粉体的浓度为0.5~2g/L。
CN201710028779.1A 2017-01-16 2017-01-16 处理石化类燃烧排放物的减霾及生成碳氢燃料甲醇的方法 Active CN106833763B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710028779.1A CN106833763B (zh) 2017-01-16 2017-01-16 处理石化类燃烧排放物的减霾及生成碳氢燃料甲醇的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710028779.1A CN106833763B (zh) 2017-01-16 2017-01-16 处理石化类燃烧排放物的减霾及生成碳氢燃料甲醇的方法

Publications (2)

Publication Number Publication Date
CN106833763A CN106833763A (zh) 2017-06-13
CN106833763B true CN106833763B (zh) 2018-06-12

Family

ID=59123846

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710028779.1A Active CN106833763B (zh) 2017-01-16 2017-01-16 处理石化类燃烧排放物的减霾及生成碳氢燃料甲醇的方法

Country Status (1)

Country Link
CN (1) CN106833763B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112337298B (zh) * 2020-10-19 2021-08-03 华中科技大学 一种富氧烟气制碳氢燃料协同脱硫的光催化反应器及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013006180A (ja) * 2012-08-01 2013-01-10 Ichiro Moriya 二酸化炭素の還元方法および還元力供与システム
CN102861510B (zh) * 2012-10-12 2014-07-02 西安科技大学 一种紫外光/煤炭协同作用下co2转化为甲醇的方法
PL223900B1 (pl) * 2013-01-17 2016-11-30 Zachodniopomorski Univ Tech W Szczecinie Sposób fotokatalitycznej redukcji ditlenku węgla do metanolu
CN104478656B (zh) * 2014-11-26 2016-02-10 广西大学 一种二氧化碳还原的方法

Also Published As

Publication number Publication date
CN106833763A (zh) 2017-06-13

Similar Documents

Publication Publication Date Title
WO2015161671A1 (zh) 一种净化污染空气的系统及其工作方法
CN106732242B (zh) 光催化二氧化碳制备碳氢燃料甲醇的系统
CN206881480U (zh) 一种含硫废气处理装置
CN106833763B (zh) 处理石化类燃烧排放物的减霾及生成碳氢燃料甲醇的方法
CN102658012B (zh) 高浓度恶臭气体处理的方法及其装置
CN106731557A (zh) 一种烟气脱硝过程中吸收液循环利用方法及系统
CN109519940A (zh) 一种用于生活垃圾填埋场的填埋气处理装置及方法
WO2016061847A1 (zh) 一种利用燃烧废气促进好氧发酵反应的方法
EP3984624A1 (en) Method and system for wet treatment of nitrogen oxide waste gases
CN205914022U (zh) 燃煤电厂烟气三氧化硫和脱硫废水联合处理系统
CN209558365U (zh) 一种用于生活垃圾填埋场的填埋气处理装置
CN110055118A (zh) 一种沼气脱硫的方法及装置
CN111151200A (zh) 一种基于透光透气聚热反应室的太阳能腔式反应器
CN104815656A (zh) 一种纳米CuO/TiO2光催化剂及制备方法
CN207194954U (zh) 煤样厌氧取样罐
CN207203836U (zh) 一种NOx气体的氧化吸收装置
CN202074540U (zh) 一种烟气处理系统
CN209654080U (zh) 一种利用乏风和低浓度瓦斯氧化热源的井筒保温系统
CN105910114B (zh) 无烟囱两种气体反复燃烧的锅炉
CN208122979U (zh) 一种处理有机废气的装置
CN205586820U (zh) 新型昼夜两用烟气脱汞装置
CN201704295U (zh) 生物质气体净化器
CN205782967U (zh) 一种新型锅炉无硝燃烧系统
CN109999637A (zh) 燃煤企业废气脱硫脱硝及资源化设备
CN113786702B (zh) 一种用于烟气脱硫脱硝减霾的循环反应器及系统与方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant