WO2015161671A1 - 一种净化污染空气的系统及其工作方法 - Google Patents

一种净化污染空气的系统及其工作方法 Download PDF

Info

Publication number
WO2015161671A1
WO2015161671A1 PCT/CN2015/000267 CN2015000267W WO2015161671A1 WO 2015161671 A1 WO2015161671 A1 WO 2015161671A1 CN 2015000267 W CN2015000267 W CN 2015000267W WO 2015161671 A1 WO2015161671 A1 WO 2015161671A1
Authority
WO
WIPO (PCT)
Prior art keywords
bin
chamber
denitration
pretreatment
light energy
Prior art date
Application number
PCT/CN2015/000267
Other languages
English (en)
French (fr)
Inventor
傅国琳
Original Assignee
林小晓
车道岚
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 林小晓, 车道岚 filed Critical 林小晓
Publication of WO2015161671A1 publication Critical patent/WO2015161671A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/60Simultaneously removing sulfur oxides and nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/64Heavy metals or compounds thereof, e.g. mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/75Multi-step processes

Definitions

  • the invention relates to a purification system and a working method thereof, in particular to a system for purifying polluted air and a working method thereof.
  • China today is one of the most polluted countries in the world (after India). Not long ago, at the regular meeting of the State Council of China, the theme of 'eliminating the heart and lungs of the people' was put forward specifically; the pollution control was combined with the people's state and the people's death, and it was determined to eliminate the hat of the polluting country.
  • the Chinese government has decided not only to take off economically but also to make positive contributions to the country, the people, the future generations, and even the world in the environment.
  • new clean energy sources are limited by reserves and international politics and cannot become the main alternative kinetic energy for domestic industrial demand. Therefore, coal will remain China's main kinetic energy source for a long time. As the industrial demand continues to increase, it means that air pollution will become more serious. Effectively reducing and preventing pollution will always be a arduous task.
  • the current desulfurization technologies include coal mixed lime or additives; direct calcium injection in the furnace and dry bed limestone desulfurization; and wet desulfurization such as calcium alkali method, ammonia alkali method, sodium alkali method, and magnesium alkali method.
  • the cyclone tower device is currently the main application object.
  • the cyclone tower device was technically modified in the 1990s for flue gas desulfurization and dedusting of coal-fired industrial boilers. The advantage of this device is that the contact area of the flue gas and the liquid is large, the structure is simple, the resistance is small, and the operation is stable.
  • the disadvantage is that the existing technology has an average desulfurization efficiency of only 60 to 80%, and the cost is extremely high.
  • the current operating cost of desulfurization is 0.3 yuan per watt, and the annual operating cost of a medium-sized 12 megawatt coal-fired power plant is 44.3 million yuan; and the cost of its desulfurization unit is 360 million yuan!
  • the huge installation and operating costs have indeed made SMEs face a crisis in the factory.
  • PM2.5 particulate matter 2.5
  • Particulate compositions can cause significant visual effects, such as soot, which consists of sulfur dioxide, nitrogen oxides, carbon monoxide, mineral dust, organic matter, and elemental carbon, also known as black carbon or soot.
  • soot consists of sulfur dioxide, nitrogen oxides, carbon monoxide, mineral dust, organic matter, and elemental carbon, also known as black carbon or soot.
  • S02 is converted to sulfuric acid at high humidity and low temperatures. This will result in reduced visibility, yellow air, ozone, and a feeling of inhalation.
  • the effects of inhaled particulate matter by humans and animals have been extensively studied; health problems caused by PM2.5 include asthma, lung cancer, cardiovascular problems, respiratory diseases, birth defects, and premature death.
  • the comparative resistance is less than 104-105 ohms per centimeter or more than 1010 ⁇ 1011 ohms per centimeter of dust. If no measures are taken, the dust removal efficiency will be affected. (3) It does not have the offline maintenance function. Once the equipment fails, or it is running with disease, it can only be shut down for maintenance. All in all, the cost of building and maintaining any equipment other than PM is very high.
  • Nitrogen (NOx) is a generic term for nitrogen oxides, and the term refers to the combined concentration of NO and NO 2 (nitrogen monoxide and nitrogen dioxide).
  • Nitrogen oxides and volatile organic compounds (VOCs) in the air react chemically in the sun to form ozone. Children and people who work or exercise outdoors are vulnerable to the adverse effects of ozone. Ozone can cause asthma, damage lung tissue, and reduce lung function. Ozone can also be transported through wind and air, and its health effects far exceed the original nitrogen oxides. Other effects of ozone also include damage to plant growth leading to a decline in crop yields.
  • nitrogen oxides and sulfur dioxide react with other substances in the air to form acid rain, which is mixed with rain, fog, snow or micro particles falling on the ground.
  • Acid rain damages cars, buildings and the deterioration of historical monuments; acid rain causes lakes and streams to become acidic, resulting in an ecological imbalance in natural waters. Acidic microparticles penetrate deep into sensitive parts of the lungs and can cause or exacerbate respiratory diseases such as emphysema, bronchitis, and exacerbation of existing heart disease. Acidic microparticles also block the transmission of light and reduce visibility, resulting in hazy weather, and people can't see the blue sky all year round.
  • the cost of a 300,000-kilowatt unit for denitrification transformation construction should be about 60 million yuan.
  • Coal-fired power plants are the largest source of heavy metals (such as mercury and lead) in the air.
  • Mercury and lead pollution can seriously damage the development of children's nervous system and cause serious damage to children's intelligence.
  • the US Environmental Protection Agency signed a legal policy on reducing toxic substances in the air, requiring that the removal rate of mercury from all coal and oil-fired generators must reach 91% in 2016.
  • there are similar problems with the removal of lead there are similar problems with the removal of lead.
  • activated carbon is a technology that primarily controls mercury reduction.
  • Activated carbon one of the most commonly used to remove odors and contaminants in drinking water systems, has been shown to have some satisfactory effects in absorbing mercury from coal-fired boiler flue gases. Mercury adheres to the activated carbon particles and is then removed by downstream particulate control devices such as electrostatic precipitators or bag filters.
  • Activated carbon (highly processed, containing a large amount of microporous carbon) absorbs the gaseous form of mercury and converts it into particulate form that can be captured.
  • the current purification equipment is expensive, and the waste after purification cannot be recycled and reused, which easily leads to the trouble of secondary pollution.
  • the system has an advanced filtration system to eliminate toxic emissions from the exhaust gas. Utilize new processes and technologies to capture toxic substances emitted from pollution sources or chimneys of coal-fired boilers, use nanotechnology and advanced chemical reactions to remove all pollutants from exhaust gases, apply gas-liquid interactions and gases The principle of interaction with the solids eventually releases the cleaning gas and recovers the sulfuric acid and nitric acid produced during the reaction, making the filtration recovery system a virtuous cycle.
  • the system is low in cost and is conducive to promotion and use.
  • the technical solution of the present invention is a system for purifying polluted air, which is characterized in that it is composed of an induced draft fan a, a circulation pump, a pretreatment chamber, a denitration bin, a desulfurization and dedusting bin, a maintenance cover, a heavy metal filtering device, an induced draft fan b,
  • the chemical reagent replenishing tank a, the acid purifying processing device, the chemical reagent replenishing tank b, the metering pump, and the chemical reagent replenishing tank c are configured;
  • the polluting gas source enters the pretreatment chamber through the induced draft fan, and the output end of the pretreatment chamber is connected to the denitration
  • the input end of the denitration bin is connected to the input end of the desulfurization bin, the output end of the desulfurization dedusting bin is connected to the input end of the heavy metal filter device, the output end of the heavy metal filter device is connected to the induced draft fan, and the induced draft fan discharges the
  • the pretreatment bin, the denitration bin and the desulfurization dedusting bin are connected with the chemical reagent replenishing tank b through a metering pump, and the pretreatment bin is equipped with a circulation pump;
  • the processing device is composed of a heating collecting tank, a distillation device and a nitric acid cooling tank.
  • the output end of the collecting tank is connected to the input end of the distillation device, and the output end of the distillation device is connected to the input end of the nitric acid cooling tank, and the output end of the nitric acid cooling tank is connected.
  • the treated nitric acid is discharged, and the treated end of the collection tank flows out of the treated sulfuric acid.
  • the pretreatment bin includes the pretreatment bin body, the pretreatment bin sprinkler device, the pretreatment bin air inlet, the pretreatment bin pump, the accumulator, the pretreatment bin outlet, the pretreatment bin inlet and Pre-processing the gas outlet of the warehouse, the bottom of the pre-treatment chamber body is a liquid storage device, the liquid outlet of the pre-treatment chamber is disposed at the liquid storage device, the air inlet of the pre-treatment chamber, the liquid inlet of the pre-treatment chamber and the pretreatment
  • the warehouse outlet is disposed on the pretreatment chamber above the liquid storage device, the pretreatment chamber outlet is above the inlet of the pretreatment chamber, and the pretreatment chamber spraying device is disposed in the pretreatment chamber, the pretreatment
  • the cartridge pump is connected to the output of the reservoir and the input of the pretreatment chamber sprinkler via a pipe.
  • the pretreatment chamber spray device is a pressure spray device disposed on the top of the pretreatment chamber, or a pressure spray device disposed on the top of the pretreatment chamber and a spray disposed on the inner wall of the pretreatment chamber Sprinkler system.
  • the denitration bin includes a denitration bin body, a denitration bin outlet, a denitration bin sprinkler system, a denitration bin inlet, a denitration bin inlet, a gas-liquid mixing channel, a denitration bin outlet, and a denitration bin pump;
  • the denitration tank inlet port and the denitration chamber outlet port are disposed at an upper portion of the denitration bin body;
  • the denitration bin inlet port is disposed at a middle portion of the denitration bin body;
  • the denitration bin outlet port is disposed at the denitration bin body
  • the gas-liquid mixing channel and the denitration chamber spray system are located in the denitration bin; the input end of the gas-liquid mixing channel is connected to the denitration port inlet, and the output end is placed in the liquid in the denitration bin;
  • the warehouse pump is connected to the output of the bottom of the denitration bin and the input of the denitration sprinkler system through a pipe.
  • the gas-liquid mixing channel described above includes three medium-sized gas-liquid mixing channels and three small-sized gas-liquid mixing channels, or includes five large mixing channels.
  • the desulfurization and dedusting bin comprises a light energy bin
  • the light energy bin comprises a light energy bin body, a light energy bin air inlet, a light energy bin air outlet, a light energy bin liquid inlet, a gas-liquid mixing channel, and a light energy.
  • a pumping water pump a light energy storage port, a light energy storage device, and an illumination device
  • the light energy storage port and the light energy storage port are disposed at an upper portion of the light energy storage body, and the light energy storage chamber is filled with liquid
  • the mouth is disposed in the middle of the light energy storage body
  • the liquid energy storage port is disposed at the bottom of the light energy storage body
  • the gas-liquid mixing channel, the light energy storage device and the illumination device are located in the light energy storage body
  • the gas is
  • the input end of the liquid mixing channel is connected to the light inlet of the light energy bin
  • the output end of the gas-liquid mixing channel is located at a position near the bottom of the light energy bin
  • the light pumping pump is connected to the output of the bottom of the light energy bin through the pipe.
  • the purifying chamber includes a purifying chamber body, a purifying plate, a liquid flow control plug and a purifying chamber liquid outlet, wherein the purifying chamber body is provided with a light energy cartridge body, and the light energy chamber liquid outlet extends into the purifying chamber body
  • the liquid flow control plug is installed on the liquid outlet of the light energy bin, the liquid outlet of the light energy bin is located above the purifying plate, the purifying plate is fixed in the purifying chamber, and the liquid outlet of the purifying chamber is set in the purifying chamber The bottom of the body.
  • the heavy metal filtering device described above includes a fibrous matrix embedded with a nano material.
  • the fiber substrate embedded with the nano material is attached to the fan blade of the centrifugal fan or disposed between the inclined blades; the inclined blade has an inclination angle of 30-45 degrees.
  • a method of operating a system for purifying polluted air described above comprising the steps of:
  • the Fenton reagent containing a metal system capable of undergoing photo-assisted Fenton reaction and Hydrogen peroxide; the solution is configured with a mass percentage of hydrogen peroxide to water of 3% to 5%; a hydrogen peroxide to metal system molar ratio of 10:1 or more; according to the light absorption peak of the metal system, is set in the light energy chamber Lighting system
  • the polluted air enters the pretreatment chamber through the induced draft fan and is in full contact with the liquid in the chamber.
  • the pretreatment process removes solid particles larger than 10 microns in diameter and oxidizes NO to NO 2 , carbon.
  • the particles are oxidized to carbon monoxide, and the sulfur dioxide is oxidized to sulfur trioxide; the solution containing solid particles and nitric acid is flowed from the pretreatment vessel into the acid purification treatment device, and the purified gas is discharged into the pretreatment chamber;
  • the work of the denitration bin the gas purified by the pretreatment bin enters the denitration bin, and the nitrogen oxide reacts with the oxidant to form nitric acid.
  • the solution containing nitric acid flows into the acid purification treatment device from the denitration bin, and the purified gas is discharged into the denitration bin;
  • the mixed liquid containing sulfuric acid and nitric acid flowing out from the pretreatment tank, the denitration tank, and the desulfurization dedusting bin flows into the collection tank in the acid purification treatment device, and the heating device with the collection tank is heated
  • the mixed liquid vaporizes the nitric acid, the heating temperature is greater than or equal to 122 ° C, and then purified by distillation and refining.
  • the purified nitric acid is cooled and collected in a nitric acid cooling tank for recovery, and the sulfuric acid will remain in the collecting tank for recovery;
  • the purified gas discharged from the heavy metal filtering device is discharged outside the system through the induced draft fan.
  • the system utilizes the principle of gas-liquid reaction to effectively solve the problem of exhaust gas cleaning.
  • a chemical reaction contains more than one state of matter, it is inevitable to consider the problem of an interface.
  • the state transition rate must be considered (see Figure 8).
  • the material conversion rate between two different physical states is an important issue in the design.
  • k L ' is the material transfer coefficient
  • D A is the diffusion coefficient of the reactant
  • is the film thickness.
  • the above-mentioned thin film theory cannot cover all gas-liquid reactions. For example, when a gaseous molecule enters a flowing film, it is an unsteady behavior. When there is a flowing film, the infiltration theory can be used to fill the traditional film theory, compensating for the vertical flow rate with the gas-liquid interface. When a flowing film is involved, the host concentration [A] is negligible:
  • Vmax is the maximum value of the sheet-like flow film speed viewed from the side
  • Vmax/ ⁇ is referred to as contact speed
  • k L ' is the material transfer coefficient
  • DA is the diffusion coefficient of the reactant.
  • Equations 1 and 2 are the most ideal cases. Theoretically, if all of the NO molecules in the flue gas are completely converted to NO 2 (Formula 1) in the pretreatment chamber, it should react with H 2 O 2 in the denitrification chamber to produce HNO 3 (Equation 2). . However, the reaction rate of Equation 1 is very slow, and the liquid in the pretreatment chamber is dropped, so that the entire gas-liquid reaction system is in an unsteady state. Therefore, the infiltration theory must be used when calculating the reaction kinetics of the pretreatment bin (see Figure 9).
  • the denitrification bin is in a steady state system where various variables are stable, despite the uninterrupted process forces trying to change them. Since the various variables are stable, there must be a flow through the entire system, so Equations 3 through 5 are most likely to occur in the denitration chamber.
  • a portion of the NO 2 molecules that are converted in the pretreatment chamber may react with water to form HNO 3 and NO (Equation 3).
  • NO not oxidized by peroxide in the pretreatment tank plus NO produced from Equation 3 will react with HNO 3 and H 2 O and produce intermediate HNO 2 (Formula 4); this intermediate is again with H 2 O 2 is further reacted to form the final product: HNO 3 plus H 2 O (Formula 5).
  • Equation 6 may also occur at the gas-liquid interface.
  • Nitrogen dioxide is absorbed by liquid water in a ratio of 10 -3 to 10 -1
  • the aqueous solution of the off-loading bin must be controlled to a pH value.
  • the overall solution maintains a pH of ⁇ 3 and the absorption process can be accelerated.
  • the denitrification bin is also designed to ensure that the contact time between the flue gas and the solution is extended to the longest.
  • a typical measure for FeSO 4 is a molar ratio of hydrogen peroxide to iron ⁇ 10. It is important to pay attention to the pH. If the pH is too high, iron will form a precipitate of Fe(OH) 3 and H 2 O 2 will decompose into oxygen. Basically, the ideal pH is ⁇ 3. In order to control the pH and the elevated temperature in the reaction, it is preferred to control the reaction to be carried out step by step, the iron catalyst of the reaction is added as a FeSO 4 solution, and then H 2 O 2 is slowly added.
  • Typical very slow and slow reactions are the conversion of nitric oxide to nitric acid at a rate similar to the rate at which the material diffuses.
  • the typical mode 3 and mode 4 reactions are the conversion of sulfur dioxide to sulfuric acid, which is kinetically occurring primarily in the interface film. In the case of mode 3 or mode 4, the reaction rate should be defined at the interface.
  • Table 1 shows the flow and material conversion characteristics in most typical gas-liquid reactors, by Table 1, and depending on whether the reaction occurs in the bulk or in the interface film, thereby designing a reaction vessel complex A system for purifying polluted air of the invention. (Table 1)
  • the pretreatment chamber is mainly a spray gas scrubber because the typical exhaust gas flow rate exceeds 6 m/s, and the in-cabin mixing feature is that both the gas and the liquid are flushed.
  • the nitrogen oxynitride of the present invention is designed to be interposed between a bubble column and a batch reactor. Since the production of nitric acid is relatively slow, the ingress and egress of liquid is not always at a steady state. Therefore, the denitration tank of the present invention is based on a combination of a flat flow gas and a mixed flow liquid (see Figs. 11-1, 11-2).
  • the desulfurization bin of the present invention utilizes the high efficiency of the Fenton reaction, and the process rate of producing sulfuric acid is as follows
  • the desulfurization chamber of the present invention is designed in accordance with the design of the flat flow gas (see Figure 11-1).
  • the separation chamber of the present invention is an acid purification treatment device.
  • the system is an automated working system designed to minimize reactor volume and reduce energy consumption with a certain yield of sulfuric acid and nitric acid.
  • the composition of the reactants was based on laboratory experiments and theoretical analysis of the initial tests on the coal-fired boiler site. Taking a 30-ton coal-fired coal-fired boiler as an example, the production of nitric acid and sulfuric acid has been calculated.
  • nitric acid begins with the oxidation of nitrogen in the air in a coal-fired boiler.
  • steps 1b and 2b are steps in determining the speed throughout the process, hydrogen peroxide is the primary limiting component. No matter which step of nitrogen is converted to nitric acid, it is impossible to have hydrogen peroxide in the last step 1c and 2e.
  • the air contains 78.09% (by volume) or 75.47% (by weight) of nitrogen.
  • the density of air at international standard atmospheric pressure is about 1.204 kg/m 3 . That is, the mass per cubic meter of air is 1.204Kg, of which nitrogen accounts for (1.204Kg x 75.47%) 908.7g.
  • Nitrogen which produces 973 g of NO, requires 1.1 Kg of H 2 O 2 to convert it to 2.04 Kg (32.454 mole x 63 g/mole) of nitric acid.
  • NO X emissions (t) 1.63X Coal consumption (tonnes) X (nitrogen content in coal combustion X NOx conversion rate in coal combustion + 0.000938)
  • the amount of 35% hydrogen peroxide per day is about 290 to 300 kg.
  • the denitration tank requires 2.8 tons of 35% hydrogen peroxide but can produce 5 tons of 68% nitric acid.
  • the domestic nitric acid market fell in April 2014, and the price was 1,427 yuan per ton, which is slightly more expensive than the industrial price of 35 hydrogen peroxide. Therefore, the denitration operation cost is basically negative.
  • the nitric acid and sulfuric acid flowing out of the denitrification bin and the desulfurization bin will directly enter the acid purification treatment device.
  • the purification device includes a charging tank (10a) having a heating capacity, a distillation device, and a nitric acid cooling tank (10b). 68% nitric acid has a density of 1.51293 and a boiling point of 121 degrees Celsius. Concentrated sulfuric acid has a density of 1.843 and a boiling point of 337 degrees Celsius. Due to the density-to-water weight relationship, the two acids are separately deposited at the bottom of the denitrification bin and the desulfurization bin, and then introduced into the collection tank (10a) of the purification device via a metering pump.
  • the purification collection tank is heated to 122 ° C for net nitric acid gasification, and then the purified nitric acid is cooled and then collected in a nitric acid cooling tank by distillation and refining. Sulfuric acid will remain in the collection tank for direct recovery.
  • a method of treating flue gas containing sulfur dioxide comprising the steps of:
  • the solution is configured to have a mass percentage of hydrogen peroxide to water of 3% to 5%.
  • the molar ratio of hydrogen peroxide to metal system is greater than or equal to 10:1;
  • the step (1') is added to adjust the pH to 3 or less with nitric acid, and then an oxidizing agent is added to oxidize the carbon particles to carbon monoxide, and some of the SO 2 is oxidized to SO 3 ; the oxidizing agent is hydrogen peroxide.
  • the volume ratio of hydrogen peroxide to water is 1:18-22, the molar ratio of molybdenum oxide to tungsten oxide is 1:1, the molar ratio of magnesium oxide to magnesium hydroxide is 1:1, and the ratio of molybdenum oxide to water is greater than or equal to 10mol/L, the ratio of tungsten oxide to water is 10mol/L or more, the ratio of magnesium oxide to water is 10mol/L or more, and the ratio of magnesium hydroxide to water is 10mol/L or more, ferric oxide and water.
  • the dosage ratio is 20 mol/L or more.
  • the concentration of the oxidizing agent in the above step (1') needs to be monitored periodically and the oxidizing agent is supplemented as needed to stabilize the concentration of the oxidizing agent in the solution.
  • the metal system in the above step (2) is a Fe(II)/F(III) system or a Cu(I)/Cu(II) system; when the metal system is a Fe(II)/F(III) system, The illumination is ultraviolet light having a wavelength of 200 nm to 400 nm; when the metal system is a Cu(I)/Cu(II) system, the illumination is visible light having a wavelength of 600 nm to 800 nm.
  • the Fe(II)/F(III) system described above consists of FeSO 4 and Fe 3 O 4 particles having a diameter of less than 20 nm.
  • the Cu(I)/Cu(II) system described above consists of Cu 2 O and CuSO 4 particles having a diameter of less than 20 nm.
  • the manner of sufficient contact in the above step (4) is to spray the liquid through the spray device to the gas to increase the area and time of contact of the exhaust gas with the liquid.
  • the liquid from which the pretreatment vessel is derived is removed from the pretreatment vessel by a water pump after removing the particulate matter larger than 10 ⁇ m.
  • the hydrogen peroxide described above is produced by reacting magnesium peroxide, sodium peroxide or calcium peroxide having a diameter of less than 50 nm in the solution.
  • the above ⁇ -hydroxy acid is glycolic acid, pyruvic acid or lactic acid.
  • the manner of sufficient contact in the above step (7) is at least one of directly introducing a gas into the liquid or spraying the liquid through the shower device to the gas.
  • step (8) is added to the step 8' to adsorb and recover the metal system substance by using a commercially available DOW Chemical Company's Amberlite IRC 748 ion exchange resin coating to purify the sulfuric acid-containing solution.
  • a desulfurization device for realizing the above method comprising a pretreatment bin and a light energy bin;
  • the pretreatment bin comprises a pretreatment bin body 1-13, a pretreatment bin sprinkler device 1-2, a pretreatment bin air inlet 1 -4, Pretreatment bin pump 1-6, accumulator 1-7, pretreatment bin outlet port 1-8, pretreatment bin inlet port 1-10 and pretreatment bin outlet port 1-12, said pretreatment bin
  • the bottom of the body 1-13 is the accumulator 1-7, and the pre-treatment tank outlet port 1-8 is disposed at the accumulator 1-7, the pre-treatment tank inlet 1-4, the pre-treatment tank inlet Ports 1-10 and pre-treatment tank outlets 1-12 are placed on the pre-treatment tank bodies 1-13 above the reservoirs 1-7, and the pre-treatment tank outlets 1-12 are in the pre-treatment tank inlets 1-4
  • the pretreatment chamber sprinkler device 1-2 is disposed in the pretreatment bin body 1-13, and the pretreatment bin pump 1-6 is connected to the output end of the accumulator
  • the input end of the gas-liquid mixing channel 2-4 is connected to the light energy bin inlet 2-2, and the output end of the gas-liquid mixing channel 2-4 is located at the lower portion of the light energy cartridge body 2-11 near the bottom of the cartridge.
  • the position of the light energy bin pump 2-5 is connected to the output end of the bottom of the light energy bin body 2-11 and the input end of the light energy bin shower device 2-8; the pretreatment chamber air outlet 1-12 Connect the light energy storage port 2-2.
  • the pretreatment bin body 1-13 is provided with a pretreatment bin inspection cover 1-1 at the top, and the pretreatment bin body 1-13 is provided with a pretreatment bin inspection door 1-11 on the side wall of the pretreatment cartridge body 1-13, and the top of the reservoir 1-7 is set.
  • the funnel-shaped collecting plates 1-3, the side walls of the accumulators 1-7 are provided with pre-treatment tank levelers 1-9 and sampling ports 1-5.
  • the pretreatment chamber spraying device 1-2 is a pressure shower device disposed at the top of the pretreatment cartridge body 1-13, or a pressure shower device disposed at the top of the pretreatment cartridge body 1-13. And a spray sprinkler disposed on the inner wall of the pretreatment cartridge body 1-13.
  • the spray droplets of the above-mentioned pressure sprinkler device are uniform wires; the diameter of each drop is 2 to 3 mm, and the interval between each drop is 6 to 10 mm.
  • the pretreatment cartridge body 1-13 described above is made of a stainless steel metal plate.
  • the pretreatment bin pump 1-6 described above is an acid-resistant water pump.
  • the above-mentioned light energy storage body 2-11 is made of a stainless steel metal plate, and the inner wall of the light energy storage body 2-11 is coated with an anti-corrosion coating.
  • the light energy chamber liquid level device 2-7 is disposed on the side wall of the light energy storage body 2-11, and the light energy storage box inspection cover 2-9 is disposed at the top of the light energy storage body 2-11.
  • the illumination device 2-10 described above is a quartz tube ultraviolet lamp or a visible light lamp.
  • the lower half of the above-mentioned light energy storage chamber has a purification plate coated with a commercially available coating of Amberlite IRC 748 ion exchange resin of DOW Chemical Co., Ltd. for adsorbing and recovering the metal system substance and purifying the solution containing sulfuric acid.
  • a method of treating dust containing dust comprising the steps of:
  • the solution is configured with a mass percentage of hydrogen peroxide and water of 3% to 5%;
  • the molar ratio of hydrogen peroxide to metal system is greater than or equal to 10:1;
  • step (1') is added to adjust the pH to 3 or less with nitric acid, and then an oxidizing agent is added to oxidize the carbon particles to carbon monoxide, and the oxidizing agents are hydrogen peroxide, molybdenum oxide and tungsten oxide.
  • a mixture, a mixture of magnesium oxide and magnesium hydroxide or ferric oxide wherein the diameters of the solid particles of molybdenum oxide, tungsten oxide, magnesium oxide, magnesium hydroxide and ferric oxide are less than 20 nm, the volume of hydrogen peroxide and water
  • the ratio is 1:18-22, the molar ratio of molybdenum oxide to tungsten oxide is 1:1, the molar ratio of magnesium oxide to magnesium hydroxide is 1:1, and the ratio of molybdenum oxide to water is 10 mol/L or more.
  • the ratio of use of water to water is 10 mol/L or more, the ratio of magnesium oxide to water is 10 mol/L or more, the ratio of magnesium hydroxide to water is 10 mol/L or more, and the ratio of ferric oxide to water is 20 mol or more. /L.
  • the concentration of the oxidizing agent in the above step (1') needs to be monitored periodically and the oxidizing agent is supplemented as needed to stabilize the concentration of the oxidizing agent in the solution.
  • the metal system in the above step (2) is a Fe(II)/F(III) system or a Cu(I)/Cu(II) system; when the metal system is a Fe(II)/F(III) system, The illumination is ultraviolet light having a wavelength of 200 nm to 400 nm; when the metal system is a Cu(I)/Cu(II) system, the illumination is visible light having a wavelength of 600 nm to 800 nm.
  • the Fe(II)/F(III) system described above consists of FeSO 4 and Fe 3 O 4 particles having a diameter of less than 20 nm.
  • the Cu(I)/Cu(II) system described above consists of Cu 2 O and CuSO 4 particles having a diameter of less than 20 nm.
  • the manner of sufficient contact in the above step (4) is to spray the liquid through the spray device to the gas to increase the area and time of contact of the exhaust gas with the liquid.
  • the liquid from which the pretreatment vessel is derived is removed from the pretreatment vessel by a water pump after removing the particulate matter larger than 10 ⁇ m.
  • the hydrogen peroxide described above is produced by reacting magnesium peroxide, sodium peroxide or calcium peroxide having a diameter of less than 50 nm in the solution.
  • the above ⁇ -hydroxy acid is glycolic acid, pyruvic acid or lactic acid.
  • the manner of sufficient contact in the above step (7) is at least one of directly introducing a gas into the liquid or spraying the liquid through the shower device to the gas.
  • An apparatus for realizing the method described above comprising: a pretreatment chamber and a light energy storage bin; the pretreatment bin comprising a pretreatment bin body, a pretreatment bin sprinkler device, a pretreatment bin air inlet, a pretreatment bin pump, and a storage a liquid reservoir, a pre-treatment tank outlet, a pre-treatment tank inlet, and a pre-treatment tank outlet, the bottom of the pre-treatment chamber is a reservoir, and the pre-chamber outlet is disposed at the reservoir.
  • the pretreatment bin inlet, the pretreatment bin inlet and the pretreatment bin outlet are disposed on the pretreatment bin above the reservoir, and the pretreatment bin outlet is above the pretreatment bin inlet,
  • the pretreatment chamber sprinkling device is disposed in the pretreatment chamber, and the pretreatment chamber pump is connected to the output end of the accumulator and the input end of the pretreatment chamber sprinkling device through a pipeline;
  • the light energy chamber includes a light energy storage chamber , light energy bin air inlet, light energy bin air outlet, light energy bin inlet, gas-liquid mixing channel, light energy bin pump, light energy bin outlet, light energy bin shower device and lighting equipment,
  • the light energy chamber air inlet and the light energy chamber air outlet are disposed at an upper portion of the light energy storage body,
  • the energy inlet port is disposed in a middle portion of the light energy storage body, and the light energy storage port is disposed at a bottom of the light energy storage body, wherein the gas-liquid mixing channel, the light energy storage device, and the illumination device
  • a pretreatment chamber inspection cover is arranged on the top of the pretreatment chamber body, a pretreatment chamber inspection door is arranged on the side wall of the pretreatment chamber body, a funnel-shaped collecting plate is arranged on the top of the liquid storage device, and a pretreatment is arranged on the side wall of the liquid storage device.
  • Warehouse level and sampling port is arranged on the top of the pretreatment chamber body, a pretreatment chamber inspection door is arranged on the side wall of the pretreatment chamber body, a funnel-shaped collecting plate is arranged on the top of the liquid storage device, and a pretreatment is arranged on the side wall of the liquid storage device.
  • the pretreatment chamber spray device is a pressure spray device disposed on the top of the pretreatment chamber, or a pressure spray device disposed on the top of the pretreatment chamber and a spray disposed on the inner wall of the pretreatment chamber Sprinkler system.
  • the spray droplets of the above-mentioned pressure sprinkler device are uniform wires; the diameter of each drop is 2 to 3 mm, and the interval between each drop is 6 to 10 mm.
  • the pretreatment cartridge body described above is made of a stainless steel metal plate.
  • the pretreatment tank pump described above is an acid-resistant water pump.
  • the light energy storage body is made of stainless steel metal plate, and the inner wall of the light energy storage compartment is coated with an anti-corrosion coating.
  • the light energy storage tank liquid level device is arranged on the side wall of the light energy storage body, and the light energy storage room inspection cover is arranged on the top of the light energy storage body.
  • the illumination device described above is a quartz tube ultraviolet lamp or a visible light lamp.
  • a method for eliminating nitrogen oxides in flue gas characterized in that it comprises the following steps:
  • the nitrogen oxide-containing flue gas is pretreated in a pretreatment vessel, and the pretreatment process removes solid particles having a diameter larger than 10 ⁇ m in the flue gas and oxidizes NO to NO 2 :
  • the flue gas is introduced into the pretreatment vessel, and is sufficiently contacted with the liquid to leave solid particles having a diameter larger than 10 ⁇ m in the solution, and NO is oxidized to NO 2 ;
  • the pretreated flue gas is introduced into the denitration vessel and fully reacted with the oxidant to form nitric acid;
  • the pretreatment vessel and the denitration vessel are first adjusted to a pH of 3 or less using nitric acid, and then an oxidizing agent is added.
  • the oxidizing agent in the pretreatment vessel and the denitration vessel is a mixture of hydrogen peroxide, molybdenum oxide and tungsten oxide, a mixture of magnesium oxide and magnesium hydroxide or ferric oxide, wherein molybdenum oxide, tungsten oxide, magnesium oxide, hydrogen
  • the diameter of the solid particles of magnesium oxide and ferric oxide is less than 20 nm, the volume ratio of hydrogen peroxide to water is 1:18-22, the molar ratio of molybdenum oxide to tungsten oxide is 1:1, and the molar ratio of magnesium oxide and magnesium hydroxide
  • the ratio is 1:1, the ratio of molybdenum oxide to water is 10 mol/L or more, the ratio of tungsten oxide to water is 10 mol/L or more, and the ratio of magnesium oxide to water is 10 mol/L or more.
  • Magnesium hydroxide and water are used.
  • the dosage ratio is 10 mol/L or more, and the ratio of the ferric oxide to water is 20 mol/L or more.
  • the hydrogen peroxide is produced by reacting magnesium peroxide, sodium peroxide or calcium peroxide having a diameter of less than 50 nanometers in water.
  • the liquid in the pretreatment vessel is ejected through a shower device to increase the area and time of contact of the flue gas with the liquid.
  • the gas in the denitration vessel is directly introduced into the liquid to increase the area and time of contact of the flue gas with the liquid, or the liquid is ejected through the sprinkler to increase the area and time of contact of the flue gas with the liquid; or both.
  • the concentration of the oxidant is regularly monitored through the liquid outlet, and the oxidant concentration is stabilized in the solution by adding the oxidant as needed; the consumption of the hydrogen peroxide is collected periodically.
  • the samples were closely monitored and the hydrogen peroxide consumption rate was observed using an iodine/potassium permanganate (I/KMnO4) titration method.
  • the flue gas enters the pretreatment container and enters from the lower part of the container; the direction is horizontal and is at an angle of 40 to 50 degrees with the container wall, so that the flue gas generates a spiral effect when moving upward to increase the time of contact with the liquid. .
  • the liquid flowing out of the pretreatment vessel in the step (1) is transported by a water pump to the spray device of the pretreatment vessel after removing the particulate matter larger than 10 micrometers.
  • the solution after the reaction is derived.
  • hydrogen peroxide used as the oxidant
  • the concentration of the oxidant in the solution is periodically monitored.
  • a new solution containing the oxidant is added to keep the solution component in the container. Stable; the consumption of hydrogen peroxide is periodically collected
  • the set samples were closely monitored and the consumption rate of hydrogen peroxide was observed using an iodine/potassium permanganate (I/KMnO4) titration method.
  • the solution in the step (2) is transported by a water pump through a pipe to a shower device of the denitration vessel.
  • a nano-flue gas denitration system characterized in that it is composed of a pretreatment chamber and a denitration chamber; an output end of the pretreatment chamber is connected to an input end of the denitration chamber;
  • the pretreatment bin includes a pretreatment bin body, a pretreatment bin sprinkler system, a pretreatment bin inlet, a pretreatment bin pump, a reservoir, a pretreatment bin outlet, a pretreatment bin inlet, and Pre-processing the gas outlet of the warehouse;
  • the bottom of the pre-treatment silo body is a liquid storage device, and the liquid outlet of the pre-treatment chamber is disposed at the liquid storage device, the air inlet of the pre-treatment chamber, the liquid inlet of the pre-treatment chamber, and the pre-treatment
  • the treatment chamber outlet is disposed on the pretreatment bin body above the liquid storage device, and the pretreatment chamber outlet port is above the inlet port of the pretreatment chamber, and the pretreatment chamber spraying system is disposed in the pretreatment bin body.
  • the pre-treatment tank pump is connected to the output end of the accumulator and the input end of the pre-treatment tank sprinkler system through a pipeline;
  • the denitration bin comprises a denitration bin body, a denitration bin outlet, a denitration bin sprinkler system, a denitration bin inlet, a denitration bin inlet, a gas-liquid mixing channel, a denitration bin outlet, and a denitration tank pump;
  • the denitration tank inlet port and the denitration tank outlet port are disposed at an upper portion of the denitration bin body;
  • the denitration bin inlet port is disposed at a middle portion of the denitration bin body;
  • the denitration bin outlet port is disposed in the denitration bin body
  • the gas-liquid mixing channel and the denitration chamber spraying system are located in the denitration bin;
  • the input end of the gas-liquid mixing channel is connected to the denitration port inlet, and the output end is placed in the liquid in the denitration bin;
  • the pump is connected to the output of the bottom of the denitration bin and the input of the denitration sprinkler system through
  • An inspection cover is arranged on the top of the pre-treatment silo body, an inspection door is arranged on the side wall of the storage body, a funnel-shaped collecting plate is arranged on the top of the liquid storage device, and a pre-treatment tank liquid level device and a sampling port are arranged on the side wall of the liquid storage device.
  • the pretreatment chamber sprinkling system is a pressure sprinkler device disposed on the top of the pretreatment bin, or a pressure sprinkler disposed on the top of the pretreatment bin and disposed on the inner wall of the pretreatment bin Spray sprinkler.
  • the spray droplets of the pressurized spray device are uniform wires; each drop has a diameter of 2 to 3 mm, and each drop is separated by 6 to 10 mm.
  • the pretreatment bin body is made of a stainless steel metal plate.
  • the pretreatment tank pump is an acid resistant water pump.
  • a denitration tank liquid level device is arranged on the side wall of the denitration bin body, and an inspection cover is arranged on the top of the denitration bin body.
  • the gas-liquid mixing channel comprises three medium-sized gas-liquid mixing channels and three small gas-liquid mixing channels, or five large mixing channels.
  • the denitration bin body is made of a stainless steel metal plate.
  • the oxidizing agent is hydrogen peroxide, a mixture of molybdenum oxide and tungsten oxide, a mixture of magnesium oxide and magnesium hydroxide or ferric oxide, wherein molybdenum oxide, tungsten oxide, magnesium oxide, magnesium hydroxide and ferric oxide solids
  • the diameter of the particles is less than 20 nm, the volume ratio of hydrogen peroxide to water is 1:18-22, the molar ratio of molybdenum oxide to tungsten oxide is 1:1, the molar ratio of magnesium oxide to magnesium hydroxide is 1:1, molybdenum oxide
  • the ratio of use of water to water is 10 mol/L or more, the ratio of tungsten oxide to water is 10 mol/L or more, the ratio of magnesium oxide to water is 10 mol/L or more, and the ratio of magnesium hydroxide to water is 10 mol/L or more.
  • the ratio of the amount of ferric oxide to water is 20 mol/L or more.
  • the hydrogen peroxide is produced by reacting magnesium peroxide, sodium peroxide or calcium peroxide having a diameter of less than 50 nanometers in water.
  • the oxidizing agent is hydrogen peroxide
  • the consumption of hydrogen peroxide is closely monitored by sample collection per hour, and the consumption rate of peroxide is observed using an iodine/potassium permanganate (I/KMnO4) titration method.
  • I/KMnO4 iodine/potassium permanganate
  • HNO 3 reacts with H 2 O and produces intermediate HNO 2 ; this intermediate is further reacted with H 2 O 2 to form the final product: HNO 3 plus H 2 O.
  • the oxidizing agent is hydrogen peroxide, a mixture of molybdenum oxide and tungsten oxide, a mixture of magnesium oxide and magnesium hydroxide or ferric oxide, wherein molybdenum oxide, tungsten oxide, magnesium oxide, magnesium hydroxide and ferric oxide solids
  • the diameter of the particles is less than 20 nm, the volume ratio of hydrogen peroxide to water is 1:18-22, the molar ratio of molybdenum oxide to tungsten oxide is 1:1, the molar ratio of magnesium oxide to magnesium hydroxide is 1:1, molybdenum oxide
  • the ratio of use of water to water is 10 mol/L or more, the ratio of tungsten oxide to water is 10 mol/L or more, the ratio of magnesium oxide to water is 10 mol/L or more, and the ratio of magnesium hydroxide to water is 10 mol/L or more.
  • the ratio of the amount of ferric oxide to water is 20 mol/L or more.
  • the hydrogen peroxide is produced by reacting magnesium peroxide, sodium peroxide or calcium peroxide having a diameter of less than 50 nanometers in water.
  • the oxidizing agent is hydrogen peroxide
  • the consumption of hydrogen peroxide is closely monitored by sample collection per hour, and the consumption rate of peroxide is observed using an iodine/potassium permanganate (I/KMnO4) titration method.
  • I/KMnO4 iodine/potassium permanganate
  • a method of eliminating heavy metals in smoke which comprises the following steps:
  • the nanomaterial reacts with heavy metals in the flue gas to capture heavy metals in the flue gas.
  • the method of embedding the nano material on the fiber matrix is:
  • the adhesive is attached to the fibrous substrate; the nanomaterial is sprayed onto the fabric by a nanosprayer before the adhesive is dried; after the nanomaterial is sprayed, it is allowed to stand at room temperature for at least 24 hours to fully cure.
  • the adhesive is selected REN50 to 80 ( Silicone resin solution, epoxy resin or methyl epoxy.
  • the REN series is an adhesive that can be used in any heat resistant application and has been used in many manufacturing industries, such as automotive and aircraft manufacturing; it can withstand temperatures up to 650 degrees without losing adhesion, and Also provides good corrosion resistance; The REN series usually dries after 200 hours of baking in one hour.
  • the method of inserting the nano material into the fiber matrix is: directly loading the nano material on the fiber matrix: suspending the nano material in a volatile solvent; soaking the fiber matrix in the nano material suspension, or passing the nano material through The sprayer is sprayed on the fibrous substrate; the fibrous substrate to which the nanomaterial is attached is subjected to heat treatment in a 500 degree oven for 3 to 4 hours; after the solution is evaporated, the nanowires and nanoparticles will be interwoven with the fiber web; cooling After room temperature, the nanomaterial will be safely locked in the fiber matrix.
  • the volatile solvent is ethanol or ethyl acetate.
  • the nanomaterial is a gold nanoparticle attached to a nanocarrier particle, a WS 2 nanoparticle attached to a nanocarrier particle, or a CdS nanowire.
  • the method for synthesizing the gold nanoparticles attached to the nanocarrier particles is:
  • HAuCl 4 2 to 4 M/L of HAuCl 4 is dissolved in distilled water; after sieving, 100 to 200 ⁇ m diameter of TiO 2 or r-Al 2 O 3 or SiO 2 is used as a nanocarrier, added to the gold solution; the solution is heated to 70 Celsius, then let it age (need to be stored for a period of time to obtain the desired quality) 20 to 40 minutes; cool to 40 degrees Celsius, add 30% NH3; filter and wash with water, dry in a 100 degree oven for at least 12 hours And then calcined in air at 350 ° C for at least 4 hours; to obtain Au nanoparticles attached to the nano-carrier TiO 2 or r-Al 2 O 3 or SiO 2 particles, namely Au-TiO 2 gold-titanium dioxide, Au-SiO 2 gold - silica or Au-Al 2 O 3 ;
  • DP deposition loading
  • the mass percentage of Au in the Au-TiO 2 gold-titanium dioxide, Au-SiO 2 gold-silica or Au-Al 2 O 3 is less than 5%.
  • Au-TiO 2 gold-titanium dioxide has a better catalytic activity than Au-SiO 2 gold-silica and Au-Al 2 O 3 .
  • Gold exhibits high catalytic activity under low temperature (not less than -20 ° C) under humidification (humidity > 100%), and exhibits superior stability under the condition of gold nanoparticle deposition in transition metal oxide carrier. Its catalytic properties will be improved when it is above.
  • the WS 2 nanoparticles were baked for 2 hours in a 400 ° C nitrogen-filled Muffle Shanghai before use;
  • the synthesis method of the CdS nanowire is:
  • the fiber matrix is meta-aramid, meta-aramid, polytetrafluoroethylene PTFE, polyphenylene sulfide PPS, polybenzimidazole PBI, polyimide floyimide, RY805 fiber (GE Energy BHA Group) and PCI02 fiber (GE) Energy BHA Group), or a non-woven fabric, which is a synthetic fiber such as nylon 66, polyester, or polyurethane.
  • These synthetic fibers all have a temperature range of continuous operation from 190 ° to 315 °; the main feature of high-performance fibers is that their unique physical properties can reach special The technical function of the chemical reaction; some of the most prominent properties of these fibers are their tensile strength, operating temperature, limiting oxygen index (LOI), and chemical resistance.
  • the LOI is the oxygen content required to support combustion in the atmosphere; fibers with an LOI greater than 25 are so-called flame retardants and must have at least 25% oxygen to burn them.
  • the heavy metal is mercury or lead.
  • the nano material is a gold nanoparticle, and the gold (Au) element has high affinity with the heavy metal element mercury (Hg°) and (lead Pb°), and can form a chemical bond to capture a heavy metal element;
  • the nano material is WS 2 nanoparticles or CdS nanowires capture heavy metal elements by MLCT (metal ligand charge transfer) principle: WS 2 and CdS are chemically related between ionic and covalent compounds; metals (W and Cd)
  • the characteristic is like Lewis acid, and the non-metallic inorganic ligand (S) behaves like a Lewis base; the electron concentrates on the inorganic ligand, causing some of the inorganic ligand to become a negative charge; the inorganic ligand attracts heavy metals
  • the elements, WS 2 and CdS attract lead ions, elemental lead and elemental mercury in the flue gas.
  • the mercury in the heavy metal captured by the fiber matrix embedded with the nano material in the step (3) is eluted by the liquid immersed in the filter by the liquid synthesized from the mercaptopropionic acid and the 2,6-pyridinedicarboxylic acid; the captured The metal lead (Pb°) in the heavy metal is converted to lead hydroxide Pb(OH) 2 ; the lead hydroxide can be easily washed out with dilute acetic acid or dilute nitric acid.
  • the chelating ligand of mercaptopropionic acid and 2,6-pyridinedicarboxylic acid has a relatively high degree of binding to mercury, and the binding constants are log K 10.1 and 20.2, respectively; therefore, we can clean the non-woven fiber filter And recycled; the mercury that has been removed can be extracted from the cleaning solution and disposed of properly.
  • the heavy metal-containing flue gas is pretreated by passing into the reaction vessel before being inserted into the fiber matrix of the nano material; the reaction vessel is filled with a solution containing Fenton's reagent and using ⁇ -hydroxy acid to adjust the pH to 3 or less.
  • the Fenton reagent comprises a metal system capable of undergoing a photo-assisted Fenton reaction and hydrogen peroxide; the solution is provided with a mass percentage of hydrogen peroxide to water of 3% to 5%; a molar ratio of hydrogen peroxide to metal system is greater than Equal to 10:1;
  • an illumination system is provided in the reaction vessel;
  • the flue gas is introduced into the reaction vessel and fully reacted with the Fenton reagent to convert the mercury element into mercury ions;
  • the reaction solution is taken out, and the concentration of the Fenton reagent in the derivatized solution is periodically monitored. According to the monitored condition, a new solution containing Fenton's reagent is added to stabilize the solution component; the purified gas is discharged from the reaction vessel.
  • the metal system is a Fe(II)/F(III) system or a Cu(I)/Cu(II) system; when the metal system is a Fe(II)/F(III) system, the illumination is at a wavelength of 200 nm ⁇ 400 nm ultraviolet light; when the metal system is a Cu(I)/Cu(II) system, the illumination is visible light having a wavelength of 600 nm to 800 nm.
  • the Fe(II)/F(III) system consists of FeSO 4 and Fe 3 O 4 particles having a diameter of less than 20 nm.
  • the Cu(I)/Cu(II) system consists of Cu 2 O and CuSO 4 particles having a diameter of less than 20 nm.
  • the ⁇ -hydroxy acid is glycolic acid, pyruvic acid or lactic acid.
  • the consumption of hydrogen peroxide was closely monitored by periodically collecting samples, and the consumption rate of peroxide was observed using an iodine/potassium permanganate (I/KMnO4) titration method.
  • I/KMnO4 iodine/potassium permanganate
  • the gas in the reaction vessel is directly introduced into the liquid to increase the area and time of contact of the flue gas with the liquid, or the liquid is ejected through the sprinkler to increase the area and time of contact of the flue gas with the liquid; or both.
  • a nano-flue gas de-heavy metal device characterized in that it comprises a fiber matrix embedded with a nano material.
  • the fiber substrate embedded with the nano material is disposed on a centrifugal fan.
  • the fiber matrix embedded with the nano material is attached to the fan blade of the centrifugal fan or disposed between the inclined blades; the inclined blade has an inclination angle of 30-45 degrees.
  • the nanomaterial is a gold nanoparticle attached to a nanocarrier particle, a WS2 nanoparticle attached to a nanocarrier particle, or a CdS nanowire.
  • the fiber matrix is meta-aramid, Meta-aramid, polytetrafluoroethylene PTFE, polyphenylene sulfide PPS, polybenzimidazole PBI, polyimide ployimide, RY805 fiber (GE Energy BHA Group) and PC102 fiber (GE) Energy BHA Group), or a non-woven fabric, which is a synthetic fiber such as nylon 66, polyester, or polyurethane.
  • the centrifugal fan is composed of a frame and a blade, the blade passes, and the blade is connected to the frame through the central shaft and the sleeve and the frame; the frame and the blade are made of nickel-molybdenum alloy (aluminum alloy, stainless steel) Because of its acid resistance at any temperature, for example Alloy (65% Ni, 28.5% Mo, 1.5% Cr, 1.5% Fe, 3% Co, 3% W, 3% Mn, 0.5% Al, 0.2% Ti, 0.1% Si and 0.01% C) is a very Good choice. As previously described, the replaceable and recyclable fiber matrix embedded with nanomaterials will be mounted on the fan blades of the fan.
  • Such nanomaterials embedded in a fiber matrix of nanomaterials are specifically designed to react with heavy metals in the flue gas, especially mercury.
  • heavy metals in the flue gas especially mercury.
  • a typical 300,000 megawatt power plant will only need to change the non-woven fabric 2 to 3 times a year if it uses a little bit of coal.
  • the input end of the nano-flue gas de-heavy metal device is connected to the output end of the light energy bin, and the light energy bin comprises a light energy bin body, a light energy bin air inlet, a light energy bin air outlet, a light energy bin liquid inlet, a gas-liquid mixing channel, a light energy bin pump, a light energy bin outlet, a light energy bin shower device, and an illumination device, wherein the light energy bin air inlet and the light energy bin air outlet are disposed at an upper portion of the light energy storage body,
  • the light energy storage port is disposed in a middle portion of the light energy storage body, the light energy storage outlet is disposed at a bottom of the light energy storage body, the gas-liquid mixing channel, the light energy storage device, and the illumination device Located in the light energy bin body, the input end of the gas-liquid mixing channel is connected to the light energy bin air inlet, and the output end of the gas-liquid mixing channel is located at a position near the bottom of the light energy bin body, and the light energy bin pump is
  • the light energy bin body is made of stainless steel metal plate, and the inner wall of the light energy bin is coated with an anti-corrosion coating.
  • a light energy chamber liquid level device is arranged on the sidewall of the light energy storage body, and a light energy storage room inspection cover is arranged on the top of the light energy storage body.
  • the illumination device is a quartz tube ultraviolet lamp or a visible light lamp.
  • the invention can effectively purify exhaust gas, convert nitrogen oxide into nitric acid, convert sulfur dioxide into sulfuric acid, and recover it. Therefore, the benefit of recycling of the invention far exceeds the operating cost of the device itself, and the user can obtain more Profit
  • the invention can be incorporated into existing systems of a coal fired power plant to increase its effectiveness or completely replace the original old system;
  • the invention can be applied to other industrial markets, including cement plants, steel plants, municipal waste combustion plants, medical waste combustion plants, chlorine gas plants, pulp and paper production plants, etc.;
  • the invention has small footprint and simple transformation, and the manufacturing and running costs are less than about 50% of the current RSC denitration technology. Under the premise of strictly following the operating procedures, the invention can be used for 15 to 20 years without engineering modification, and can be repaired and maintained in synchronization with the operating coal-fired boiler.
  • the advantage of nanomaterials is that the surface area is large, and the electron layers between molecules are transmitted very rapidly, which can accelerate the chemical reaction rate exponentially; especially in the field of optics, the smaller the diameter of the nanometer, the more the activity and momentum of light energy Big. Therefore, in order to make any chemical reaction of the flue gas with such a fast flow rate, the advantages of nanotechnology are undeniable.
  • the self-oxidation-reduction reaction is spontaneous and has the characteristics of a catalyst, so it is not necessary to add it frequently, and the amount is small, which is very economical.
  • the desulfurization benefit of the invention can reach 99.99%, and the manufacturing and operation are about 50% of the current desulfurization technology, and the removal problem of PM2.5 is solved without any additional cost.
  • the equipment occupies a small area and is easy to retrofit.
  • the invention is based on the principle of photo-assisted Fenton reaction and has achieved great success in eliminating SO 2 and soot.
  • the apparatus of the present invention is a successful industrial plant based on the principle of AOPs-Fenton reaction.
  • the method of the present invention is a more economical and efficient way to control air pollution without any additional manufacturing and operating costs.
  • Test report for purifying automobile exhaust gas according to the present invention:
  • Test report for purifying boiler exhaust gas according to the present invention (test site is a boiler room):
  • Test report of the invention for purifying industrial waste gas (test site is a power plant and a steel plant)
  • FIG. 1 is a schematic view showing the overall structure of a system for purifying polluted air according to the present invention.
  • FIG. 2 is a schematic structural view of a pretreatment chamber in a system for purifying polluted air according to the present invention, wherein FIG. 2-1 is a structural schematic view of the first embodiment, and FIG. 2-2 is a schematic structural view of the second embodiment.
  • FIG. 3 is a schematic structural view of a denitration bin in a system for purifying polluted air according to the present invention, wherein FIG. 3-1 is a structural schematic view of the first embodiment, and FIG. 3-2 is a schematic structural view of the second embodiment.
  • FIG. 4 is a schematic view showing the structure of a light energy storage chamber in a desulfurization and dedusting chamber in a system for purifying polluted air according to the present invention.
  • FIG. 5 is a schematic view showing the structure of a light energy bin and a purification bin in a desulfurization and dedusting bin in a system for purifying polluted air according to the present invention.
  • 6 is a schematic structural view of a heavy gold filtering device in a desulfurization and dedusting bin in a system for purifying polluted air according to the present invention, wherein 6-1 is a structural schematic view of the first embodiment, and 6-2 is a first embodiment. Schematic diagram of the structure, 6-3 is an exploded view of the first embodiment, and 6-4 is a schematic structural view of the second embodiment.
  • Figure 7 is a flow chart showing the working method of a system for purifying polluted air according to the present invention.
  • Figure 8 is a schematic diagram of the theory of mass transfer.
  • Figure 9 is a schematic diagram of the reaction diffusion plane geometry of the permeation theory.
  • Figure 10-1 to Figure 10-4 are diagrams of the interfacial reaction process in liquid gas.
  • Figure 10-1 shows that there is no barrier between gas and liquid conversion, the gas passes directly and diffuses into the liquid, and the reaction is instantaneous.
  • Figure 10-2 shows that once passing through the middle interface of the gas and liquid, the gaseous reactant will be in the gas. The initial concentration is lowered and the reaction rate depends on the diffusion time of the gas to the liquid.
  • Figure 10-3 shows that the gas molecules cannot pass through the interface between the gas and the liquid and diffuse into the liquid. Through this process, the reactants are in the liquid. The concentration of the body is zero.
  • Figure 10-4 shows the most efficient way of interacting gas and liquid. The concentration of gas molecules decreases at the intermediate interface and increases with concentration in the liquid. )
  • Figure 11-1 is a plan view of a flat flow gas-mixed flow liquid.
  • Figure 11-2 is a design diagram of a mixed flow gas-batch reaction liquid.
  • Figures 2-1, 2-2, 4, and 5 are labeled: 1-1 for the pretreatment chamber inspection cover, 1-2 for the pretreatment chamber sprinkler, 1-3 for the funnel-shaped collection plate, 1-4 Pre-treatment tank inlet, 1-5 is sampling port, 1-6 is pre-treatment tank pump, 1-7 is reservoir, 1-8 is pre-treatment tank outlet, 1-9 is pre-treatment tank Liquid level device, 1-10 is the pre-treatment tank inlet, 1-11 is the pre-treatment warehouse inspection door, 1-12 is the pre-treatment tank outlet, 1-13 is the pre-treatment chamber body, 2-1 is the light energy The outlet of the warehouse, 2-2 is the inlet of the light energy bin, 2-3 is the inlet of the light energy bin, 2-4 is the gas-liquid mixing channel, 2-5 is the light energy bin pump, 2-6 is the light Can the warehouse outlet, 2-7 is the light energy tank liquid level device, 2-8 is the light energy chamber shower device, 2-9 is the light energy warehouse inspection cover, 2-10 illumination equipment, 2-11 is light energy
  • the warehouse body 3-1 is the pur
  • the labels are: 1-1 is the access cover, 1-2 is the pre-treatment tank sprinkler system, 1-3 is the funnel-shaped collecting plate, 1-4 is the pre-treatment tank inlet, 1-5 is the sampling port , 1-6 is the pre-treatment tank pump, 1-7 is the accumulator, 1-8 is the pre-treatment tank outlet, 1-9 is the pre-treatment tank level, 1-10 is the pre-treatment tank inlet Port, 1-11 is the inspection door, 1-12 is the pre-treatment tank outlet, 1-13 is the pre-treatment tank body, 2-1 is the denitration tank outlet, 2-2 is the denitration tank sprinkler system, 2- 3 is the denitration tank inlet, 2-4 is the denitration tank inlet, 2-5 is the gas-liquid mixing channel, 2-6 is the denitration tank level, 2-7 is the denitration tank outlet, 2-8 For the denitration tank pump, 2-9 for the inspection cover, 2-10 for the denitration bin.
  • Figures 6-1, 6-2, 6-3, and 6-4 are: 1-1 for the frame, 1-2 for the fan blade, 1-3 for the central axis, and 1-4 for the sleeve, 1- 5 is a fiber matrix embedded with a nano material, and 1-6 is a clip.
  • PA molar ratio of reactant A
  • [A] int initial concentration of reaction A
  • [A] bulk concentration of reactant A in the bulk of the liquid.
  • PA molar coefficient of reactant A
  • PAi initial molar ratio of reactant A
  • [A]* concentration of reactant A at the intermediate interface
  • [A] b concentration of reactant A in the bulk of the liquid
  • x distance at which the reactant A diffuses in the film.
  • Gas in is the gas inlet
  • Gas out is the gas outlet
  • Liquid in is the liquid inlet
  • Liquid out is the liquid outlet
  • F L is the direction in which the liquid flows
  • F G is the direction in which the gas flows
  • P a0 is the reaction.
  • the initial concentration of the substance, P af is the final concentration of the reactant, [B] b0 is the initial concentration of the liquid body, and [B] bf is the final concentration of the liquid body.
  • Gas in is the gas inlet
  • Gas out is the gas outlet
  • F G is the direction in which the gas flows
  • P a0 is the initial concentration of the reactant
  • P af is the final concentration of the reactant.
  • Embodiment 1 A system for purifying polluted air (see Figs. 1, 2-1, 3-1, 4, 6-1, 6-2, 6-3), characterized in that it is an induced draft fan a, circulating Pump, pretreatment chamber, denitration bin, desulfurization and dedusting bin, maintenance cover, heavy metal filter device, induced draft fan b, chemical reagent replenishing tank a, acid purification treatment device, chemical reagent replenishing tank b, metering pump, chemical reagent refill tank c
  • the pollutant gas source enters the pretreatment chamber 3 through the induced draft fan 1 , and the output end of the pretreatment chamber is connected to the input end of the denitration tank, and the output end of the denitration tank is connected to the input end of the desulfurization tank, and the output of the desulfurization dedusting bin is output.
  • the end is connected to the input end of the heavy metal filtering device, the output end of the heavy metal filtering device is connected to the induced draft fan, and the induced draft fan discharges the purified gas;
  • the desulfurization and dedusting bin is connected with a chemical reagent replenishing tank, a pretreatment bin, a denitration bin and a desulfurization desulfurization
  • the liquid outlets of the dust bins are respectively connected to the acid purification treatment device, and the pretreatment tank and the denitration tank are respectively connected to the chemical reagent supplement tank a through the pipeline, and the pretreatment tank, the denitration tank and the desulfurization dust removal bin are connected to the chemical reagent replenishing tank b through the metering pump.
  • Pretreatment bin loading There is a circulation pump; the acid purification treatment device is composed of a heating capacity collecting tank, a distillation device and a nitric acid cooling tank, the output end of the collecting tank is connected to the input end of the distillation device, and the output end of the distillation device is connected to the input of the nitric acid cooling tank At the end, the output end of the nitric acid cooling tank flows out of the treated nitric acid, and the output end of the collecting tank flows out of the treated sulfuric acid.
  • the acid purification treatment device is composed of a heating capacity collecting tank, a distillation device and a nitric acid cooling tank, the output end of the collecting tank is connected to the input end of the distillation device, and the output end of the distillation device is connected to the input of the nitric acid cooling tank At the end, the output end of the nitric acid cooling tank flows out of the treated nitric acid, and the output end of the collecting tank flows out of the treated sulfuric acid.
  • the pretreatment bin includes the pretreatment bin body, the pretreatment bin sprinkler device, the pretreatment bin air inlet, the pretreatment bin pump, the accumulator, the pretreatment bin outlet, the pretreatment bin inlet and Pre-processing the gas outlet of the warehouse, the bottom of the pre-treatment chamber body is a liquid storage device, the liquid outlet of the pre-treatment chamber is disposed at the liquid storage device, the air inlet of the pre-treatment chamber, the liquid inlet of the pre-treatment chamber and the pretreatment Warehouse outlet setting On the pretreatment chamber body above the liquid storage device, the pretreatment chamber air outlet is above the air inlet of the pretreatment chamber, and the pretreatment chamber spraying device is disposed in the pretreatment chamber, and the pretreatment chamber pump is passed through
  • the pipe is connected to the output end of the liquid storage device and the input end of the pretreatment chamber sprinkling device; the pretreatment chamber sprinkling device is a pressure sprinkler device disposed on the top of the pretreatment bin body and disposed on the inner wall of the pretreatment bin Spray sprinkler
  • the denitration bin includes a denitration bin body, a denitration bin outlet, a denitration bin sprinkler system, a denitration bin inlet, a denitration bin inlet, a gas-liquid mixing channel, a denitration bin outlet, and a denitration bin pump;
  • the denitration tank inlet port and the denitration chamber outlet port are disposed at an upper portion of the denitration bin body;
  • the denitration bin inlet port is disposed at a middle portion of the denitration bin body;
  • the denitration bin outlet port is disposed at the denitration bin body
  • the gas-liquid mixing channel and the denitration chamber spray system are located in the denitration bin;
  • the input end of the gas-liquid mixing channel is connected to the denitration port inlet, and the output end is placed in the liquid in the denitration bin;
  • the warehouse pump is connected to the output of the bottom of the denitration bin and the input of the denitration sprinkler system through a pipe.
  • the desulfurization and dedusting bin comprises a light energy bin
  • the light energy bin comprises a light energy bin body, a light energy bin air inlet, a light energy bin air outlet, a light energy bin liquid inlet, a gas-liquid mixing channel, and a light energy.
  • a pumping water pump a light energy storage port, a light energy storage device, and an illumination device
  • the light energy storage port and the light energy storage port are disposed at an upper portion of the light energy storage body, and the light energy storage chamber is filled with liquid
  • the mouth is disposed in the middle of the light energy storage body
  • the liquid energy storage port is disposed at the bottom of the light energy storage body
  • the gas-liquid mixing channel, the light energy storage device and the illumination device are located in the light energy storage body
  • the gas is
  • the input end of the liquid mixing channel is connected to the light inlet of the light energy bin
  • the output end of the gas-liquid mixing channel is located at a position near the bottom of the light energy bin
  • the light pumping pump is connected to the output of the bottom of the light energy bin through the pipe.
  • the input of the end and the light energy tank sprinkler see Figure 4).
  • the heavy metal filtering device described above includes a fibrous matrix embedded with a nano material.
  • the fiber substrate embedded with the nano material is attached to the fan blade of the centrifugal fan, and the inclined blade has an inclination angle of 30-45 degrees. (See Figures 6-1, 6-2, 6-3).
  • a method of operating a system for purifying polluted air described above comprising the steps of:
  • the Fenton reagent containing a metal system capable of undergoing photo-assisted Fenton reaction and Hydrogen peroxide; the solution is configured with a mass percentage of hydrogen peroxide to water of 3% to 5%; a hydrogen peroxide to metal system molar ratio of 10:1 or more; according to the light absorption peak of the metal system, is set in the light energy chamber Lighting system
  • the polluted air enters the pretreatment chamber through the induced draft fan and is in full contact with the liquid in the chamber.
  • the pretreatment process removes solid particles larger than 10 microns in diameter and oxidizes NO to NO 2 , carbon.
  • the particles are oxidized to carbon monoxide, and the sulfur dioxide is oxidized to sulfur trioxide; the solution containing solid particles and nitric acid is flowed from the pretreatment vessel into the acid purification treatment device, and the purified gas is discharged into the pretreatment chamber;
  • the work of the denitration bin the gas purified by the pretreatment bin enters the denitration bin, and the nitrogen oxide reacts with the oxidant to form nitric acid.
  • the solution containing nitric acid flows into the acid purification treatment device from the denitration bin, and the purified gas is discharged into the denitration bin;
  • the mixed liquid containing sulfuric acid and nitric acid flowing out from the pretreatment tank, the denitration tank, and the desulfurization dedusting bin flows into the collection tank in the acid purification treatment device, and the heating device with the collection tank is heated
  • the mixed liquid vaporizes the nitric acid, the heating temperature is greater than or equal to 122 ° C, and then purified by distillation and refining.
  • the purified nitric acid is cooled and collected in a nitric acid cooling tank for recovery, and the sulfuric acid will remain in the collecting tank for recovery;
  • the purified gas discharged from the heavy metal filtering device is discharged outside the system through the induced draft fan.
  • Embodiment 2 A system for purifying polluted air (see Figs. 1, 2-2, 3-2, 5, 6-4), characterized in that it is composed of an induced draft fan a, a circulation pump, a pretreatment chamber, and a denitration tank. , desulfurization and dedusting bin, maintenance cover, heavy metal filter device, induced draft fan b, chemical reagent replenishing tank a, acid purification treatment device, chemical reagent replenishing tank b, metering pump, chemical reagent replenishing tank c;
  • the induced draft fan 1 enters the pretreatment chamber 3, and the output end of the pretreatment chamber is connected to the input end of the denitration chamber.
  • the output end of the denitration chamber is connected to the input end of the desulfurization chamber, and the output end of the desulfurization dedusting chamber is connected to the input end of the heavy metal filter device.
  • the output end of the heavy metal filter device is connected to the induced draft fan, and the induced draft fan discharges the purified gas;
  • the chemical desulfurization tank is connected with the chemical reagent replenishing tank, and the liquid outlets of the pretreatment bin, the denitration bin and the desulfurization dedusting bin are respectively connected.
  • the acid purification treatment device, the pretreatment chamber and the denitration tank are respectively connected with the chemical reagent replenishing tank a through the pipeline, the pretreatment tank, the denitration tank and the desulfurization dedusting bin are connected to the chemical reagent replenishing tank b through the metering pump, and the pretreatment tank is equipped with a circulation
  • the acid purification treatment device is composed of a heating capacity collecting tank, a distillation device and a nitric acid cooling tank, and an output end of the collecting tank is connected to an input end of the distillation device, and an output end of the distillation device is connected to an input end of the nitric acid cooling tank, the nitric acid
  • the treated end of the cooling tank flows out of the treated nitric acid
  • the output end of the collecting tank flows out of the treated sulfuric acid.
  • the pretreatment bin includes the pretreatment bin body, the pretreatment bin sprinkler device, the pretreatment bin air inlet, the pretreatment bin pump, the accumulator, the pretreatment bin outlet, the pretreatment bin inlet and Pre-processing the gas outlet of the warehouse, the bottom of the pre-treatment chamber body is a liquid storage device, the liquid outlet of the pre-treatment chamber is disposed at the liquid storage device, the air inlet of the pre-treatment chamber, the liquid inlet of the pre-treatment chamber and the pretreatment
  • the warehouse outlet is disposed on the pretreatment chamber above the liquid storage device, the pretreatment chamber outlet is above the inlet of the pretreatment chamber, and the pretreatment chamber spraying device is disposed in the pretreatment chamber, the pretreatment
  • the warehouse pump is connected to the output end of the liquid storage device and the input end of the pretreatment chamber spraying device through a pipeline; the pretreatment chamber spraying device is a pressure spraying device disposed on the top of the pretreatment chamber body (see FIG. 2) 2).
  • the denitration bin includes a denitration bin body, a denitration bin outlet, a denitration bin sprinkler system, a denitration bin inlet, a denitration bin inlet, a gas-liquid mixing channel, a denitration bin outlet, and a denitration bin pump;
  • the denitration tank inlet port and the denitration chamber outlet port are disposed at an upper portion of the denitration bin body;
  • the denitration bin inlet port is disposed at a middle portion of the denitration bin body;
  • the denitration bin outlet port is disposed at the denitration bin body
  • the gas-liquid mixing channel and the denitration chamber spray system are located in the denitration bin; the input end of the gas-liquid mixing channel is connected to the denitration port inlet, and the output end is placed in the liquid in the denitration bin;
  • the warehouse pump is connected to the output of the bottom of the denitration bin and the input of the denitration sprinkler system through a pipe.
  • the desulfurization and dedusting bin comprises a light energy bin
  • the light energy bin comprises a light energy bin body, a light energy bin air inlet, a light energy bin air outlet, a light energy bin liquid inlet, a gas-liquid mixing channel, and a light energy.
  • a pumping water pump a light energy storage port, a light energy storage device, and an illumination device
  • the light energy storage port and the light energy storage port are disposed at an upper portion of the light energy storage body, and the light energy storage chamber is filled with liquid
  • the mouth is disposed in the middle of the light energy storage body
  • the liquid energy storage port is disposed at the bottom of the light energy storage body
  • the gas-liquid mixing channel, the light energy storage device and the illumination device are located in the light energy storage body
  • the gas is
  • the input end of the liquid mixing channel is connected to the light inlet of the light energy bin
  • the output end of the gas-liquid mixing channel is located at a position near the bottom of the light energy bin
  • the light pumping pump is connected to the output of the bottom of the light energy bin through the pipe.
  • the purifying chamber includes a purifying chamber body, a purifying plate, a liquid flow control plug and a purifying chamber liquid outlet, wherein the purifying chamber body is provided with a light energy cartridge body, and the light energy chamber liquid outlet extends into the purifying chamber body
  • the liquid flow control plug is installed on the liquid outlet of the light energy bin, the liquid outlet of the light energy bin is located above the purifying plate, the purifying plate is fixed in the purifying chamber, and the liquid outlet of the purifying chamber is set in the purifying chamber The bottom of the body. (See Figure 5)
  • the heavy metal filtering device described above includes a fibrous matrix embedded with a nano material.
  • the fiber substrate embedded with the nano material is disposed between the inclined blades, and the inclined blade has an inclination angle of 30-45 degrees. (see 6-4)
  • a method of operating a system for purifying polluted air described above comprising the steps of:
  • the Fenton reagent containing a metal system capable of undergoing photo-assisted Fenton reaction and Hydrogen peroxide; the solution is configured with a mass percentage of hydrogen peroxide to water of 3% to 5%; a hydrogen peroxide to metal system molar ratio of 10:1 or more; according to the light absorption peak of the metal system, is set in the light energy chamber Lighting system
  • the polluted air enters the pretreatment chamber through the induced draft fan and is in full contact with the liquid in the chamber.
  • the pretreatment process removes solid particles larger than 10 microns in diameter and oxidizes NO to NO 2 , carbon.
  • the particles are oxidized to carbon monoxide, and the sulfur dioxide is oxidized to sulfur trioxide; the solution containing solid particles and nitric acid is flowed from the pretreatment vessel into the acid purification treatment device, and the purified gas is discharged into the pretreatment chamber;
  • the work of the denitration bin the gas purified by the pretreatment bin enters the denitration bin, and the nitrogen oxide reacts with the oxidant to form nitric acid.
  • the solution containing nitric acid flows into the acid purification treatment device from the denitration bin, and the purified gas is discharged into the denitration bin;
  • the mixed liquid containing sulfuric acid and nitric acid flowing out from the pretreatment tank, the denitration tank, and the desulfurization dedusting bin flows into the collection tank in the acid purification treatment device, and the heating device with the collection tank is heated
  • the mixed liquid vaporizes the nitric acid, the heating temperature is greater than or equal to 122 ° C, and then purified by distillation and refining.
  • the purified nitric acid is cooled and collected in a nitric acid cooling tank for recovery, and the sulfuric acid will remain in the collecting tank for recovery;
  • the purified gas discharged from the heavy metal filtering device is discharged outside the system through the induced draft fan.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treating Waste Gases (AREA)

Abstract

本发明提供一种净化污染空气的系统及其工作方法,本系统具有一个先进的过滤系统来消除废气里的有毒排放物。利用新的工艺与技术来捕捉从污染源或燃煤锅炉的烟囱排放出的有毒物质,利用纳米技术和先进的化学反应清除废气中所有的污染物,应用了气体与液体之间的相互作用以及气体与固体的相互作用的原理,最终排放出清洁气体,并回收反应过程中产生的硫酸和硝酸,使过滤回收系统成为一个良性循环。本系统成本低廉,利于推广使用。

Description

一种净化污染空气的系统及其工作方法 (一)技术领域:
本发明涉及一种净化系统及其工作方法,特别是一种净化污染空气的系统及其工作方法。
(二)背景技术:
在中国经济持续快速发展的形式下,能源消耗需求急剧上升;仅以煤炭为例,改革开发以来每年煤炭的需求递增量大约在8~12%,以此而产生的最大垢病就是严重的空气污染。
今日的中国是世界上大气污染最严重的国家之一(仅次于印度)。前不久在中国国务院的例行会议上专项提出‘消除民众心肺之患’的主题;把治理污染与民态、民生结合起来,下决心摒除污染大国的帽子。中国政府决定不但要在经济上腾飞还要在环境上为国家、人民、后代、乃至世界做出积极的贡献。在中国建设的道路上,新型清洁能源受到储量及国际政治的限制而无法成为国内工业需求主要的替代动能。因此、煤炭在长时间内仍会是中国主要的动能能源。随着工业需求不断增展意味着大气污染将会更加严重,有效减轻与防治污染将永远是个繁重的课题。
众所周知,严重的大气污染会带给地球上所有的生物不可逆转的灾难,而污染的空气主要来源于含有大量有毒有害物质的工业烟尘。这些有害烟尘绝大多数是由煤炭燃烧过程中所产生的。然而、世界上没有绝对的清洁煤炭,只有因地质条件的不同而产生的有毒物质含量比重不同的煤炭资源。譬如,中国北部产的煤是高品质的低硫煤,含硫量只有1%~2%;而云南、贵州与内蒙所产的煤其硫含量可以达到5%以上。据测算:中国工业烟尘中的二氧化硫年排放量高达两千万吨以上。在113个大气污染重点治理的城市中,有40个城市二氧化硫排放量超过国家制定的二级标准线,39个城市甚至劣于国家三级标准线!由空气污染引发的酸雨污染已经肆虐中国三分之一的国土。工业进程增速越快与之同行的污染指数将会越高,有关部门对环境的控制会越加艰难。
近20年来中国对烟尘脱硫开展了不间断的技术研究。以烟气脱硫技术来控制二氧化硫的污染是国内环保应用领域里的一个重要环节。就以低 硫煤(含硫量1%)来计算:燃一吨煤会产生16公斤(1600x 1%,公斤)的二氧化硫。一个中型的燃煤锅炉每天大约燃烧150~200吨的煤;也就是说每天会产生2.4~3.2吨的二氧化硫。目前的脱硫技术包括煤炭混配石灰或添加剂;炉内直接喷钙和沸腾床石灰石干法脱硫;以及钙碱法、氨碱法、钠碱法、镁碱法等湿法脱硫。经过多年实践验证和市场经济技术的淘汰,只有少数的技术设备真正进入燃煤产业锅炉应用。其中以旋流板塔式装置为目前主要应用对象。旋流板塔式装置在90年代经过技术改造后用于燃煤产业锅炉的烟气脱硫和除尘。这种装置的优点是烟气和液体的接触面积大、结构简单、阻力较小、运行稳定为主要特点。其缺点则是现有的技术脱硫效率平均只达到60~80%,而且成本极大。现今脱硫的运行费用为每瓦0.3元,一个中型一万二千兆瓦的燃煤电厂每年的运行费用为四千四百三十万元;而且其脱硫装置的成本为3.6亿元!庞大的装置与运行費用的确使中小企业面临著并厂的危机。
除了二氧化硫,PM2.5对健康的影响已经在时下引起了广泛的关注。什么是颗粒物2.5(PM2.5)?他们是指结合在地球大气中直径小于2.5微米的小片固体或液体物质。颗粒物组合物可引起明显的视觉效果,如烟尘,它由二氧化硫、氮氧化物、一氧化碳、矿物粉尘、有机物质、和元素碳组成,也被称为黑色碳或煤烟。由于硫的存在,颗粒是吸湿的,并且S02会在高湿度及低温下转化为硫酸。这将导致能见度降低、黄色空气、臭氧、与刺痛的吸入感。人类与动物吸入微粒物质的影响已经被广泛地研究;PM2.5导致的的健康问题包括哮喘、肺癌、心血管问题、呼吸系统疾病、先天缺陷、和过早死亡。
颗粒物排放在大多数工业化国家都受到严格监管。由于环境问题,大多数行业都需要进行某种粉尘收集系统的操作,以控制颗粒物排放。这些系统包括离心除尘器(旋流除尘器)、纤维过滤除尘器(袋式除尘器)、湿式除尘器、和静电除尘器。然而、便宜的除尘设备效率很低,通常逹不到80%;好的设备譬如静电除尘,雖然效率可高达99%,但也有其致命缺点:(1)设备庞大,耗钢多,需高压变电和整流设备,故投资高。(2)除尘效率受粉尘比电阻的制约,一般对比电阻小于104~105欧姆每公分或大于1010~1011欧姆每公分的粉尘,若不采取一定措施,除尘效率将受到影响. (3)不具备离线检修功能,一旦设备出现故障,或者带病运行,或者只能停炉检修。总而言之,任何有效率除PM的设备建造与维护费用都是非常高的。
中国也已提出了对空气中颗粒物排放的限制(见下表),各个工厂企业也都按規定装了除尘设备。然而庞大的维护费的确使中小企业入不敷出。因此发展一个价廉而有效的除尘装置也应算是当务之急。
  PM10 PM2.5
年均 70微克/立方米 35微克/立方米
日均(24小时) 150微克/立方米 75微克/立方米
硝(NOx)是氮氧化物的一种通称,该术语是指NO和NO2(一氧化氮和二氧化氮)的合计浓度。氮氧化物和空气中挥发性有机物(VOCs)在阳光下会产生化学反应而形成臭氧。儿童和在户外工作或运动的人很容易受到臭氧的不良影响。臭氧能导致哮喘、破坏肺组织、以及降低肺功能等。臭氧还可以通过风和气流被输送,对健康的影响远远的超过原来的氮氧化物。臭氧其它的影响还包括破坏植物生长而导致农作物产量下降。此外、氮氧化物和二氧化硫与空气中其它物质反应形成酸雨,参杂在降落于地面的雨、雾、雪或微颗粒之中。酸雨损坏汽车、建筑物和造成历史古迹的恶化;酸雨导致湖泊和溪流变成酸性,导致自然水域生态的不平衡。酸性的微颗粒深入到肺部的敏感部位,可以引起或加重呼吸系统疾病,如肺气肿、支气管炎、和加重原有的心脏疾病。酸性的微颗粒还可阻挡光线的透射而减低能见度,造成了雾霾的天气,人们终年看不到蓝天。即使氮氧化物不成为臭氧、酸雨、或吸附在微颗粒上,额外的氮溶于溪流与湖泊中,加速了水质的“富营养化”,从而导致氧气过份消耗,因而减少了鱼类和贝类的数量。
根据中国电力的报导,一台30万千瓦机组进行脱硝改造建设的成本应该大约在6000万元左右。2013年九月华电能源工程公司所属北京龙电宏泰环保科技有限公司与河南煤化集团商丘裕东发电有限责任公司正式签署了《2x315MW(三十一万五千瓦)机组烟气脱硝改造工程EPC总承包合同》,合同总金额1.2亿元。也印证了这一普遍成本。除了制造成本,脱硝的运行成本也非常的高。根据报导:“一台30万千瓦脱硝改造设备要实施脱硝 电价确实要1.2分/千瓦才能刚刚抵消成本,运行成本最高的机组达到2.7分/千瓦”。此外,目前国内脱硝的效率只能达到40%~70%。浙江某电厂一位工程师曾在专业报刋上表示过,目前国内选优的火电机组脱硝设施建成、投产的不多,烟气监测和自动控制方面的技术尚不够成熟,相关技术仍处于摸索和吸收转化过程中。现有的SCR脱硝技术,激射的氨逃逸监测的准确性、低负荷下喷氨量和效率的控制等问题都还有待解决。目前国内脱硝最成熟与应用最广泛的技术为选择性催化还原(SCR),缺少其它具有实用价值及应用前景的新技术。SCR技术的关键为催化剂。目前催化剂在国内市场上供不应求,市场上供应的基本都是国外产品,国产催化剂的研究与应用刚刚开始。所以整体来说,目前国内的SCR设备与材料全部都得依靠国外进口,这也无形中增加了其制造与运行成本。
燃煤电厂是空气中重金属(如汞、铅)含量的最大污染源,汞、铅污染会严重侵害儿童神经系统的发育而造成儿童智力的严重损坏。2011年美国环保局局长签属了一份关于减少空气中有毒物质的法律政策,规定在2016年所有燃煤和燃油发电机的汞的脱除率必需达到91%。美国每年约有将近117吨的汞排放量;而美国每一个燃煤电厂每年至少花600万~700万美元来消除汞的排放,但是目前为止美国对于汞的脱除率只能达到40%~70%的效率。同样,铅的脱除也存在类似的问题。
到目前为止,只有一个具有减少汞排放能力的方法被肯定,那就是注入活性碳(ACI)。目前多数环保技术的研究强调活性碳注入(ACI)是作为主要控制汞减排的技术。活性碳(一个最常用于去除异味与饮用水系统中污染物的物质)已被证明在吸收燃煤锅炉烟气中的汞上具有几分令人满意的效果。汞粘附至活性碳颗粒,然后通过下游的颗粒控制装置,例如静电除尘器或袋滤器除去。活性碳(高度加工,含有大量微孔的碳)吸收气态形式的汞,并将其转换为可以被捕获的微粒形式。然而、已经有报道称,烟气中高含量硫的出现会大幅损害活性碳的性能。此外、因为烟气中的汞比其它有害物质的相对浓度来说非常的低,因此与ACI吸附剂短暂的接触时间(小于3秒)需要非常大量的活性碳以达到预想的效果。为了实现汞的高去除率(>91%),碳与汞(C/Hg)在烟气中所需的比率已被证实为3000~20000比1(w/w),具体取决于过程条件。尽管活性碳本身的价格相对低廉,但操作整个ACI系统的成本非常昂贵。此外、不仅是除去足够数 量的汞废物需要巨量的活性碳;活性碳本身亦是一个恶化我们环境的来源。如何处置载汞活性碳成为了一个难题。如果活性碳中含有少于260ppm的汞,法规允许它被稳定化的填埋(例如封在混凝土中)。然而、多年来被埋藏的汞终会漏出,而污染我们的地下水。含有大于260ppm汞的活性碳被认为属于高汞子类别,并被禁止填埋。高汞含量的ACI必须永远存储在偏远地区的仓库。处置载汞活性碳的问题将成为一个全球性的困境。同样地,如何有效的消除烟气中的铅,也是急需解决的问题。
目前的净化设备成本昂贵、净化后废物无法回收再利用,容易导致二次污染的麻烦。
(三)发明内容:
本发明的目的在于提供一种净化污染空气的系统及其工作方法,本系统具有一个先进的过滤系统来消除废气里的有毒排放物。利用新的工艺与技术来捕捉从污染源或燃煤锅炉的烟囱排放出的有毒物质,利用纳米技术和先进的化学反应清除废气中所有的污染物,应用了气体与液体之间的相互作用以及气体与固体的相互作用的原理,最终排放出清洁气体,并回收反应过程中产生的硫酸和硝酸,使过滤回收系统成为一个良性循环。本系统成本低廉,利于推广使用。
本发明的技术方案:一种净化污染空气的系统,其特征在于它是由引风机a、循环泵、预处理仓、脱硝仓、脱硫脱尘仓、维修盖、重金属过滤装置、引风机b、化学试剂补充罐a、酸净化处理装置、化学试剂补充罐b、计量泵、化学试剂补充罐c所构成;污染气源经所述的引风机进入预处理仓,预处理仓的输出端连接脱硝仓的输入端,脱硝仓的输出端连接脱硫仓的输入端,脱硫脱尘仓的输出端连接重金属过滤装置的输入端,重金属过滤装置的输出端连接引风机,引风机排出净化后的气体;所述脱硫脱尘仓上连接有化学试剂补充罐,预处理仓、脱硝仓和脱硫脱尘仓的出液口分别连接酸净化处理装置,预处理仓和脱硝仓通过管道分别连接化学试剂补充罐a,预处理仓、脱硝仓和脱硫脱尘仓通过计量泵连接化学试剂补充罐b,预处理仓上装配有循环泵;所述酸净化处理装置是由有加热能力的收集槽、蒸馏装置和硝酸冷却槽构成,收集槽的输出端连接蒸馏装置的输入端,蒸馏装置的输出端连接硝酸冷却槽的输入端,硝酸冷却槽的输出端流出处理后的硝酸,收集槽的输出端流出处理后的硫酸。
上述所述预处理仓包括预处理仓体、预处理仓喷淋装置、预处理仓进气口、预处理仓抽水泵、储液器、预处理仓出液口、预处理仓进液口和预处理仓出气口,所述预处理仓体的底部是储液器,预处理仓出液口设置在储液器处,所述预处理仓进气口、预处理仓进液口和预处理仓出气口设置在储液器上方的预处理仓体上,预处理仓出气口在预处理仓进气口的上方,所述预处理仓喷淋装置设置在预处理仓体内,所述预处理仓抽水泵通过管道连接储液器的输出端和预处理仓喷淋装置的输入端。
上述所述预处理仓喷淋装置为设置在预处理仓体内顶部的加压喷淋装置,或者为设置在预处理仓体内顶部的加压喷淋装置和设置在预处理仓体内壁上的喷雾式喷淋装置。
上述所述脱硝仓包括脱硝仓仓体、脱硝仓出气口、脱硝仓喷淋系统、脱硝仓进气口、脱硝仓进液口、气液混合通道、脱硝仓出液口和脱硝仓抽水泵;所述脱硝仓进气口和脱硝仓出气口设置在脱硝仓仓体的上部;所述脱硝仓进液口设置在脱硝仓仓体的中部;所述脱硝仓出液口设置在脱硝仓仓体的底部;所述气液混合通道、脱硝仓喷淋系统位于脱硝仓仓体内;气液混合通道的输入端连接脱硝仓进气口,输出端置于脱硝仓仓体内的液体内;所述脱硝仓抽水泵通过管道连接脱硝仓仓体底部的输出端和脱硝仓喷淋系统的输入端。
上述所述气液混合通道包括3个中型气液混合通道和3小型气液混合通道,或者包括5个大型混合通道。
上述所述脱硫脱尘仓包括光能仓,所述光能仓包括光能仓体、光能仓进气口、光能仓出气口、光能仓进液口、气液混合通道、光能仓抽水泵、光能仓出液口、光能仓喷淋装置和光照设备,所述光能仓进气口和光能仓出气口设置在光能仓体的上部,所述光能仓进液口设置在光能仓体的中部,所述光能仓出液口设置在光能仓体的底部,所述气液混合通道、光能仓喷淋装置和光照设备位于光能仓体内,气液混合通道的输入端连接光能仓进气口,气液混合通道的输出端位于光能仓体下部接近仓底的位置,所述光能仓抽水泵通过管道连接光能仓体底部的输出端和光能仓喷淋装置的输入端。
上述所述净化仓包括净化仓体、净化板、液体流量控制栓和净化仓出液口,所述净化仓体上放置光能仓体,所述光能仓出液口伸入净化仓体中,所述液体流量控制栓安装在光能仓出液口上,所述光能仓出液口位于净化板上方,所述净化板固定在净化仓体内,所述净化仓出液口设置在净化仓体底部。
上述所述重金属过滤装置包括嵌有纳米材料的纤维基体。
上述所述嵌有纳米材料的纤维基体附着在离心风扇的扇叶上,或者设置在倾斜扇叶之间;所述倾斜扇叶的倾斜角度为30-45度。
一种上述净化污染空气的系统的工作方法,其特征在于包括以下步骤:
(1)准备工作:各工作仓做好工作前准备并启动各相应设备,包括:
预处理仓中加入水和含有氧化剂且使用硝酸调节pH值至小于等于3的溶液;
脱硝仓中加入含有氧化剂且pH值小于等于3的溶液;
在脱硫脱尘仓中的光能仓中加入含有芬顿试剂且使用α-羟基酸调节pH值至小于等于3的溶液,所述芬顿试剂包含能发生光助芬顿反应的金属系统和过氧化氢;所述溶液配置过氧化氢与水的质量百分比为3%~5%;过氧化氢与金属系统摩尔比大于等于10∶1;根据金属系统的光吸收峰,在光能仓中设置光照系统;
(2)预处理仓的工作:污染空气通过引风机进入预处理仓,与仓内液体充分接触,预处理过程除去气体中的直径大于10微米的固体颗粒,并将NO氧化为NO2,碳颗粒氧化为一氧化碳,二氧化硫氧化为三氧化硫;将含有固体颗粒和硝酸的溶液由预处理容器流入酸净化处理装置,净化后的气体排出预处理仓;
(3)脱硝仓的工作:预处理仓净化后的气体进入脱硝仓中,氮氧化物与氧化剂反应生成硝酸,含有硝酸的溶液由脱硝仓流入酸净化处理装置,净化后的气体排出脱硝仓;
(4)脱硫脱尘仓的工作:脱硝仓排出的气体进入脱硫脱尘仓,与仓内的芬顿试剂充分接触反应,使气体中的碳氢化合物分解为二氧化碳和水,一氧化碳氧化为二氧化碳,三氧化硫溶于溶液生成硫酸;含有硫酸的溶液由脱硫脱尘仓流入酸净化处理装置,净化后的气体排出脱硫仓;
(5)重金属过滤装置的工作:(5.1)将纳米材料嵌入纤维基体上;(5.2)使含有重金属的烟气通过嵌有纳米材料的纤维基体;(5.3)纳米材料与烟气中的重金属反应,捕获烟气中的重金属;
(6)酸净化处理装置的工作:从预处理仓、脱硝仓、脱硫脱尘仓流出的含有硫酸和硝酸的混合液体流入酸净化处理装置中的收集槽内,收集槽带有的加热装置加热混合液体使硝酸气化,加热温度大于等于122℃,然后经过蒸馏提炼的方法净化,净化后的硝酸冷却后收集在硝酸冷却槽中等待回收,硫酸将留在收集槽中等待回收;
(7)定时监测各仓的反应溶液的浓度,根据监测的情况,由化学试剂补充罐向各相应仓中充入相应的试剂,使溶液成分保持稳定;
(8)回收由净化污染空气的系统排出的硫酸和硝酸;
(9)由重金属过滤装置排出的净化后气体经引风机排出系统外。
本发明的工作原理与技术效果:
本系统利用气液反应的原理有效的解决废气清洁的问题。当一个化学反应包含一个以上的物态时,不可避免的需要考虑一个交界面的问题。在这样的情况下,由于目标物质需要穿过一个气液交界面进行反应,物态转化率必须要被考虑(见图8)。在类似我们这样的复杂系统的发明中,两种不同物态之间的物质转化率是设计中的重要问题。
相邻的两个物态界面之间有一个假想的静态的厚度为δ的薄膜,各种物质必须通过它发生分子传导。液体中的其它部分,可称为主体,是保持稳定的,所以与传送相关的能量几乎完全在薄膜里。如果反应物扩散原理也参与液体里的化学反应,则反应可以发生在薄膜中,主体中或者两者全部(见图8)。分子扩散系统和物质转移系数的关系是
kL’=DA
这里的kL’是物质转移系数,DA是反应物的扩散系数,δ是薄膜厚度。气液反应是通过反应速率和物质传送率的比率来分类:
1、非常慢的反应只发生在液体的主体中
2、慢的反应同时发生在薄膜和液体的主体中
3、快速的反应发生在液体薄膜中
4、瞬时反应发生在气液交互界面上
然而,由于不是所有的反应都是发生在静态系统中,上述的薄膜理论,不能覆盖所有的气液反应。例如,在气态分子进入一个流动的薄膜中时,是一种非稳态行为。当有流动的薄膜时渗透理论可用来填充传统的薄膜理论,对与气液界面的垂直流速进行补偿。当有流动薄膜参与时,主体浓度[A]是可以忽略的:
Figure PCTCN2015000267-appb-000001
这里的Vmax是从侧面看的薄片状的流动薄膜速度的最大值,Vmax/δ称为接触速度,kL’是物质转移系数,DA是反应物的扩散系数。
同时使用渗透理论和薄膜理论的最好例子是我们的脱硝系统,我们通过下述原理来转换NO2至硝酸:
2NO+O2→2NO2    (1)
2NO2+H2O2→2HNO3    (2)
3NO2+H2O→2HNO3+NO    (3)
2NO+HNO3+H2O→3HNO2    (4)
HNO2+H2O2→HNO3+H2O    (5)
公式1和2是最理想的情况。从理论上来講,如果烟气中所有的NO分子在预处理仓内完全被转化为NO2(公式1),它应该在脱硝仓内与H2O2发生反应而产生HNO3(公式2)。然而公式一的反应速率很慢,再加上预处理仓中的液体是掉落下来的,使整个气液反应系统处于非稳态。因此,在计算预处理仓的反应动力学的时候必须使用渗透理论(见图9)。
脱硝仓是在一个稳态系统中,其中各种变量都是稳定的,尽管有不间断的过程力量试图改变他们。由于各种变量都是稳定的,就必须有一个穿过整个体统的流动,所以方程式3到5最有可能在脱硝舱中发生。一部分在预处理仓内被转化的NO2分子可能与水产生反应形成HNO3和NO(公式3)。在预处理仓中没有被过氧化物氧化的NO加上从公式3中产生的NO将会与HNO3和H2O发生反应并产生中间体HNO2(公式4);该中间体再与H2O2进一步反应,生成最终产物:HNO3加H2O(公式5)。
NO2和水在薄膜中的反应是很重要的。一些研究表明,方程式6也有可能在气液交界面发生
2NO2+H2O→HNO2+HNO3   (6)
二氧化氮被液态水吸收率为10-3到10-1
HONO(气)→HONO(溶液)
比逆反应的酸溶解电离的速度要慢
Figure PCTCN2015000267-appb-000002
于是,为了加速硝吸收动力学过程,脱销仓的水溶液必须要控制PH值。整体溶液保持PH≤3,吸收过程便可以加速。同时,由于NO的低溶解度与转换NO至NO2然后至HNO3反应动力学的复杂性,脱硝仓的设计也以确保烟气与溶液之间的接触时间延至到最长为最主。
关于光助芬顿反应:
除了气液交界,我们的还用到了光助化学反应来改进发明,脱硫仓中使用了宽频紫外光。再加入铁和过氧化氢之后,羟基自由基会产生,反应机理如下:
Fe2++H2O2---->Fe3++·OH+OH-    (7)
Fe3++H2O2---->Fe2++·OOH+H+    (8)
FeSO4的典型计量是过氧化氢对铁的摩尔比≥10。需要非常注意的是PH值,如果PH值过高,铁会形成Fe(OH)3沉淀形式,而且H2O2会分解成氧气。基本上,理想的PH值要≤3。为了控制PH值和反应中升高的温度,最好把反应控制为一步一步的进行,反应的铁催化剂通过FeSO4溶液形式添加,然后再将H2O2慢慢加入。
由于芬顿反应的复杂性,理论上有很多争议,多年中有许多不同的机理被发表。但是,大家公认的一个事实是活性氧的产生和铁的催化作用。其中Harber-Weiss反应是已发表的最著名的芬顿反应机理
Fenton Reaction
Fe(II)+H2O2→Fe(III)+HO-+HO·
Haber-Weiss Reaction(Superoxide Driven Fenton Reaction)
H2O2+Fe(II)→Fe(III)+HO-+HO·
Figure PCTCN2015000267-appb-000003
Haber-Weiss Net Reaction
Figure PCTCN2015000267-appb-000004
从上面提到的机理中可以看出,羟基自由基,过氧化物自由基,氢氧根离子是芬顿反应的主要参与物。同时氧气也会产生,所有芬顿反应的产物对我们将二氧化硫氧化为硫酸都是有益的。
装置:
如图10-1~10-4所示,一共有四种气液反应形式:
Figure PCTCN2015000267-appb-000005
典型的非常慢的反应和慢反应是一氧化氮转化为硝酸,反应速率和物质扩散的速度差不多。典型的方式3和方式4的反应是二氧化硫转化为硫酸,动力学上来说反应主要在交界面薄膜中发生。在方式3或方式4的情况下,反应速率应定义在交界面上。
设计一个气液反应器,主要考虑的变量是:
·反应物的流速
·操作方式和相应的速率方程
·由反应器决定的气液混合特征
表1展示了在大多数一般的气液反应器中流程和物质转化特征,通过表1,以及取决于反应是发生在主体中还是在界面薄膜中,由此设计了一个反应容器联合体即本发明的一种净化污染空气的系统。(表1)
表1
Figure PCTCN2015000267-appb-000006
PF=平推流,MF=混合流,PMF=平推混合流
所述的预处理仓主要即是喷淋式气体洗涤塔,因为典型的废气流速超过6m/s,而且舱内混和特征是气体和液体都是平推流。本发明的除氮氧化合物的设计是介于一个泡罩塔和批处理反应器之间,由于硝酸的产生是相当慢的,所以液体的进出不是一直处于一个稳态。所以,本发明的脱硝仓是基于平推流气体和混合流液体的结合(见图11-1、11-2)。本发明的脱硫仓利用了芬顿反应的高效,产生硫酸的过程速率如下
[气体中SO2的去除率]=[液体中SO2的反应率]
本发明的脱硫仓的设计是按平推流气体的设计而完成的(见图11-1)。
本发明的分离仓即酸净化处理装置。
本系统是一种自动化工作系统,该系统的设计目标是在硫酸和硝酸产率一定的情况下,将反应器的体积最小化和减少能源消耗为主。反应物的组成是通过实验室实验和燃煤锅炉现场初试的理论分析基础上得出的。以一个每日燃烧30吨煤燃煤锅炉为例,已经计算出硝酸和硫酸的产量。
硝酸的生产:
硝酸的产生开始于空气里的氮气在燃煤锅炉里氧化
1a)N2+O2→2NO
1b)2NO+O2→2NO2
1c)2NO2+H2O2→2HNO3
或者
2a)N2+O2→2NO
2b)2NO+O2→2NO2
2c)3NO2+H2O→2HNO3+NO
2d)2NO+HNO3+H2O→3HNO2
2e)HNO2+H2O2→HNO3+H2O
虽然步骤1b和2b是整个过程中决定速度的步骤,但是过氧化氢是主要的限定成分。无论氮气通过哪个步骤转化为硝酸,最后一步1c和2e没有过 氧化氢是不可能发生的。我们知道空气中含氮气78.09%(体积比)或者说75.47%(重量比),在海平面上20℃时,国际标准大气压下,空气的密度大约为1.204kg/m3。也就是每立方米空气的质量是1.204Kg,其中的氮气占(1.204Kg x 75.47%)908.7g,理论上说,1立方米空气进入锅炉,其中包含有908.7g÷28g/mole=32.454mole的氮气,会产生973g的NO,需要1.1Kg的H2O2才能将其转化为2.04Kg(32.454mole x 63g/mole)的硝酸。根据国家环保总局编著的《排污申报登记实用手册》“第21章第4章节NOX排放量计算”,燃煤工业锅炉产生的NOX的计算公式如下:NOX排放量(吨)=1.63X耗煤量(吨)X(燃煤中氮的含量X燃煤中的NOX转化率%+0.000938)
NOX排放量(吨)=1.63X耗煤量(吨)X(0.015X燃煤中氮的NOX
转化率%+0.000938)
1吨煤的NOX排放量=1.63X1X(0.015X25%+0.000938)=0.00764吨
=7.6Kg
如按照以上算法,每天烧30吨的煤,会产生7.6x 30=228Kg的NOx,所以需要[228/(30x0.9)(46x0.1)]x 34=242Kg的H2O2来制作成448Kg的硝酸。如用35%重量比浓度的双氧水,則每天需要690Kg的用量。但是,通过我们实際反复的实验,水在产生硝酸的过程中扮演者重要的角色,这在2.1.1节的方程式6和2.2.2.1节的方程式2c中都提到了。我们的脱硝仓的直径3米(图3),装0.5米高的水(3.5吨),每小时由计量泵输入12Kg(35%)的双氧水,一天35%双氧水的用量约为290到300Kg.每七到八天脱硝仓需用2.8吨35%的双氧水但可产5吨68%浓度的硝酸。据生意社大宗商品榜数据显示,2014年四月份国内硝酸行情下滑,价格为每吨1427元,比工业用的35双氧水价格稍微贵些,所以使脱硝运行成本基本来说为负数。
硫酸的生产:
根据国家环保总局编著的《排污申报登记实用手册》燃煤SO2排放量的估算计算公式:
SO2排放量(吨)=2X0.8X耗煤量(吨)X煤中的含硫分(%)X(1-脱硫效率%).以耗煤量1吨为基准,煤中的含硫分为1.5%,则1吨煤的SO2产生量=2X 0.8X 1X 1.5%=0.024吨=24Kg.如果煤中的含硫分为1%,则1吨煤的SO2产生量=2X 0.8X 1X 1%=0.016吨=16Kg.从SO2到H2SO4的过程如下:
1.SO2+1/2O2→SO3
2.SO3+OH→HSO3 -
Figure PCTCN2015000267-appb-000007
3.HSO3 -+H+→H2SO4
所以,如果燃烧1吨煤(其中含有1%的硫)能产生16kg二氧化硫,那就能产生(16/64)x 98=24.5Kg的H2SO4
对于一个每天燃烧30吨煤的锅炉来说,每天能生产24.5x 30=735Kg的H2SO4,通过芬顿反应,一摩尔H2O2能产生2摩尔羟基自由基,所以每天需要[(735/98)x 34]/2=127Kg的H2O2(364kg35%浓度的H2O2)。水在生产硫酸的过程中又一次扮演了重要的作用。通过我们多次重复试验得到的数据,产生的硫酸和消耗的过氧化氢比率仅为20∶1(摩尔比),这意味着在我们的除二氧化硫装置中每天产生735kg的硫酸,仅需要每天消耗12.7Kg的过氧化氢(36Kg的35%浓度过氧化氢)。据生意社大宗商品榜数据显示,2014年四月份国内硫酸行情下滑为364元每吨。但以制造735Kg的硫酸只需用36Kg的工业35%双氧水来说,脱硫的运行成本也如同脱硝成本一样,均为负数。
关于净化过程即酸净化处理装置的工作过程:
从脱硝仓和脱硫仓流出的硝酸与硫酸会直接进入酸净化处理装置。净化装置包括一个具有加热能力的收集槽(10a),蒸馏装置,和硝酸冷却槽(10b)。68%的硝酸具有1.51293的密度和121摄氏度的沸点。浓硫酸的密度为1.843,沸点为337摄氏度。由于密度比水重的关系,两种酸都会分别的沉在脱硝仓和脱硫仓的底部,然后经由计量泵将其引入净化装置的收集槽(10a)。净化收集槽会加热到122℃净硝酸气化,然后经过蒸馏提炼的方法将净化过的硝酸冷却后收在硝酸冷却槽中。硫酸将留在收集槽中直接回收。
表2:流量和普通气液反应器的传质特性
Figure PCTCN2015000267-appb-000008
Figure PCTCN2015000267-appb-000009
1、关于脱硫的工作过程及装置:
一种处理含有二氧化硫的烟气的方法,包括以下步骤:
(1)在预处理容器中加入水;
(2)在反应容器中加入含有芬顿试剂且使用α-羟基酸调节pH值至小于等于3的溶液,所述芬顿试剂包含能发生光助芬顿反应的金属系统和过氧化氢;
所述溶液配置过氧化氢与水的质量百分比为3%~5%。
过氧化氢与金属系统摩尔比大于等于10∶1;
(3)根据金属系统的光吸收峰,在反应容器中设置光照系统;
(4)将废气通入预处理容器,与液体充分接触,使直径大于10微米的固体颗粒留在液体中;
(5)将含有直径大于10微米的固体颗粒的液体导出预处理容器;
(6)将净化后的烟气排出预处理容器;
(7)将步骤(6)排出的烟气通入反应容器,与芬顿试剂充分接触反应,使烟气中的二氧化硫氧化成三氧化硫并溶于溶液成为硫酸;
(8)将反应后含硫酸溶液导出,并定时监测导出溶液中芬顿试剂的浓度,根据监测的情况,添加新的含有芬顿试剂的溶液使溶液成分保持稳定;
(9)将净化后的气体排出反应容器。
上述所述步骤(1)后加入步骤(1’)为使用硝酸调整pH值至3以下,然后加入氧化试剂,使碳颗粒氧化为一氧化碳,部分SO2氧化为SO3;氧化试剂为过氧化氢、氧化钼和氧化钨的混合物、氧化镁和氢氧化镁的混合物或三氧化二铁,其中,氧化钼、氧化钨、氧化镁、氢氧化镁和三氧化二铁固体颗粒的直径小于20nm,过氧化氢与水的体积比为1∶18~22,氧化钼和氧化钨的摩尔比为1∶1,氧化镁和氢氧化镁的摩尔比为1∶1,氧化钼与水的用量比大于等于10mol/L,氧化钨与水的用量比大于等于10mol/L,氧化镁与水的用量比大于等于10mol/L,氢氧化镁与水的用量比大于等于10mol/L,三氧化二铁与水的用量比大于等于20mol/L。
上述所述步骤(1’)中的氧化试剂的浓度需要定时监测并根据需要补充氧化试剂使溶液中氧化试剂浓度稳定。
上述所述步骤(2)中的金属系统为Fe(II)/F(III)系统或Cu(I)/Cu(II)系统;当金属系统为Fe(II)/F(III)系统时,则光照为波长为200nm~400nm的紫外光;当金属系统为Cu(I)/Cu(II)系统时,光照为波长为600nm~800nm的可见光。
上述所述Fe(II)/F(III)系统由直径小于20纳米的FeSO4和Fe3O4颗粒构成。
上述所述Cu(I)/Cu(II)系统由直径小于20纳米的Cu2O和CuSO4颗粒构成。
上述所述步骤(4)中充分接触的方式为将液体通过喷淋装置向气体喷淋,以增加废气与液体接触的面积和时间。
上述所述步骤(4)中的烟气从预处理容器下部进入,方向水平并与容器壁呈40~50度角,以增加与液体接触的时间。
上述所述步骤(5)中,导出预处理容器的液体在除去大于10微米的颗粒物后,由抽水泵通过管道输回到预处理容器内。
上述所述过氧化氢为直径小于50纳米的过氧化镁、过氧化钠或过氧化钙在所述溶液中反应后产生的。
上述所述过氧化氢的消耗量通过定期收集样品被密切的监测,并且使用碘/高锰酸钾(I/KMnO4)滴定法观察过氧化物的消耗率。
上述所述α-羟基酸为乙醇酸、丙酮酸或乳酸。
上述所述步骤(7)中充分接触的方式为将气体直接通入液体或将液体通过喷淋装置向气体喷淋中的至少一种。
上述所述步骤(8)之后加入步骤8’利用市售DOW chemical公司的Amberlite IRC 748离子交换树脂涂层吸附回收所述金属系统物质,将含有硫酸的溶液净化
一种实现上述所述方法的脱硫装置,包括预处理仓和光能仓;所述预处理仓包括预处理仓体1-13、预处理仓喷淋装置1-2、预处理仓进气口1-4、 预处理仓抽水泵1-6、储液器1-7、预处理仓出液口1-8、预处理仓进液口1-10和预处理仓出气口1-12,所述预处理仓体1-13的底部是储液器1-7,预处理仓出液口1-8设置在储液器1-7处,所述预处理仓进气口1-4、预处理仓进液口1-10和预处理仓出气口1-12设置在储液器1-7上方的预处理仓体1-13上,预处理仓出气口1-12在预处理仓进气口1-4的上方,所述预处理仓喷淋装置1-2设置在预处理仓体1-13内,所述预处理仓抽水泵1-6通过管道连接储液器1-7的输出端和预处理仓喷淋装置1-2的输入端;所述光能仓包括光能仓体2-11、光能仓进气口2-2、光能仓出气口2-1、光能仓进液口2-3、气液混合通道2-4、光能仓抽水泵2-5、光能仓出液口2-6、光能仓喷淋装置2-8和光照设备2-10,所述光能仓进气口2-2和光能仓出气口2-1设置在光能仓体2-11的上部,所述光能仓进液口2-3设置在光能仓体2-11的中部,所述光能仓出液口2-6设置在光能仓体2-11的底部,所述气液混合通道2-4、光能仓喷淋装置2-8和光照设备2-10位于光能仓体2-11内,气液混合通道2-4的输入端连接光能仓进气口2-2,气液混合通道2-4的输出端位于光能仓体2-11下部接近仓底的位置,所述光能仓抽水泵2-5通过管道连接光能仓体2-11底部的输出端和光能仓喷淋装置2-8的输入端;所述预处理仓出气口1-12连接光能仓进气口2-2。
上述所述预处理仓体1-13顶部设置预处理仓检修盖1-1,预处理仓体1-13的侧壁上设置预处理仓检修门1-11,储液器1-7顶部设置漏斗形收集板1-3,储液器1-7的侧壁上设置预处理仓液位器1-9和采样口1-5。
上述所述预处理仓喷淋装置1-2为设置在预处理仓体1-13内顶部的加压喷淋装置,或者为设置在预处理仓体1-13内顶部的加压喷淋装置和设置在预处理仓体1-13内壁上的喷雾式喷淋装置。
上述所述加压喷淋装置的喷淋液滴为均匀的连线;每滴液滴的直径为2~3毫米,每滴之间间隔6~10毫米。
上述所述预处理仓体1-13由不锈钢金属板制成。
上述所述预处理仓抽水泵1-6为耐酸水泵。
上述所述光能仓体2-11由不锈钢金属板制成,光能仓体2-11内壁上涂有防腐涂层。
上述所述光能仓体2-11的侧壁上设置光能仓液位器2-7,光能仓体2-11顶部设置光能仓检修盖2-9。
上述所述光照设备2-10为石英管紫外灯或可见光灯。
上述光能仓的下半部有净化板,表面涂有市售DOW chemical公司的Amberlite IRC 748离子交换树脂涂层,用于吸附回收所述金属系统物质,并将含有硫酸的溶液净化。
2、关于脱尘的工作过程及装置:
一种处理含有粉尘的烟气的方法,包括以下步骤:
(1)在预处理容器中加入水;
(2)在反应容器中加入含有芬顿试剂且使用α-羟基酸调节pH值至小于等于3的溶液,所述芬顿试剂包含能发生光助芬顿反应的金属系统和过氧化氢;
所述溶液配置过氧化氢与水的质量百分比为3%~5%;
过氧化氢与金属系统摩尔比大于等于10∶1;
(3)根据金属系统的光吸收峰,在反应容器中设置光照系统;
(4)将废气通入预处理容器,与液体充分接触,使直径大于10微米的固体颗粒留在液体中;
(5)将含有直径大于10微米的固体颗粒的液体导出预处理容器;
(6)将净化后的烟气排出预处理容器;
(7)将步骤(6)排出的烟气通入反应容器,与芬顿试剂充分接触反应,使烟气中的碳氢化合物分解为二氧化碳和水,碳颗粒和一氧化碳氧化为二氧化碳;
(8)将反应后溶液导出,并定时监测导出溶液中芬顿试剂的浓度,根据监测的情况,添加新的含有芬顿试剂的溶液使溶液成分保持稳定;
(9)将净化后的气体排出反应容器。
上述所述步骤(1)后加入步骤(1’)为使用硝酸调整pH值至3以下,然后加入氧化试剂,使碳颗粒氧化为一氧化碳,所述氧化试剂为过氧化氢、氧化钼和氧化钨的混合物、氧化镁和氢氧化镁的混合物或三氧化二铁,其中,氧化钼、氧化钨、氧化镁、氢氧化镁和三氧化二铁固体颗粒的直径小于20nm,过氧化氢与水的体积比为1∶18~22,氧化钼和氧化钨的摩尔比为1∶1,氧化镁和氢氧化镁的摩尔比为1∶1,氧化钼与水的用量比大于等于10mol/L,氧化钨与水的用量比大于等于10mol/L,氧化镁与水的用量比大于等于10mol/L,氢氧化镁与水的用量比大于等于10mol/L,三氧化二铁与水的用量比大于等于20mol/L。
上述所述步骤(1’)中的氧化试剂的浓度需要定时监测并根据需要补充氧化试剂使溶液中氧化试剂浓度稳定。
上述所述步骤(2)中的金属系统为Fe(II)/F(III)系统或Cu(I)/Cu(II)系统;当金属系统为Fe(II)/F(III)系统时,则光照为波长为200nm~400nm的紫外光;当金属系统为Cu(I)/Cu(II)系统时,光照为波长为600nm~800nm的可见光。
上述所述Fe(II)/F(III)系统由直径小于20纳米的FeSO4和Fe3O4颗粒构成。
上述所述Cu(I)/Cu(II)系统由直径小于20纳米的Cu2O和CuSO4颗粒构成。
上述所述步骤(4)中充分接触的方式为将液体通过喷淋装置向气体喷淋,以增加废气与液体接触的面积和时间。
上述所述步骤(4)中的烟气从预处理容器下部进入,方向水平并与容器壁呈40~50度角,以增加与液体接触的时间。
上述所述步骤(5)中,导出预处理容器的液体在除去大于10微米的颗粒物后,由抽水泵通过管道输回到预处理容器内。
上述所述过氧化氢为直径小于50纳米的过氧化镁、过氧化钠或过氧化钙在所述溶液中反应后产生的。
上述所述过氧化氢的消耗量通过定期收集样品被密切的监测,并且使用碘/高锰酸钾(I/KMnO4)滴定法观察过氧化物的消耗率。
上述所述α-羟基酸为乙醇酸、丙酮酸或乳酸。
上述所述步骤(7)中充分接触的方式为将气体直接通入液体或将液体通过喷淋装置向气体喷淋中的至少一种。
一种实现上述所述方法的装置,包括预处理仓和光能仓;所述预处理仓包括预处理仓体、预处理仓喷淋装置、预处理仓进气口、预处理仓抽水泵、储液器、预处理仓出液口、预处理仓进液口和预处理仓出气口,所述预处理仓体的底部是储液器,预处理仓出液口设置在储液器处,所述预处理仓进气口、预处理仓进液口和预处理仓出气口设置在储液器上方的预处理仓体上,预处理仓出气口在预处理仓进气口的上方,所述预处理仓喷淋装置设置在预处理仓体内,所述预处理仓抽水泵通过管道连接储液器的输出端和预处理仓喷淋装置的输入端;所述光能仓包括光能仓体、光能仓进气口、光能仓出气口、光能仓进液口、气液混合通道、光能仓抽水泵、光能仓出液口、光能仓喷淋装置和光照设备,所述光能仓进气口和光能仓出气口设置在光能仓体的上部,所述光能仓进液口设置在光能仓体的中部,所述光能仓出液口设置在光能仓体的底部,所述气液混合通道、光能仓喷淋装置和光照设备位于光能仓体内,气液混合通道的输入端连接光能仓进气口,气液混合通道的输出端位于光能仓体下部接近仓底的位置,所述光能仓抽水泵通过管道连接光能仓体底部的输出端和光能仓喷淋装置的输入端;所述预处理仓出气口连接光能仓进气口。
上述所述预处理仓体顶部设置预处理仓检修盖,预处理仓体的侧壁上设置预处理仓检修门,储液器顶部设置漏斗形收集板,储液器的侧壁上设置预处理仓液位器和采样口。
上述所述预处理仓喷淋装置为设置在预处理仓体内顶部的加压喷淋装置,或者为设置在预处理仓体内顶部的加压喷淋装置和设置在预处理仓体内壁上的喷雾式喷淋装置。
上述所述加压喷淋装置的喷淋液滴为均匀的连线;每滴液滴的直径为2~3毫米,每滴之间间隔6~10毫米。
上述所述预处理仓体由不锈钢金属板制成。
上述所述预处理仓抽水泵为耐酸水泵。
上述所述光能仓体由不锈钢金属板制成,光能仓体内壁上涂有防腐涂层。
上述所述光能仓体的侧壁上设置光能仓液位器,光能仓体顶部设置光能仓检修盖。
上述所述光照设备为石英管紫外灯或可见光灯。
3、关于脱硝的工作过程及装置:
一种消除烟气中氮氧化物的方法,其特征在于它包括以下步骤:
(1)含氮氧化物的烟气在预处理容器中进行预处理,预处理过程除去烟气中的直径大于10微米的固体颗粒,并将NO氧化为NO2
预处理容器中加入含有氧化剂且PH值小于等于3的溶液;
将烟气通入预处理容器中,与液体充分接触,使直径大于10微米的固体颗粒留在溶液中,NO氧化为NO2
将含有固体颗粒的溶液导出预处理容器;
(2)经预处理的烟气进入脱硝容器中,氮氧化物与氧化剂反应生成硝酸:
脱硝容器中加入含有氧化剂且PH值小于等于3的溶液;
将经过预处理的烟气进入脱硝容器中,与氧化剂充分接触反应,生成硝酸;
(3)净化后的气体排出脱硝容器。
所述预处理容器和脱硝容器中首先使用硝酸调整pH值至3以下,然后加入氧化剂。
所述预处理容器和脱硝容器中的氧化剂为过氧化氢、氧化钼和氧化钨的混合物、氧化镁和氢氧化镁的混合物或三氧化二铁,其中,氧化钼、氧化钨、氧化镁、氢氧化镁和三氧化二铁固体颗粒的直径小于20nm,过氧化氢与水的体积比为1∶18~22,氧化钼和氧化钨的摩尔比为1∶1,氧化镁和氢氧化镁的摩尔比为1∶1,氧化钼与水的用量比大于等于10mol/L,氧化钨与水的用量比大于等于10mol/L,氧化镁与水的用量比大于等于10mol/L,氢氧化镁与水的用量比大于等于10mol/L,三氧化二铁与水的用量比大于等于20mol/L。
所述过氧化氢为直径小于50纳米的过氧化镁、过氧化钠或过氧化钙在水中反应后产生的。
所述预处理容器中液体通过喷淋装置喷出以增加烟气与液体接触的面积和时间。
所述脱硝容器中气体直接通入液体以增加烟气与液体接触的面积和时间,或者液体通过喷淋装置喷出以增加烟气与液体接触的面积和时间;或者两种方式同时使用。
所述步骤(1)中当选用过氧化氢为氧化剂时,则通过出液口定时监测氧化剂的浓度,并根据需要补充氧化剂使溶液中氧化剂浓度稳定;所述过氧化氢的消耗量通过定期收集样品被密切的监测,并且使用碘/高锰酸钾(I/KMnO4)滴定法观察过氧化氢的消耗率。
所述步骤(1)中烟气进入预处理容器时从容器下部进入;方向水平并与容器壁呈40~50度角,使烟气在向上移动时产生螺旋效应,以增加与液体接触的时间。
所述步骤(1)中流出预处理容器的液体在除去大于10微米颗粒物后,由水泵通过管道输送到预处理容器的喷淋装置。
所述步骤(2)中将反应后溶液导出,当选用过氧化氢为氧化剂时,则定时监测导出溶液中氧化剂的浓度,根据监测的情况,添加新的含有氧化剂的溶液使容器中溶液成分保持稳定;所述过氧化氢的消耗量通过定期收 集样品被密切的监测,并且使用碘/高锰酸钾(I/KMnO4)滴定法观察过氧化氢的消耗率。
所述步骤(2)中的溶液由水泵通过管道输送到脱硝容器的喷淋装置。
一种纳米烟气脱硝系统,其特征在于它由预处理仓和脱硝仓构成;所述预处理仓的输出端与脱硝仓的输入端连接;
所述预处理仓包括预处理仓仓体、预处理仓喷淋系统、预处理仓进气口、预处理仓抽水泵、储液器、预处理仓出液口、预处理仓进液口和预处理仓出气口;所述预处理仓仓体的底部是储液器,预处理仓出液口设置在储液器处,所述预处理仓进气口、预处理仓进液口和预处理仓出气口设置在储液器上方的预处理仓仓体上,预处理仓出气口在预处理仓进气口的上方,所述预处理仓喷淋系统设置在预处理仓仓体内,所述预处理仓抽水泵通过管道连接储液器的输出端和预处理仓喷淋系统的输入端;
所述脱硝仓包括脱硝仓仓体、脱硝仓出气口、脱硝仓喷淋系统、脱硝仓进气口、脱硝仓进液口、气液混合通道、脱硝仓出液口和脱硝仓抽水泵;所述脱硝仓进气口和脱硝仓出气口设置在脱硝仓仓体的上部;所述脱硝仓进液口设置在脱硝仓仓体的中部;所述脱硝仓出液口设置在脱硝仓仓体的底部;所述气液混合通道、脱硝仓喷淋系统位于脱硝仓仓体内;气液混合通道的输入端连接脱硝仓进气口,输出端置于脱硝仓仓体内的液体内;所述脱硝仓抽水泵通过管道连接脱硝仓仓体底部的输出端和脱硝仓喷淋系统的输入端。
所述预处理仓仓体顶部设置检修盖,仓体的侧壁上设置检修门,储液器顶部设置漏斗形收集板,储液器的侧壁上设置预处理仓液位器和采样口。
所述预处理仓喷淋系统为设置在预处理仓仓体内顶部的加压喷淋装置,或者为设置在预处理仓仓体内顶部的加压喷淋装置和设置在预处理仓仓体内壁上的喷雾式喷淋装置。
所述加压喷淋装置的喷淋液滴为均匀的连线;每滴液滴的直径为2~3毫米,每滴之间间隔6~10毫米。
所述预处理仓仓体由不锈钢金属板制成。
所述预处理仓抽水泵为耐酸水泵。
所述脱硝仓仓体的侧壁上设置脱硝仓液位器,脱硝仓仓体顶部设置检修盖。
所述气液混合通道包括3个中型气液混合通道和3小型气液混合通道,或者包括5个大型混合通道。
所述脱硝仓仓体由不锈钢金属板制成。
一种上述纳米烟气脱硝系统的工作方法:
预处理的方法:
(1)向预处理仓仓体内注水,使用硝酸调整pH值至以下,然后加入氧化剂;
(2)开启预处理仓抽水泵,预处理仓喷淋系统开始工作;
(3)烟气从预处理仓进气口与预处理仓仓体内壁夹角四十至五十度的方向进入预处理仓仓体内,使烟气在向上移动时产生螺旋效应;
(4)烟气中的NO与氧化剂反应生成NO2
(5)定期通过采样口收集样品监测氧化剂的消耗量,根据烟气中的NO含量,向预处理仓仓体内补充氧化剂。
所述氧化剂为过氧化氢、氧化钼和氧化钨的混合物、氧化镁和氢氧化镁的混合物或三氧化二铁,其中,氧化钼、氧化钨、氧化镁、氢氧化镁和三氧化二铁固体颗粒的直径小于20nm,过氧化氢与水的体积比为1∶18~22,氧化钼和氧化钨的摩尔比为1∶1,氧化镁和氢氧化镁的摩尔比为1∶1,氧化钼与水的用量比大于等于10mol/L,氧化钨与水的用量比大于等于10mol/L,氧化镁与水的用量比大于等于10mol/L,氢氧化镁与水的用量比大于等于10mol/L,三氧化二铁与水的用量比大于等于20mol/L。
所述过氧化氢为直径小于50纳米的过氧化镁、过氧化钠或过氧化钙在水中反应后产生的。
所述氧化剂为过氧化氢时,过氧化氢的消耗量通过每小时的样品收集被密切的监测,并且使用碘/高锰酸钾(I/KMnO4)滴定法观察过氧化物的消耗率。
脱硝的方法:
(1)在脱硝仓仓体加入氧化剂溶液,经过预处理的烟气通过进气口进入气液混合通道;
(2)烟气中的NO2与氧化剂发生反应以产生HNO3
(3)定期通过收集样品监测氧化剂的消耗量,根据烟气中的NO含量,向脱硝仓仓体内补充氧化剂。
所述经过预处理的烟气中的一部分NO2分子会与水产生反应生成HNO3和NO;在预处理仓中没有被氧化的NO加上NO2分子会与水反应产生的NO将会与HNO3和H2O发生反应并产生中间体HNO2;该中间体再与H2O2进一步反应,生成最终产物:HNO3加H2O。
所述氧化剂为过氧化氢、氧化钼和氧化钨的混合物、氧化镁和氢氧化镁的混合物或三氧化二铁,其中,氧化钼、氧化钨、氧化镁、氢氧化镁和三氧化二铁固体颗粒的直径小于20nm,过氧化氢与水的体积比为1∶18~22,氧化钼和氧化钨的摩尔比为1∶1,氧化镁和氢氧化镁的摩尔比为1∶1,氧化钼与水的用量比大于等于10mol/L,氧化钨与水的用量比大于等于10mol/L,氧化镁与水的用量比大于等于10mol/L,氢氧化镁与水的用量比大于等于10mol/L,三氧化二铁与水的用量比大于等于20mol/L。
所述过氧化氢为直径小于50纳米的过氧化镁、过氧化钠或过氧化钙在水中反应后产生的。
所述氧化剂为过氧化氢时,过氧化氢的消耗量通过每小时的样品收集被密切的监测,并且使用碘/高锰酸钾(I/KMnO4)滴定法观察过氧化物的消耗率。
4、关于脱除重金属的工作过程及装置:
一种消除烟气中重金属的方法,它包括以下步骤:
(1)将纳米材料嵌入纤维基体上;
(2)使含有重金属的烟气通过嵌有纳米材料的纤维基体;
(3)纳米材料与烟气中的重金属反应,捕获烟气中的重金属。
所述将纳米材料嵌入纤维基体上的方法为:
在纤维基体上附着粘合剂;在粘合剂变干之前,将纳米材料由纳米喷雾器喷洒在织物上;在纳米材料被喷上之后,放置在室温下至少24小时,使之完全固化。
所述粘合剂选用
Figure PCTCN2015000267-appb-000010
REN50至80(
Figure PCTCN2015000267-appb-000011
)的有机硅树脂溶液、环氧树脂或者甲基环氧。
Figure PCTCN2015000267-appb-000012
REN系列是一个可用于任何耐热应用的粘合剂,它已被使用于许多制造工业,如汽车和飞机制造业;它可以在不失去粘附性的情况下承受高达650度的温度,并且还提供了良好的耐腐蚀性;
Figure PCTCN2015000267-appb-000013
REN系列通常在一小时的200度烘烤后变干。
所述将纳米材料嵌入纤维基体上的方法为:直接装载纳米材料在纤维基体上:将纳米材料悬浊在挥发性溶剂中;将纤维基体浸透在纳米材料悬浊液中,或将纳米材料通过喷雾器喷洒在纤维基体上;将附着有纳米材料的纤维基体在500度的烤箱中进行3至4小时的加热处理;在溶液蒸发后,纳米线和纳米颗粒将会与纤维网交织在一起;冷却至室温后,纳米材料将被安全的锁在纤维基体中。
所述挥发性溶剂为乙醇或乙酸乙酯。
所述纳米材料为附在纳米载体颗粒上的金纳米粒子、附在纳米载体颗粒上的WS2纳米粒子或CdS纳米线。
所述附在纳米载体颗粒上的金纳米粒子的合成方法为:
将2到4M/L的HAuCl4溶于蒸馏水中;用过筛后100至200微米直径的TiO2或r-Al2O3或SiO2作为纳米载体,加入到金溶液中;将溶液加热至70摄氏度,然后让它老化(需要被存储的一段时间,以获得所期望的品质)20到 40分钟;冷却到40摄氏度,加入30%NH3;过滤并用水洗涤,在100度烘箱中干燥至少12小时;然后在空气中350℃煅烧至少4小时;得到附在纳米载体TiO2或r-Al2O3或SiO2颗粒上的Au纳米颗粒,即Au-TiO2金-二氧化钛、Au-SiO2金-二氧化硅或Au-Al2O3
或者,用沉积加载(DP)的技术:用蒸馏水制备0.1到0.5M/L的氯金酸溶液;将溶液以10毫升/分钟的速度缓慢并搅拌的加入到TiO2或r-Al2O3或SiO2纳米载体的悬浮液中;加温至65℃并保持至少1小时,然后冷却至室温;添加1M/L的NH 40H,pH调节至7;缓慢搅拌至少2小时;过滤后用热水洗涤,在80℃烤箱中烘干至少12小时;然后在空气中180℃煅烧至少4小时,得到附在纳米载体TiO2或r-Al2O3或SiO2颗粒上的Au纳米颗粒,即Au-TiO2金-二氧化钛、Au-SiO2金-二氧化硅或Au-Al2O3
所述Au-TiO2金-二氧化钛、Au-SiO2金-二氧化硅或Au-Al2O3中Au的质量百分比为少于5%。
当湿气很重的时候,Au-TiO2金-二氧化钛具有比Au-SiO2金-二氧化硅和Au-Al2O3的更好的催化活性。
金在低温(不低于-20℃)在湿润(湿度>100%)条件下表现出高的催化活性,下表现出超强的稳定性;此外,金纳米颗粒形式沉积在过渡金属氧化物载体上时它的催化特性将得到提高。
所述附在纳米载体颗粒上的WS2纳米粒子的合成方法:
按照溶质与溶剤的质量与体积(W/V)比大于50比例,将摩尔比1∶18~20的(NH4)6W7O24·4H2O和Na2S·9H2O添加到的0.8M/L的HCl中,剧烈搅拌的溶液;80℃下加热至少0.5小时;
然后加入与Na2S·9H2O等摩尔量的NH2OH·HCl到溶液中,同时剧烈搅拌至少1小时;
在超声发生器里用高于20千赫(每秒20,000次)超声处理10分钟;
用去离子水洗涤数次以除去反应物的残留物,通过离心分离得到黑色粉末;
在空气中干燥,得到最终产物WS2粉末,即为WS2纳米粒子;
WS2纳米粒子使用前在一个400℃充满氮气的马弗沪内烘焙2小时功能化;
将WS2纳米粒子与TiO2或r-Al2O3或SiO2纳米载体按质量比1∶20-50在水中混合,慢慢搅拌至少1小时,然后400度以上干燥至少2小时,得到附在纳米载体颗粒上的WS2纳米粒子。
所述CdS纳米线的合成方法为:
在picoclave高压力反应器(高压釜)中放入甲苯,蒸馏水,和1,12烷硫醇,以体积比20∶2∶1混合;加入1∶1摩尔比的氯化镉和硫脲酸;将高压釜保持在180摄氏度进行反应24小时,然后使其冷却至室温;一种黄色的粉末会沉淀,收集沉淀粉物后用乙醇和蒸馏水洗涤以除去残留的有机溶剂;最终的产物在真空70℃干燥至少6小时,得到CdS纳米线;CdS纳米线使用前必须于乙醇中超声处理;
或者,首先将0.16~0.20M的硫酸镉加入到不断搅拌下的7~8M/L氨水溶液中;在此之后,在强力的搅拌之下缓慢的加入0.6~0.8M的硫脲酸;将溶液加温至65℃,而且pH保持在9-1l,强力的搅拌50-70分钟;然后将沉淀的黄色固体离心后收集,并在烘箱中干燥,65℃保持至少4小时,得到CdS纳米线;CdS纳米线使用前必须于乙醇中超声处理。
所述纤维基体为间位芳纶Meta-aramid、聚四氟乙烯PTFE、聚苯硫醚PPS、聚苯并咪唑PBI、聚酰亚胺ployimide、RY805纤维(GE Energy BHA Group)和PCI02纤维(GE Energy BHA Group),或者无纺纤维,所述无纺纤维为尼龙66、聚酯、聚氨酯等合成纤维。这些合成纤维都具有从190°~315°连续工作的温度范围;高性能纤维的主要特征是它独特的物理性能可以达到特 殊化学反应的技术功能;这些纤维中最突出的一些性能为它们的抗张强度、工作温度、极限氧指数(LOI)、和耐化学性。LOI是大气中支持燃烧所需的氧含量;LOI大于25的纤维是所谓的阻燃剂,必须要有至少25%的氧气才能使它们燃烧。
所述重金属为汞或铅。
所述步骤(3)中纳米材料为金纳米粒子,金(Au)元素与重金属元素汞(Hg°)和(铅Pb°)具有高亲和力,能够形成化学键,从而将重金属元素捕捉;纳米材料为WS2纳米粒子或CdS纳米线,通过MLCT(金属配体电荷转移)原理捕捉重金属元素:WS2和CdS在化学结构的特性上是介于离子化合物和共价化合物之间;金属(W和Cd)的特性表现就像刘易斯酸,而非金属无机配体(S)的特性表现就像刘易斯碱;电子集中在无机配体上,使部分的无机配体成为负电荷;无机配位体会吸引重金属元素,WS2、CdS会吸引烟气中的铅离子,元素铅和元素汞。
所述步骤(3)中嵌有纳米材料的纤维基体所捕获的重金属中的汞通过由巯基丙酸和2,6-吡啶二羧酸合成的液体来浸泡过滤器将重金属洗脱出来;所捕获的重金属中的金属铅(Pb°)会被转换成氢氧化铅Pb(OH)2;氢氧化铅可用稀醋酸或稀硝酸轻易的洗出。
所述巯基丙酸和2,6-吡啶二羧酸的螯合配体与汞有相当高度的结合性,结合常数分别为log K 10.1和20.2;所以我们能对此无纺纤维过滤器进行清洗和回收使用;被清出来的汞可以从清洗液里萃取出来然后进行妥善的处置。
所述含有重金属的烟气通过嵌有纳米材料的纤维基体之前通入反应容器中进行预处理;所述反应容器中加入含有芬顿试剂且使用α-羟基酸调节pH值至小于等于3的溶液,所述芬顿试剂包含能发生光助芬顿反应的金属系统和过氧化氢;所述溶液配置过氧化氢与水的质量百分比为3%~5%;过氧化氢与金属系统摩尔比大于等于10∶1;
根据金属系统的光吸收峰,在反应容器中设置光照系统;
烟气通入反应容器,与芬顿试剂充分接触反应,使汞元素转化为汞离子;
将反应后溶液导出,并定时监测导出溶液中芬顿试剂的浓度,根据监测的情况,添加新的含有芬顿试剂的溶液使溶液成分保持稳定;将净化后的气体排出反应容器。
所述金属系统为Fe(II)/F(III)系统或Cu(I)/Cu(II)系统;当金属系统为Fe(II)/F(III)系统时,则光照为波长为200nm~400nm的紫外光;当金属系统为Cu(I)/Cu(II)系统时,光照为波长为600nm~800nm的可见光。
所述Fe(II)/F(III)系统由直径小于20纳米的FeSO4和Fe3O4颗粒构成。
所述Cu(I)/Cu(II)系统由直径小于20纳米的Cu2O和CuSO4颗粒构成。
所述α-羟基酸为乙醇酸、丙酮酸或乳酸。
所述过氧化氢的消耗量通过定期收集样品被密切的监测,并且使用碘/高锰酸钾(I/KMnO4)滴定法观察过氧化物的消耗率。
所述反应容器中气体直接通入液体以增加烟气与液体接触的面积和时间,或者液体通过喷淋装置喷出以增加烟气与液体接触的面积和时间;或者两种方式同时使用。
一种纳米烟气脱重金属装置,其特征在于它包括嵌有纳米材料的纤维基体。
所述嵌有纳米材料的纤维基体设置在离心风扇上。
所述嵌有纳米材料的纤维基体附着在离心风扇的扇叶上,或者设置在倾斜扇叶之间;所述倾斜扇叶的倾斜角度为30-45度。
所述纳米材料为附在纳米载体颗粒上的金纳米粒子、附在纳米载体颗粒上的WS2纳米粒子或CdS纳米线。
所述纤维基体为间位芳纶Meta-aramid、聚四氟乙烯PTFE、聚苯硫醚PPS、聚苯并咪唑PBI、聚酰亚胺ployimide、RY805纤维(GE Energy BHA Group)和PC102纤维(GE Energy BHA Group),或者无纺纤维,所述无纺纤维为尼龙66、聚酯、聚氨酯等合成纤维。
所述离心风扇由框架和扇叶构成,扇叶通过,扇叶通过中心轴和轴套与框架连接与框架连接;所述框架和扇叶是由镍-钼合金(铝合金、不锈钢)制成,因它在任何温度下的耐酸性,例如
Figure PCTCN2015000267-appb-000014
合金(65%Ni、28.5%Mo、1.5%Cr、1.5%Fe、3%Co、3%W、3%Mn、0.5%Al、0.2%Ti、0.1%Si与0.01%C)便是一个很好的迭择。之前所描述的,可更换和可回收的嵌有纳米材料的纤维基体将会被安装在风扇的扇叶上。这种嵌有纳米材料的纤维基体的纳米材料是经过特别的设计来与烟气中的重金属产生反应,尤其是汞。根据不同的使用情况,一个典型的30万兆瓦电厂如果用比较次一点煤,每年大约也只需换无纺纤维2~3次。
所述一种纳米烟气脱重金属装置的输入端连接光能仓的输出端,光能仓包括光能仓体、光能仓进气口、光能仓出气口、光能仓进液口、气液混合通道、光能仓抽水泵、光能仓出液口、光能仓喷淋装置和光照设备,所述光能仓进气口和光能仓出气口设置在光能仓体的上部,所述光能仓进液口设置在光能仓体的中部,所述光能仓出液口设置在光能仓体的底部,所述气液混合通道、光能仓喷淋装置和光照设备位于光能仓体内,气液混合通道的输入端连接光能仓进气口,气液混合通道的输出端位于光能仓体下部接近仓底的位置,所述光能仓抽水泵通过管道连接光能仓体底部的输出端和光能仓喷淋装置的输入端;所述预处理仓出气口连接光能仓进气口。
所述光能仓体由不锈钢金属板制成,光能仓体内壁上涂有防腐涂层。
所述光能仓体的侧壁上设置光能仓液位器,光能仓体顶部设置光能仓检修盖。
所述光照设备为石英管紫外灯或可见光灯。
本发明的优越性:
1、本发明能有效的净化废气,将氮氧化物变成了硝酸,将二氧化硫变成硫酸,并予以回收,因此,本发明回收的利益远超过设备本身的运行成本,使用者可获得更多的利润;
2、本发明可以被纳入到燃煤电厂现有的系统用来提高其有效性,或完全取代原来的旧系统;
3、本发明可适用在其它的工业市场,包括水泥厂、钢铁厂、市政府废物燃烧厂、医疗废物燃烧厂、氯气制造厂、纸浆和纸张生产厂等;
4、本发明占地小、改造简易,而且制造与运行成本均少于目前RSC脱硝技术的50%左右。在严格遵循操作规程的前提下,本发明可保延续使用到15~20年无需进行工程改造,并且可与运行的燃煤锅炉同步进行维修养护即可。
5、纳米材料的优点为其表面积大,分子之间电子层的互相传送非常迅速,可使化学反应速度指数般地加快;尤其在光学领域中,纳米的直径越小光能的活性与动量越大。所以想使流速如此快的烟气产生任何化学反应,纳米技术的优点是不可否定的。自身的氧化还原反应为自发性,具有催化剂的特性,所以无需经常加添,用量少,非常的经济。
6、此发明脱硫效益可达到99.99%,而且制造成与运行均在目前脱硫技术的50%左右,并且在没有任何额外费用的情况下解决了PM2.5的去除问题。设备占地小、改造简易。本发明建立在光助芬顿反应的原理上,并在消除SO2与烟尘上取得了巨大成功。本发明所述设备是基于AOPs-芬顿反应的原理而成功的工业化装置。本发明所述方法是一个更经济、更高效的控制空气污染的方式,无需任何额外的制造与运行成本。
本系统净化效果检测试验报告如下:
1、本发明用于净化汽车尾气的试验报告:
检测标准(方法)及使用仪器
[根据细则26改正01.07.2015] 
Figure WO-DOC-FIGURE-1
检测结果                             单位:毫克/立方米
[根据细则26改正01.07.2015] 
Figure WO-DOC-FIGURE-2
2、本发明用于净化锅炉废气的试验报告(试验地点为某锅炉房):
检测标准(方法)及使用仪器
[根据细则26改正01.07.2015] 
Figure WO-DOC-FIGURE-3
检测结果                             单位:毫克/立方米
[根据细则26改正01.07.2015] 
Figure WO-DOC-FIGURE-4
备注:标准值依据《火电场大气污染物排放标准》(GB13223-2011)
3、本发明用于净化工业废气的试验报告(试验地点为某电厂和某钢厂)
检测标准(方法)及使用仪器
[根据细则26改正01.07.2015] 
Figure WO-DOC-FIGURE-5
检测结果                             单位:毫克/立方米
[根据细则26改正01.07.2015] 
Figure WO-DOC-FIGURE-6
4、本发明用于净化二氧化硫的试验报告
[根据细则26改正01.07.2015] 
Figure WO-DOC-FIGURE-7
5、本发明用于消除汞的技术效果:
[根据细则26改正01.07.2015] 
Figure WO-DOC-FIGURE-8
本发明用于消除铅的技术效果:
[根据细则26改正01.07.2015] 
Figure WO-DOC-FIGURE-9
Figure PCTCN2015000267-appb-000024
(四)附图说明:
图1为本发明所涉一种净化污染空气的系统的整体结构示意图。
图2为本发明所涉一种净化污染空气的系统中的预处理仓结构示意图,其中图2-1为第一种实施例结构示意图,图2-2为第二种实施例结构示意图。
图3为本发明所涉一种净化污染空气的系统中的脱硝仓结构示意图,其中,图3-1为第一种实施例结构示意图,图3-2为第二种实施例结构示意图。
图4为本发明所涉一种净化污染空气的系统中脱硫脱尘仓中的光能仓结构示意图。
图5为本发明所涉一种净化污染空气的系统中脱硫脱尘仓中的光能仓和净化仓结构示意图。
图6为本发明所涉一种净化污染空气的系统中脱硫脱尘仓中的重金过滤装置结构示意图,其中6-1为第一种实施例结构示意图,6-2为第一种实施例立体结构示意图,6-3为第一种实施例分解示意图,6-4为第二种实施例结构示意图。
图7为本发明所涉一种净化污染空气的系统的工作方法流程图。
图8为物质转移理论示意图。
图9为渗透理论的反应扩散平面几何原理图。
图10-1~图10-4为液气中界面反应过程图。(图10-1表明气体和液体转换之间没有障碍,气体直接传递并扩散到液体,此反应为瞬间反映。图10-2表明一旦穿过气体和液体的中界面,气体反应物会在气体中初始浓度降低,反应速率取决于气体传递到液体的扩散时间。图10-3表明气体分子无法通过气体和液体中界面并扩散到液体,通过这个过程,反应物在液 体的浓度为零。图10-4表明气体和液体相互作用的最有效的方式,气体分子的浓度在中界面减小,在液体中浓度增加。)
图11-1为平推流气体-混合流液体的设计图。
图11-2为混合流气体-批处理反应液体的设计图。
其中,图1中标号为:1.引风机a;2.循环泵;3.预处理仓;4.脱硝仓;5.光能仓;6维修盖;7.重金属过滤装置;8.引风机b;9a-9b.化学试剂补充罐a;10a&10b.酸净化处理装置;10c.蒸馏装置;11.化学试剂补充罐b;12.计量泵;13.化学试剂补充罐c.
图2-1、2-2、4、5中标号为:1-1为预处理仓检修盖,1-2为预处理仓喷淋装置,1-3为漏斗形收集板,1-4为预处理仓进气口,1-5为采样口,1-6为预处理仓抽水泵,1-7为储液器,1-8为预处理仓出液口,1-9为预处理仓液位器,1-10为预处理仓进液口,1-11为预处理仓检修门,1-12为预处理仓出气口,1-13为预处理仓体,2-1为光能仓出气口,2-2为光能仓进气口,2-3为光能仓进液口,2-4为气液混合通道,2-5为光能仓抽水泵,2-6为光能仓出液口,2-7为光能仓液位器,2-8为光能仓喷淋装置,2-9为光能仓检修盖,2-10光照设备,2-11为光能仓体,3-1为净化仓体,3-2为净化板,3-3为液体流量控制栓,3-4为净化仓出液口。
图3中标号为:1-1为检修盖,1-2为预处理仓喷淋系统,1-3为漏斗形收集板,1-4为预处理仓进气口,1-5为采样口,1-6为预处理仓抽水泵,1-7为储液器,1-8为预处理仓出液口,1-9为预处理仓液位器,1-10为预处理仓进液口,1-11为检修门,1-12为预处理仓出气口,1-13为预处理仓仓体,2-1为脱硝仓出气口,2-2为脱硝仓喷淋系统,2-3为脱硝仓进气口,2-4为脱硝仓进液口,2-5为气液混合通道,2-6为脱硝仓液位器,2-7为脱硝仓出液口,2-8为脱硝仓抽水泵,2-9为检修盖,2-10为脱硝仓仓体。
图6-1、6-2、6-3、6-4中的标号为:1-1为框架,1-2为扇叶,1-3为中心轴,1-4为轴套,1-5为嵌有纳米材料的纤维基体,1-6为夹件。
图8中,PA=反应物A之摩尔系数,[A]int=反应A最初浓度,[A]bulk=反应物A在液体的主体浓度。
图9中,PA=反应物A之摩尔系数,PAi=反应物A最初之摩尔系数,[A]*=反应物A在中界面之浓度,[A]b=反应物A在液体的主体浓度,x=反应物A在薄膜中扩散的距离。
图10-1~10-4中,[A]*=反应物A在中界面之浓度,[A]0=反应物A在液体的主体最初之浓度,[B]0=液体的主体最初之浓度,δ=中界面厚度。
图11-1中,Gas in为气体进口,Gas out为气体出口,Liquid in为液体进口,Liquid out为液体出口,FL为液体流动的方向,FG为气体流动的方向,Pa0为反应物的初浓度,Paf为反应物最后浓度,[B]b0为液体主体的初浓度,[B]bf为液体主体的最后浓度。
图11-2中,Gas in为气体进口,Gas out为气体出口,FG为气体流动的方向,Pa0为反应物的初浓度,Paf为反应物最后浓度。
(五)具体实施方式:
实施例1:一种净化污染空气的系统(见图1、2-1、3-1、4、6-1、6-2、6-3),其特征在于它是由引风机a、循环泵、预处理仓、脱硝仓、脱硫脱尘仓、维修盖、重金属过滤装置、引风机b、化学试剂补充罐a、酸净化处理装置、化学试剂补充罐b、计量泵、化学试剂补充罐c所构成;污染气源经所述的引风机1进入预处理仓3,预处理仓的输出端连接脱硝仓的输入端,脱硝仓的输出端连接脱硫仓的输入端,脱硫脱尘仓的输出端连接重金属过滤装置的输入端,重金属过滤装置的输出端连接引风机,引风机排出净化后的气体;所述脱硫脱尘仓上连接有化学试剂补充罐,预处理仓、脱硝仓和脱硫脱尘仓的出液口分别连接酸净化处理装置,预处理仓和脱硝仓通过管道分别连接化学试剂补充罐a,预处理仓、脱硝仓和脱硫脱尘仓通过计量泵连接化学试剂补充罐b,预处理仓上装配有循环泵;所述酸净化处理装置是由有加热能力的收集槽、蒸馏装置和硝酸冷却槽构成,收集槽的输出端连接蒸馏装置的输入端,蒸馏装置的输出端连接硝酸冷却槽的输入端,硝酸冷却槽的输出端流出处理后的硝酸,收集槽的输出端流出处理后的硫酸。
上述所述预处理仓包括预处理仓体、预处理仓喷淋装置、预处理仓进气口、预处理仓抽水泵、储液器、预处理仓出液口、预处理仓进液口和预处理仓出气口,所述预处理仓体的底部是储液器,预处理仓出液口设置在储液器处,所述预处理仓进气口、预处理仓进液口和预处理仓出气口设置 在储液器上方的预处理仓体上,预处理仓出气口在预处理仓进气口的上方,所述预处理仓喷淋装置设置在预处理仓体内,所述预处理仓抽水泵通过管道连接储液器的输出端和预处理仓喷淋装置的输入端;所述预处理仓喷淋装置为设置在预处理仓体内顶部的加压喷淋装置和设置在预处理仓体内壁上的喷雾式喷淋装置(见图2-1)。
上述所述脱硝仓包括脱硝仓仓体、脱硝仓出气口、脱硝仓喷淋系统、脱硝仓进气口、脱硝仓进液口、气液混合通道、脱硝仓出液口和脱硝仓抽水泵;所述脱硝仓进气口和脱硝仓出气口设置在脱硝仓仓体的上部;所述脱硝仓进液口设置在脱硝仓仓体的中部;所述脱硝仓出液口设置在脱硝仓仓体的底部;所述气液混合通道、脱硝仓喷淋系统位于脱硝仓仓体内;气液混合通道的输入端连接脱硝仓进气口,输出端置于脱硝仓仓体内的液体内;所述脱硝仓抽水泵通过管道连接脱硝仓仓体底部的输出端和脱硝仓喷淋系统的输入端。所述气液混合通道包括3个中型气液混合通道和3小型气液混合通道(见图3-1)。
上述所述脱硫脱尘仓包括光能仓,所述光能仓包括光能仓体、光能仓进气口、光能仓出气口、光能仓进液口、气液混合通道、光能仓抽水泵、光能仓出液口、光能仓喷淋装置和光照设备,所述光能仓进气口和光能仓出气口设置在光能仓体的上部,所述光能仓进液口设置在光能仓体的中部,所述光能仓出液口设置在光能仓体的底部,所述气液混合通道、光能仓喷淋装置和光照设备位于光能仓体内,气液混合通道的输入端连接光能仓进气口,气液混合通道的输出端位于光能仓体下部接近仓底的位置,所述光能仓抽水泵通过管道连接光能仓体底部的输出端和光能仓喷淋装置的输入端(见图4)。
上述所述重金属过滤装置包括嵌有纳米材料的纤维基体。所述嵌有纳米材料的纤维基体附着在离心风扇的扇叶上,所述倾斜扇叶的倾斜角度为30-45度。(见图6-1、6-2、6-3)。
一种上述净化污染空气的系统的工作方法,其特征在于包括以下步骤:
(1)准备工作:各工作仓做好工作前准备并启动各相应设备,包括:
预处理仓中加入水和含有氧化剂且使用硝酸调节pH值至小于等于3的溶液;
脱硝仓中加入含有氧化剂且pH值小于等于3的溶液;
在脱硫脱尘仓中的光能仓中加入含有芬顿试剂且使用α-羟基酸调节pH值至小于等于3的溶液,所述芬顿试剂包含能发生光助芬顿反应的金属系统和过氧化氢;所述溶液配置过氧化氢与水的质量百分比为3%~5%;过氧化氢与金属系统摩尔比大于等于10∶1;根据金属系统的光吸收峰,在光能仓中设置光照系统;
(2)预处理仓的工作:污染空气通过引风机进入预处理仓,与仓内液体充分接触,预处理过程除去气体中的直径大于10微米的固体颗粒,并将NO氧化为NO2,碳颗粒氧化为一氧化碳,二氧化硫氧化为三氧化硫;将含有固体颗粒和硝酸的溶液由预处理容器流入酸净化处理装置,净化后的气体排出预处理仓;
(3)脱硝仓的工作:预处理仓净化后的气体进入脱硝仓中,氮氧化物与氧化剂反应生成硝酸,含有硝酸的溶液由脱硝仓流入酸净化处理装置,净化后的气体排出脱硝仓;
(4)脱硫脱尘仓的工作:脱硝仓排出的气体进入脱硫脱尘仓,与仓内的芬顿试剂充分接触反应,使气体中的碳氢化合物分解为二氧化碳和水,一氧化碳氧化为二氧化碳,三氧化硫溶于溶液生成硫酸;含有硫酸的溶液由脱硫脱尘仓流入酸净化处理装置,净化后的气体排出脱硫仓;
(5)重金属过滤装置的工作:(5.1)将纳米材料嵌入纤维基体上;(5.2)使含有重金属的烟气通过嵌有纳米材料的纤维基体;(5.3)纳米材料与烟气中的重金属反应,捕获烟气中的重金属;
(6)酸净化处理装置的工作:从预处理仓、脱硝仓、脱硫脱尘仓流出的含有硫酸和硝酸的混合液体流入酸净化处理装置中的收集槽内,收集槽带有的加热装置加热混合液体使硝酸气化,加热温度大于等于122℃,然后经过蒸馏提炼的方法净化,净化后的硝酸冷却后收集在硝酸冷却槽中等待回收,硫酸将留在收集槽中等待回收;
(7)定时监测各仓的反应溶液的浓度,根据监测的情况,由化学试剂补充罐向各相应仓中充入相应的试剂,使溶液成分保持稳定;
(8)回收由净化污染空气的系统排出的硫酸和硝酸;
(9)由重金属过滤装置排出的净化后气体经引风机排出系统外。
实施例2:一种净化污染空气的系统(见图1、2-2、3-2、5、6-4),其特征在于它是由引风机a、循环泵、预处理仓、脱硝仓、脱硫脱尘仓、维修盖、重金属过滤装置、引风机b、化学试剂补充罐a、酸净化处理装置、化学试剂补充罐b、计量泵、化学试剂补充罐c所构成;污染气源经所述的引风机1进入预处理仓3,预处理仓的输出端连接脱硝仓的输入端,脱硝仓的输出端连接脱硫仓的输入端,脱硫脱尘仓的输出端连接重金属过滤装置的输入端,重金属过滤装置的输出端连接引风机,引风机排出净化后的气体;所述脱硫脱尘仓上连接有化学试剂补充罐,预处理仓、脱硝仓和脱硫脱尘仓的出液口分别连接酸净化处理装置,预处理仓和脱硝仓通过管道分别连接化学试剂补充罐a,预处理仓、脱硝仓和脱硫脱尘仓通过计量泵连接化学试剂补充罐b,预处理仓上装配有循环泵;所述酸净化处理装置是由有加热能力的收集槽、蒸馏装置和硝酸冷却槽构成,收集槽的输出端连接蒸馏装置的输入端,蒸馏装置的输出端连接硝酸冷却槽的输入端,硝酸冷却槽的输出端流出处理后的硝酸,收集槽的输出端流出处理后的硫酸。
上述所述预处理仓包括预处理仓体、预处理仓喷淋装置、预处理仓进气口、预处理仓抽水泵、储液器、预处理仓出液口、预处理仓进液口和预处理仓出气口,所述预处理仓体的底部是储液器,预处理仓出液口设置在储液器处,所述预处理仓进气口、预处理仓进液口和预处理仓出气口设置在储液器上方的预处理仓体上,预处理仓出气口在预处理仓进气口的上方,所述预处理仓喷淋装置设置在预处理仓体内,所述预处理仓抽水泵通过管道连接储液器的输出端和预处理仓喷淋装置的输入端;所述预处理仓喷淋装置为设置在预处理仓体内顶部的加压喷淋装置(见图2-2)。
上述所述脱硝仓包括脱硝仓仓体、脱硝仓出气口、脱硝仓喷淋系统、脱硝仓进气口、脱硝仓进液口、气液混合通道、脱硝仓出液口和脱硝仓抽水泵;所述脱硝仓进气口和脱硝仓出气口设置在脱硝仓仓体的上部;所述脱硝仓进液口设置在脱硝仓仓体的中部;所述脱硝仓出液口设置在脱硝仓仓体的底部;所述气液混合通道、脱硝仓喷淋系统位于脱硝仓仓体内;气液混合通道的输入端连接脱硝仓进气口,输出端置于脱硝仓仓体内的液体内;所述脱硝仓抽水泵通过管道连接脱硝仓仓体底部的输出端和脱硝仓喷淋系统的输入端。所述气液混合通道包括5个大型混合通道(见3-2)。
上述所述脱硫脱尘仓包括光能仓,所述光能仓包括光能仓体、光能仓进气口、光能仓出气口、光能仓进液口、气液混合通道、光能仓抽水泵、光能仓出液口、光能仓喷淋装置和光照设备,所述光能仓进气口和光能仓出气口设置在光能仓体的上部,所述光能仓进液口设置在光能仓体的中部,所述光能仓出液口设置在光能仓体的底部,所述气液混合通道、光能仓喷淋装置和光照设备位于光能仓体内,气液混合通道的输入端连接光能仓进气口,气液混合通道的输出端位于光能仓体下部接近仓底的位置,所述光能仓抽水泵通过管道连接光能仓体底部的输出端和光能仓喷淋装置的输入端。
上述所述净化仓包括净化仓体、净化板、液体流量控制栓和净化仓出液口,所述净化仓体上放置光能仓体,所述光能仓出液口伸入净化仓体中,所述液体流量控制栓安装在光能仓出液口上,所述光能仓出液口位于净化板上方,所述净化板固定在净化仓体内,所述净化仓出液口设置在净化仓体底部。(见图5)
上述所述重金属过滤装置包括嵌有纳米材料的纤维基体。所述嵌有纳米材料的纤维基体设置在倾斜扇叶之间,所述倾斜扇叶的倾斜角度为30-45度。(见6-4)
一种上述净化污染空气的系统的工作方法,其特征在于包括以下步骤:
(1)准备工作:各工作仓做好工作前准备并启动各相应设备,包括:
预处理仓中加入水和含有氧化剂且使用硝酸调节pH值至小于等于3的溶液;
脱硝仓中加入含有氧化剂且pH值小于等于3的溶液;
在脱硫脱尘仓中的光能仓中加入含有芬顿试剂且使用α-羟基酸调节pH值至小于等于3的溶液,所述芬顿试剂包含能发生光助芬顿反应的金属系统和过氧化氢;所述溶液配置过氧化氢与水的质量百分比为3%~5%;过氧化氢与金属系统摩尔比大于等于10∶1;根据金属系统的光吸收峰,在光能仓中设置光照系统;
(2)预处理仓的工作:污染空气通过引风机进入预处理仓,与仓内液体充分接触,预处理过程除去气体中的直径大于10微米的固体颗粒,并将NO氧化为NO2,碳颗粒氧化为一氧化碳,二氧化硫氧化为三氧化硫;将含 有固体颗粒和硝酸的溶液由预处理容器流入酸净化处理装置,净化后的气体排出预处理仓;
(3)脱硝仓的工作:预处理仓净化后的气体进入脱硝仓中,氮氧化物与氧化剂反应生成硝酸,含有硝酸的溶液由脱硝仓流入酸净化处理装置,净化后的气体排出脱硝仓;
(4)脱硫脱尘仓的工作:脱硝仓排出的气体进入脱硫脱尘仓,与仓内的芬顿试剂充分接触反应,使气体中的碳氢化合物分解为二氧化碳和水,一氧化碳氧化为二氧化碳,三氧化硫溶于溶液生成硫酸;含有硫酸的溶液由脱硫脱尘仓流入酸净化处理装置,净化后的气体排出脱硫仓;
(5)重金属过滤装置的工作:(5.1)将纳米材料嵌入纤维基体上;(5.2)使含有重金属的烟气通过嵌有纳米材料的纤维基体;(5.3)纳米材料与烟气中的重金属反应,捕获烟气中的重金属;
(6)酸净化处理装置的工作:从预处理仓、脱硝仓、脱硫脱尘仓流出的含有硫酸和硝酸的混合液体流入酸净化处理装置中的收集槽内,收集槽带有的加热装置加热混合液体使硝酸气化,加热温度大于等于122℃,然后经过蒸馏提炼的方法净化,净化后的硝酸冷却后收集在硝酸冷却槽中等待回收,硫酸将留在收集槽中等待回收;
(7)定时监测各仓的反应溶液的浓度,根据监测的情况,由化学试剂补充罐向各相应仓中充入相应的试剂,使溶液成分保持稳定;
(8)回收由净化污染空气的系统排出的硫酸和硝酸;
(9)由重金属过滤装置排出的净化后气体经引风机排出系统外。

Claims (10)

  1. 一种净化污染空气的系统,其特征在于它是由引风机a、循环泵、预处理仓、脱硝仓、脱硫脱尘仓、维修盖、重金属过滤装置、引风机b、化学试剂补充罐a、酸净化处理装置、化学试剂补充罐b、计量泵、化学试剂补充罐c所构成;污染气源经所述的引风机1进入预处理仓3,预处理仓的输出端连接脱硝仓的输入端,脱硝仓的输出端连接脱硫仓的输入端,脱硫脱尘仓的输出端连接重金属过滤装置的输入端,重金属过滤装置的输出端连接引风机,引风机排出净化后的气体;所述脱硫脱尘仓上连接有化学试剂补充罐,预处理仓、脱硝仓和脱硫脱尘仓的出液口分别连接酸净化处理装置,预处理仓和脱硝仓通过管道分别连接化学试剂补充罐a,预处理仓、脱硝仓和脱硫脱尘仓通过计量泵连接化学试剂补充罐b,预处理仓上装配有循环泵;所述酸净化处理装置是由有加热能力的收集槽、蒸馏装置和硝酸冷却槽构成,收集槽的输出端连接蒸馏装置的输入端,蒸馏装置的输出端连接硝酸冷却槽的输入端,硝酸冷却槽的输出端流出处理后的硝酸,收集槽的输出端流出处理后的硫酸。
  2. 根据权利要求1所述一种净化污染空气的系统,其特征在于所述预处理仓包括预处理仓体、预处理仓喷淋装置、预处理仓进气口、预处理仓抽水泵、储液器、预处理仓出液口、预处理仓进液口和预处理仓出气口,所述预处理仓体的底部是储液器,预处理仓出液口设置在储液器处,所述预处理仓进气口、预处理仓进液口和预处理仓出气口设置在储液器上方的预处理仓体上,预处理仓出气口在预处理仓进气口的上方,所述预处理仓喷淋装置设置在预处理仓体内,所述预处理仓抽水泵通过管道连接储液器的输出端和预处理仓喷淋装置的输入端。
  3. 根据权利要求2所述一种净化污染空气的系统,其特征在于所述预处理仓喷淋装置为设置在预处理仓体内顶部的加压喷淋装置,或者为设置在预处理仓体内顶部的加压喷淋装置和设置在预处理仓体内壁上的喷雾式喷淋装置。
  4. 根据权利要求1所述一种净化污染空气的系统,其特征在于所述脱硝仓包括脱硝仓仓体、脱硝仓出气口、脱硝仓喷淋系统、脱硝仓进气口、脱硝仓进液口、气液混合通道、脱硝仓出液口和脱硝仓抽水泵;所述脱硝仓进气口和脱硝仓出气口设置在脱硝仓仓体的上部;所述脱硝仓进液口设置在脱硝仓仓体的中部;所述脱硝仓出液口设置在脱硝仓仓体的底部;所述气液混合通道、脱硝仓喷淋系统位于脱硝仓仓体内;气液混合通道的输入端连接脱硝仓进气口,输出端置于脱硝仓仓体内的液体内;所述脱硝仓抽水泵通过管道连接脱硝仓仓体底部的输出端和脱硝仓喷淋系统的输入端。
  5. 根据权利要求4所述一种净化污染空气的系统,其特征在于所述气液混合通道包括3个中型气液混合通道和3小型气液混合通道,或者包括5个大型混合通道。
  6. 根据权利要求1所述一种净化污染空气的系统,其特征在于所述脱硫脱尘仓包括光能仓,所述光能仓包括光能仓体、光能仓进气口、光能仓出气口、光能仓进液口、气液混合通道、光能仓抽水泵、光能仓出液口、光能仓喷淋装置和光照设备,所述光能仓进气口和光能仓出气口设置在光能仓体的上部,所述光能仓进液口设置在光能仓体的中部,所述光能仓出液口设置在光能仓体的底部,所述气液混合通道、光能仓喷淋装置和光照设备位于光能仓体内,气液混合通道的输入端连接光能仓进气口,气液混合通道的输出端位于光能仓体下部接近仓底的位置,所述光能仓抽水泵通过管道连接光能仓体底部的输出端和光能仓喷淋装置的输入端。
  7. 根据权利要求6所述一种净化污染空气的系统,其特征在于所述脱硫脱尘仓还包括净化仓,所述净化仓包括净化仓体、净化板、液体流量控制栓和净化仓出液口,所述净化仓体上放置光能仓体,所述光能仓出液口伸入净化仓体中,所述液体流量控制栓安装在光能仓出液口上,所述光能仓出液口位于净化板上方,所述净化板固定在净化仓体内,所述净化仓出液口设置在净化仓体底部。
  8. 根据权利要求1所述一种净化污染空气的系统,其特征在于所述重金属过滤装置包括嵌有纳米材料的纤维基体。
  9. 根据权利要求8所述一种净化污染空气的系统,其特征在于所述嵌有纳米材料的纤维基体附着在离心风扇的扇叶上,或者设置在倾斜扇叶之间;所述倾斜扇叶的倾斜角度为30-45度。
  10. 一种权利要求1所述净化污染空气的系统的工作方法,其特征在于包括以下步骤:
    (1)准备工作:各工作仓做好工作前准备并启动各相应设备,包括:
    预处理仓中加入水和含有氧化剂且使用硝酸调节pH值至小于等于3的溶液;
    脱硝仓中加入含有氧化剂且pH值小于等于3的溶液;
    在脱硫脱尘仓中的光能仓中加入含有芬顿试剂且使用α-羟基酸调节pH值至小于等于3的溶液,所述芬顿试剂包含能发生光助芬顿反应的金属系统和过氧化氢;所述溶液配置过氧化氢与水的质量百分比为3%~5%;过氧化氢与金属系统摩尔比大于等于10∶1;根据金属系统的光吸收峰,在光能仓中设置光照系统;
    (2)预处理仓的工作:污染空气通过引风机进入预处理仓,与仓内液体充分接触,预处理过程除去气体中的直径大于10微米的固体颗粒,并将NO氧化为NO2,碳颗粒氧化为一氧化碳,二氧化硫氧化为三氧化硫;将含有固体颗粒和硝酸的溶液由预处理容器流入酸净化处理装置,净化后的气体排出预处理仓;
    (3)脱硝仓的工作:预处理仓净化后的气体进入脱硝仓中,氮氧化物与氧化剂反应生成硝酸,含有硝酸的溶液由脱硝仓流入酸净化处理装置,净化后的气体排出脱硝仓;
    (4)脱硫脱尘仓的工作:脱硝仓排出的气体进入脱硫脱尘仓,与仓内的芬顿试剂充分接触反应,使气体中的碳氢化合物分解为二氧化碳和水,一氧化碳氧化为二氧化碳,三氧化硫溶于溶液生成硫酸;含有硫酸的溶液由脱硫脱尘仓流入酸净化处理装置,净化后的气体排出脱硫仓;
    (5)重金属过滤装置的工作:(5.1)将纳米材料嵌入纤维基体上;(5.2)使含有重金属的烟气通过嵌有纳米材料的纤维基体;(5.3)纳米材料与烟气中的重金属反应,捕获烟气中的重金属;
    (6)酸净化处理装置的工作:从预处理仓、脱硝仓、脱硫脱尘仓流出的含有硫酸和硝酸的混合液体流入酸净化处理装置中的收集槽内,收集槽带有的加热装置加热混合液体使硝酸气化,加热温度大于等于122℃,然后经过蒸馏提炼的方法净化,净化后的硝酸冷却后收集在硝酸冷却槽中等待回收,硫酸将留在收集槽中等待回收;
    (7)定时监测各仓的反应溶液的浓度,根据监测的情况,由化学试剂补充罐向各相应仓中充入相应的试剂,使溶液成分保持稳定;
    (8)回收由净化污染空气的系统排出的硫酸和硝酸;
    (9)由重金属过滤装置排出的净化后气体经引风机排出系统外。
PCT/CN2015/000267 2014-04-23 2015-04-17 一种净化污染空气的系统及其工作方法 WO2015161671A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410166764.8 2014-04-23
CN201410166764.8A CN104084015B (zh) 2014-04-23 2014-04-23 一种净化污染空气的系统及其工作方法

Publications (1)

Publication Number Publication Date
WO2015161671A1 true WO2015161671A1 (zh) 2015-10-29

Family

ID=51631833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/000267 WO2015161671A1 (zh) 2014-04-23 2015-04-17 一种净化污染空气的系统及其工作方法

Country Status (2)

Country Link
CN (1) CN104084015B (zh)
WO (1) WO2015161671A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106422731A (zh) * 2016-08-31 2017-02-22 上海京藤化工有限公司 一种用于硫酸生产装置的尾气吸收装置
CN106552498A (zh) * 2016-12-01 2017-04-05 西安航天源动力工程有限公司 一种预脱硫式烟气污染物一体化脱除装置
CN107767081A (zh) * 2017-11-15 2018-03-06 国网冀北电力有限公司电力科学研究院 一种燃煤电厂大气环境影响评价方法及装置
CN108211642A (zh) * 2018-03-23 2018-06-29 浙江欣欣天恩水产饲料有限公司 饲料生产用湿法离心除尘器
CN112957892A (zh) * 2021-02-05 2021-06-15 中国华能集团清洁能源技术研究院有限公司 一种锅炉烟气二氧化碳吸收系统和方法
CN114191907A (zh) * 2022-01-13 2022-03-18 卓宇轩 一种异味处理系统
CN114588750A (zh) * 2022-02-24 2022-06-07 深圳瑞华泰薄膜科技股份有限公司 一种用于聚酰亚胺薄膜生产尾气的处理方法
US11452966B2 (en) 2020-11-25 2022-09-27 Saudi Arabian Oil Company Industrial air cleaner
CN113828136B (zh) * 2021-10-15 2024-04-12 上海电气集团股份有限公司 烟气处理系统及处理方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103949153B (zh) * 2014-04-23 2017-01-04 林小晓 一种利用光助芬顿反应净化烟气的方法及装置
CN104084015B (zh) * 2014-04-23 2016-01-20 林小晓 一种净化污染空气的系统及其工作方法
CN103949128B (zh) * 2014-04-23 2016-08-17 林小晓 一种净化含有粉尘的烟气的方法及装置
CN107694334A (zh) * 2017-11-15 2018-02-16 上海电力学院 一种烟囱内光催化脱汞装置
CN109289497A (zh) * 2018-10-25 2019-02-01 南京华电节能环保设备有限公司 一种焦炉烟气除硫剂
TWI821847B (zh) * 2021-12-30 2023-11-11 國立成功大學 低溫式空氣污染防制系統及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1950139A (zh) * 2004-05-11 2007-04-18 国家航空和宇宙航行局 利用过氧化氢减少SOx、NOx和重金属排放的方法和设备
US20080241030A1 (en) * 2007-03-28 2008-10-02 U.S.A. Represented By The Administrator Of The National Aeronautics And Space Administration Emission Control System
US20100258428A1 (en) * 2009-04-14 2010-10-14 Gignac Pierre-Andre Process for reducing the content of water soluble volatile organic compounds in a gas
CN202096874U (zh) * 2011-02-25 2012-01-04 东南大学 一种基于高级氧化结合湿法洗涤的烟气净化装置
CN202185259U (zh) * 2011-02-25 2012-04-11 东南大学 一种基于非均相Photo-Fenton的一体化烟气净化装置
US20130028820A1 (en) * 2011-01-28 2013-01-31 Korea Institute Of Energy Research Exhaust Gas Treating Apparatus and Treating Method for Carbon Dioxide Capture Process
CN104084015A (zh) * 2014-04-23 2014-10-08 林小晓 一种净化污染空气的系统及其工作方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1168521C (zh) * 2002-04-09 2004-09-29 左莉 气体净化处理设备和方法
KR101172125B1 (ko) * 2009-04-02 2012-08-10 재단법인 포항산업과학연구원 질소산화물 제거 방법
CN101757826A (zh) * 2009-05-04 2010-06-30 陈久斌 旋流水雾除尘器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1950139A (zh) * 2004-05-11 2007-04-18 国家航空和宇宙航行局 利用过氧化氢减少SOx、NOx和重金属排放的方法和设备
US20080241030A1 (en) * 2007-03-28 2008-10-02 U.S.A. Represented By The Administrator Of The National Aeronautics And Space Administration Emission Control System
US20100258428A1 (en) * 2009-04-14 2010-10-14 Gignac Pierre-Andre Process for reducing the content of water soluble volatile organic compounds in a gas
US20130028820A1 (en) * 2011-01-28 2013-01-31 Korea Institute Of Energy Research Exhaust Gas Treating Apparatus and Treating Method for Carbon Dioxide Capture Process
CN202096874U (zh) * 2011-02-25 2012-01-04 东南大学 一种基于高级氧化结合湿法洗涤的烟气净化装置
CN202185259U (zh) * 2011-02-25 2012-04-11 东南大学 一种基于非均相Photo-Fenton的一体化烟气净化装置
CN104084015A (zh) * 2014-04-23 2014-10-08 林小晓 一种净化污染空气的系统及其工作方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106422731A (zh) * 2016-08-31 2017-02-22 上海京藤化工有限公司 一种用于硫酸生产装置的尾气吸收装置
CN106552498A (zh) * 2016-12-01 2017-04-05 西安航天源动力工程有限公司 一种预脱硫式烟气污染物一体化脱除装置
CN106552498B (zh) * 2016-12-01 2024-02-09 西安航天源动力工程有限公司 一种预脱硫式烟气污染物一体化脱除装置
CN107767081A (zh) * 2017-11-15 2018-03-06 国网冀北电力有限公司电力科学研究院 一种燃煤电厂大气环境影响评价方法及装置
CN107767081B (zh) * 2017-11-15 2024-03-12 国网冀北电力有限公司电力科学研究院 一种燃煤电厂大气环境影响评价方法及装置
CN108211642A (zh) * 2018-03-23 2018-06-29 浙江欣欣天恩水产饲料有限公司 饲料生产用湿法离心除尘器
US11452966B2 (en) 2020-11-25 2022-09-27 Saudi Arabian Oil Company Industrial air cleaner
CN112957892A (zh) * 2021-02-05 2021-06-15 中国华能集团清洁能源技术研究院有限公司 一种锅炉烟气二氧化碳吸收系统和方法
CN113828136B (zh) * 2021-10-15 2024-04-12 上海电气集团股份有限公司 烟气处理系统及处理方法
CN114191907A (zh) * 2022-01-13 2022-03-18 卓宇轩 一种异味处理系统
CN114588750A (zh) * 2022-02-24 2022-06-07 深圳瑞华泰薄膜科技股份有限公司 一种用于聚酰亚胺薄膜生产尾气的处理方法

Also Published As

Publication number Publication date
CN104084015A (zh) 2014-10-08
CN104084015B (zh) 2016-01-20

Similar Documents

Publication Publication Date Title
WO2015161671A1 (zh) 一种净化污染空气的系统及其工作方法
US11668266B2 (en) Total recycling system of capturing, conversion and utilization of flue gas from factory, power plant and refinery
CN206762557U (zh) 干法脱硫和低温脱硝的生物质电厂烟气净化处理系统
CN103949153B (zh) 一种利用光助芬顿反应净化烟气的方法及装置
CN110131742B (zh) 基于余热驱动的锅炉排烟全成分治理及资源化回收方式
CN103949144B (zh) 一种净化含有二氧化硫的烟气的方法及装置
US20160082385A1 (en) High-Efficiency Method For Removing Sulfur And Mercury Of Coal-Fired Flue Gas, And Apparatus Thereof
CN103721550B (zh) 烟气同时脱硫脱硝脱VOCs吸收剂及其制备和应用
CN100411709C (zh) 一种应用粉状活性焦净化烟气的方法
CN110131741B (zh) 基于余热驱动和全成分治理的烟气除霾与消白方法和系统
Liu et al. Review on adsorbents in elemental mercury removal in coal combustion flue gas, smelting flue gas and natural gas
CN106964243A (zh) 一种适用于高硫煤的一体化协同脱除三氧化硫装置及其工作方法
WO2015161674A1 (zh) 一种消除烟气中重金属的方法及纳米烟气脱重金属装置
WO2015161672A1 (zh) 一种净化含有粉尘的烟气的方法及装置
WO2019062451A1 (zh) 烟气脱硫剂及其生产方法和应用
WO2015161676A1 (zh) 一种消除烟气中氮氧化物的方法及纳米烟气脱硝系统
CN206980436U (zh) 一种旋流相变筛滤烟气脱硫余能回收一体化反应器
CN107420927A (zh) 一种燃煤锅炉烟气高效净化及余热利用工艺
CN210320129U (zh) 一种基于余热驱动的锅炉排烟全成分资源化回收工艺系统
CN107051173A (zh) 一种利用电石渣脱除锅炉烟气中so3的结构与方法
CN205032080U (zh) 一种干式烟气脱硫脱硝除尘一体化净化系统
CN102078796B (zh) 一种二氧化碳固体吸收剂及其制备方法
CN110711488A (zh) 一种烟气脱硫、脱硝、脱汞一体化的方法
CN205948624U (zh) 工业烟气干式低温协同除尘脱硫脱硝除汞一体化装置
CN112107980B (zh) 利用磁性介质强化脱硫塔中重金属捕集的方法及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15783927

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC ( EPO FORM 1205A DATED 15-02-2017 )

122 Ep: pct application non-entry in european phase

Ref document number: 15783927

Country of ref document: EP

Kind code of ref document: A1