CN106824223B - Ru-Cu2O包裹Cu纳米线及其制备方法与应用 - Google Patents

Ru-Cu2O包裹Cu纳米线及其制备方法与应用 Download PDF

Info

Publication number
CN106824223B
CN106824223B CN201611267288.4A CN201611267288A CN106824223B CN 106824223 B CN106824223 B CN 106824223B CN 201611267288 A CN201611267288 A CN 201611267288A CN 106824223 B CN106824223 B CN 106824223B
Authority
CN
China
Prior art keywords
nano wire
wire
shell
nano
wraps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611267288.4A
Other languages
English (en)
Other versions
CN106824223A (zh
Inventor
黄新文
凌姝琪
刘宗健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201611267288.4A priority Critical patent/CN106824223B/zh
Publication of CN106824223A publication Critical patent/CN106824223A/zh
Application granted granted Critical
Publication of CN106824223B publication Critical patent/CN106824223B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8926Copper and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种Ru‑Cu2O包裹Cu纳米线,其制备方法为:将铜纳米线、去离子水混合,于60~80℃反应5~7h,之后冷却至室温,过滤,洗涤,真空干燥,制得Cu2O为壳Cu为核的纳米线;室温下,将三氯化钌溶液滴加到所述Cu2O为壳Cu为核的纳米线中,滴完后静置25~30s,之后离心,沉淀物洗涤,干燥,得到最终产物;本发明制得的Ru‑Cu2O包裹Cu纳米线可应用于光催化降解染料废水中有机污染物的反应中,光催化效率高。

Description

Ru-Cu2O包裹Cu纳米线及其制备方法与应用
(一)技术领域
本发明涉及一种Ru-Cu2O包裹Cu纳米线及其制备方法与应用。
(二)背景技术
自20世纪70年代以来,光催化技术在染料废水治理方面引起广泛关注,但是传统的光催化剂TiO2能带过窄,对太阳光利用率过低。Cu2O作为一种拥有无毒、具有特殊光学性质等的P型半导体材料,其禁带宽度介于2~2.2eV,与常见催化剂相比,具有可吸收大部分可见光的优势,在光催化和电化学上都有着良好的应用前景。但Cu2O不稳定,且其形成的光生电子 -空穴也存在易复合的缺点,因此对其改性研究已成为研究热点,其中较热门的有异质结、金属掺杂和非金属掺杂。
(三)发明内容
针对目前Cu2O-Cu这种半导体-金属结构较难制备的缺点,本发明提出对Cu纳米线原位氧化制备Cu2O,再在Cu2O@Cu机体上掺杂稀有金属的方法,此方法既简易方便,又能利用半导体-金属结构的Schottky势垒和金属掺杂提高氧化亚铜光催化效率。
本发明采用如下技术方案:
一种Ru-Cu2O包裹Cu纳米线,按如下方法制备得到:
(1)将铜纳米线、去离子水按料液质量比1:1665~1670混合,于60~80℃反应5~7h,之后冷却至室温,过滤,滤饼用无水乙醇和蒸馏水洗涤,真空干燥,制得Cu2O为壳Cu为核的纳米线;
(2)室温下,将35wt%~40wt%三氯化钌溶液滴加到步骤(1)制得的Cu2O为壳Cu为核的纳米线中,滴完后静置25~30s(溶液由浅黄色变成浅灰色),之后离心,沉淀物用无水乙醇和去离子水洗涤,干燥,得到所述的Ru-Cu2O包裹Cu纳米线;
所述三氯化钌溶液的体积用量以Cu2O为壳Cu为核的纳米线的质量计为10.0~25.0mL/g。
本发明中,所述的室温为20~30℃。
所述的铜纳米线可按如下方法进行制备:
在14~16M的NaOH(99%分析纯)溶液中,依次加入0.1M的Cu(OH)2溶液、乙二胺、35wt%水合肼,混合均匀后于60~90℃反应0.8~1h,之后经离心、洗涤、微孔(孔径0.35~0.45um) 过滤、真空干燥,得到所述的铜纳米线(真空保存备用);
所述的NaOH溶液、Cu(OH)2溶液、乙二胺、水合肼的体积比为100:5~7.5:0.7~0.75: 0.125~0.175。
本发明制得的Ru-Cu2O包裹Cu纳米线粉体材料,利用扫描电镜(SEM)、电子能谱分析(EDS)对样品进行分析表征。其中,内核铜纳米线为粗细较均匀的密集纳米线结构,直径约为90~110nm,外壳Cu2O颗粒粒径均匀,厚度约为24.5~30.6nm,且表面有Ru颗粒沉积。
本发明制得的Ru-Cu2O包裹Cu纳米线可作为光催化剂应用于光催化降解染料废水中的有机污染物(具体例如典型的偶氮染料甲基橙)的反应中。
本发明的有益效果主要体现在:Ru-Cu2O包裹Cu纳米线光催化材料制备操作方法简单易行,且其表面的Cu2O颗粒,颗粒粒径均匀且大小约30~40nm,比表面积大,且Cu2O为壳Cu为核的纳米线产生的Schottky势垒和金属掺杂产生的Schottky势垒和等离子共振将提高其光催化效率,有良好的实际应用价值。
(四)附图说明
图1a:实施例1中制备的Ru-Cu2O包裹Cu纳米线的SEM图(放大30万倍);
图1b:实施例1中制备的Ru-Cu2O包裹Cu纳米线的SEM图(放大15万倍);
图2:实施例1中制备的Ru-Cu2O包裹Cu纳米线的EDS图谱;
图3:实施例4中Ru-Cu2O包裹Cu纳米线暗吸附甲基橙实验,并用相同质量的Cu2O 为壳Cu为核的纳米线做对比,a:Cu2O为壳Cu为核的纳米线,b:Ru-Cu2O包裹Cu纳米线;
图4:实施例4中Ru-Cu2O包裹Cu纳米线光催化降解甲基橙实验,并用相同质量的Cu2O 为壳Cu为核的纳米线做对比,a:Cu2O为壳Cu为核的纳米线,b:Ru-Cu2O包裹Cu纳米线。
(五)具体实施方式
下面结合具体实施例对本发明进行进一步描述,但本发明的保护范围并不仅限于此。
以下实施例中所用到的铜纳米线按如下方法进行制备:
在200mL 15M的NaOH溶液中,依次加入10mL 0.1M的Cu(OH)2溶液、1.5mL乙二胺、0.25mL 35wt%水合肼,混合均匀后于75℃反应1h,之后经离心、无水乙醇和去离子水先后洗涤3次、微孔(孔径0.45um)过滤、真空干燥,得到铜纳米线0.75g。
实施例1
制备Ru-Cu2O包裹Cu纳米线
在圆底烧瓶中分别加入120mg的铜纳米线和200mL的去离子水,70℃水浴反应6h,之后冷却至室温,过滤,滤饼用无水乙醇和蒸馏水进行多次洗涤后,真空干燥制得具有一定厚度外壳的壳核结构的Cu2O为壳Cu为核的纳米线。制备好的Cu2O为壳Cu为核的纳米线60mg放入小烧杯中,将0.63mL(质量分数为38.2%)三氯化钌溶液缓慢的滴加到烧杯中,1min滴完后将该混合液静置30s,溶液由之前的浅黄色变成浅灰色,离心分离出沉淀物,分别用无水乙醇和去离子水清洗几次,干燥后得到Ru掺杂质量分数为2%的Ru-Cu2O包裹Cu纳米线。
利用扫描电镜(SEM)、电子能谱分析(EDS)对所得样品进行分析表征,见图1、图2。
实施例2
制备Ru-Cu2O包裹Cu纳米线
在圆底烧瓶中分别加入120mg的铜纳米线和200mL的去离子水,70℃水浴反应6h,之后冷却至室温,过滤,滤饼用无水乙醇和蒸馏水进行多次洗涤后,真空干燥制得具有一定厚度外壳的壳核结构的Cu2O为壳Cu为核的纳米线。制备好的Cu2O为壳Cu为核的纳米线60mg放入小烧杯中,将1.26mL(质量分数为38.2%)三氯化钌溶液缓慢的滴加到烧杯中,1min滴完后将该混合液静置30s,溶液由之前的浅黄色变成浅灰色,离心分离出沉淀物,分别用无水乙醇和去离子水清洗几次,干燥后得到Ru掺杂质量分数为4%的Ru-Cu2O包裹Cu纳米线。
实施例3
制备Ru-Cu2O包裹Cu纳米线
在圆底烧瓶中分别加入120mg的铜纳米线和200mL的去离子水,70℃水浴反应6h,之后冷却至室温,过滤,滤饼用无水乙醇和蒸馏水进行多次洗涤后,真空干燥制得具有一定厚度外壳的壳核结构的Cu2O为壳Cu为核的纳米线。制备好的Cu2O为壳Cu为核的纳米线60mg放入小烧杯中,将1.5mL(质量分数为38.2%)三氯化钌溶液缓慢的滴加到烧杯中,1min滴完后将该混合液静置30s,溶液由之前的浅黄色变成浅灰色,离心分离出沉淀物,分别用无水乙醇和去离子水清洗几次,干燥后得到Ru掺杂质量分数为5%的Ru-Cu2O包裹Cu纳米线。
实施例4
性能测试
通过降解甲基橙来评价实施例1中制备的Cu2O为壳Cu为核的纳米线和Ru-Cu2O包裹Cu纳米线的吸附与光催化性能,测试方法如下:
一定浓度(50umol/L)的甲基橙溶液200ml置于玻璃烧杯中,放置于磁力搅拌器上,转速为300r/min,取实施例1制备的Cu2O为壳Cu为核的纳米线和Ru-Cu2O包裹Cu纳米线各60mg依次吸附甲基橙,每隔10min取出少量的混合液离心分离,取其上层清液用分光光度计测其全波长的吸光度,测试完成后混合液再次倒入反应体系中,直到最大吸收峰处的吸光度值不再变化达到吸附平衡。然后在吸附平衡的基础上进行光催化降解实验,该降解以100w的汞灯作为光源,降解反应在密闭的XPA-2(G8)型光催化反应仪里进行。在光催化反应仪中,光源距液面15cm,同时进行电磁搅拌和水冷,并保持反应温度在25℃。整个光催化反应时间为 90min,每隔10min取出少量的混合液离心分离,取其上层清液用分光光度计测其全波长的吸光度。
实施例1制备的Cu2O为壳Cu为核的纳米线暗吸附与Ru-Cu2O包裹Cu纳米线暗吸附对比
从图3中可以看出,Ru-Cu2O包裹Cu纳米线暗吸附90分钟以后残留率达15.9%~16.9%,吸附效果良好。且与Cu2O为壳Cu为核的纳米线相比,吸附效率与甲基橙残留率都有明显的提高,最后吸附残留率降低了23.7%~24.7%。
实施例1制备的Cu2O为壳Cu为核的纳米线暗吸附与Ru-Cu2O包裹Cu纳米线暗吸附平衡后光催化对比
从图4中可以看出,Ru-Cu2O包裹Cu纳米线光催化降解90分钟以后残留率达41.9%~42.9%,降解效果良好。且与Cu2O为壳Cu为核的纳米线相比,光催化降解效率与甲基橙残留率都有明显的提高,最后残留率降低了20.14%~21.14%。
根据附图以及综上所述,一般的纳米Cu2O作为催化剂都是以球形、立方体、棒状出现,纳米线形式的很少,且用铜纳米线作为基底直接原位氧化生长的非常少见,且本发明一方面以纳米Cu2O为壳,纳米Cu为核产生金属-半导体界面肖基特垒式,另一方面,之前没有人将贵金属钌沉积在纳米Cu2O表面,而本发明用Ru沉积在纳米Cu2O表面表面,产生等离子体共振效应,增强整个催化剂的吸附与光催化效果,结果表明Ru-Cu2O包裹Cu纳米线对甲基橙光催化降解率最高达到63%,对甲基橙吸附率最高达到60.5%,证明其对甲基橙染料有良好的吸附与光催化效果。
本说明书实施例所述的内容仅仅是对发明构思的实现形式的列举,本发明的保护范围不应当被视为仅限于实施例所陈述的具体形式,本发明的保护范围也包括本领域技术人员根据本发明构思所能够想到的等同技术手段。

Claims (3)

1.一种Ru-Cu2O包裹Cu纳米线,其特征在于,所述的Ru-Cu2O包裹Cu纳米线按如下方法制备得到:
(1)将铜纳米线、去离子水按料液质量比1:1665~1670混合,于60~80℃反应5~7h,之后冷却至室温,过滤,滤饼用无水乙醇和蒸馏水洗涤,真空干燥,制得Cu2O为壳Cu为核的纳米线;
(2)室温下,将35wt%~40wt%三氯化钌溶液滴加到步骤(1)制得的Cu2O为壳Cu为核的纳米线中,滴完后静置25~30s,之后离心,沉淀物用无水乙醇和去离子水洗涤,干燥,得到所述的Ru-Cu2O包裹Cu纳米线;
所述三氯化钌溶液的体积用量以Cu2O为壳Cu为核的纳米线的质量计为10.0~25.0mL/g。
2.如权利要求1所述的Ru-Cu2O包裹Cu纳米线,其特征在于,所述的铜纳米线按如下方法制备得到:
在14~16M的NaOH溶液中,依次加入0.1M的Cu(OH)2溶液、乙二胺、35wt%水合肼,混合均匀后于60~90℃反应0.8~1h,之后经离心、洗涤、微孔过滤、真空干燥,得到所述的铜纳米线;
所述的NaOH溶液、Cu(OH)2溶液、乙二胺、水合肼的体积比为100:5~7.5:0.7~0.75:0.125~0.175。
3.如权利要求1所述的Ru-Cu2O包裹Cu纳米线在光催化降解染料废水中有机污染物的反应中的应用。
CN201611267288.4A 2016-12-31 2016-12-31 Ru-Cu2O包裹Cu纳米线及其制备方法与应用 Active CN106824223B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611267288.4A CN106824223B (zh) 2016-12-31 2016-12-31 Ru-Cu2O包裹Cu纳米线及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611267288.4A CN106824223B (zh) 2016-12-31 2016-12-31 Ru-Cu2O包裹Cu纳米线及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN106824223A CN106824223A (zh) 2017-06-13
CN106824223B true CN106824223B (zh) 2019-09-03

Family

ID=59117819

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611267288.4A Active CN106824223B (zh) 2016-12-31 2016-12-31 Ru-Cu2O包裹Cu纳米线及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN106824223B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107570173A (zh) * 2017-09-07 2018-01-12 浙江工业大学 一种钯铜纳米线材料的制备方法及其应用
CN111359002A (zh) * 2020-04-28 2020-07-03 天津大学 RuCu2O光热促愈合创可贴的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102176338A (zh) * 2011-03-10 2011-09-07 中国科学院上海硅酸盐研究所 一种石墨烯/铜纳米线复合导电材料与制备方法
CN103611535A (zh) * 2013-11-19 2014-03-05 上海大学 泡沫铜基分级结构复合氧化物整体式脱硝催化剂的制备方法
CN105597719A (zh) * 2015-11-17 2016-05-25 山东大学 一种泡沫钛-氧化钛复合光电催化材料及其应用
CN106238747A (zh) * 2016-07-12 2016-12-21 中国石油化工股份有限公司 一种多级铜/氧化亚铜纳米线材料的制备方法和基于该材料的葡萄糖传感器电极

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102176338A (zh) * 2011-03-10 2011-09-07 中国科学院上海硅酸盐研究所 一种石墨烯/铜纳米线复合导电材料与制备方法
CN103611535A (zh) * 2013-11-19 2014-03-05 上海大学 泡沫铜基分级结构复合氧化物整体式脱硝催化剂的制备方法
CN105597719A (zh) * 2015-11-17 2016-05-25 山东大学 一种泡沫钛-氧化钛复合光电催化材料及其应用
CN106238747A (zh) * 2016-07-12 2016-12-21 中国石油化工股份有限公司 一种多级铜/氧化亚铜纳米线材料的制备方法和基于该材料的葡萄糖传感器电极

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Plasmon-Enhanced Photocatalytic Properties of Cu2O Nanowire–Au Nanoparticle Assemblies";Yanlin Pan et al.;《Lgngmuir》;20120719;第28卷(第33期);第12304页右栏第1段-第12305页左栏倒数第1段 *

Also Published As

Publication number Publication date
CN106824223A (zh) 2017-06-13

Similar Documents

Publication Publication Date Title
Li et al. Amorphous TiO 2@ NH 2-MIL-125 (Ti) homologous MOF-encapsulated heterostructures with enhanced photocatalytic activity
Dong et al. Facets and defects cooperatively promote visible light plasmonic photocatalysis with Bi nanowires@ BiOCl nanosheets
Wang et al. Construction of Bi-assisted modified CdS/TiO2 nanotube arrays with ternary S-scheme heterojunction for photocatalytic wastewater treatment and hydrogen production
Wu et al. Multifunctional photocatalysts of Pt-decorated 3DOM perovskite-type SrTiO3 with enhanced CO2 adsorption and photoelectron enrichment for selective CO2 reduction with H2O to CH4
Liu et al. Fundamental properties of delafossite CuFeO2 as photocatalyst for solar energy conversion
Zhu et al. Photocatalytic degradation of organic pollutants over MoS2/Ag-ZnFe2O4 Z-scheme heterojunction: Revealing the synergistic effects of exposed crystal facets, defect engineering, and Z-scheme mechanism
Xian et al. Enhanced photocatalytic activity of BaTiO3@ g-C3N4 for the degradation of methyl orange under simulated sunlight irradiation
Maihemllti et al. In situ self-assembled S-scheme BiOBr/pCN hybrid with enhanced photocatalytic activity for organic pollutant degradation and CO2 reduction
Li et al. Enhanced photocatalytic activity of Fe2O3 decorated Bi2O3
Wu et al. CeO2/Co3O4 porous nanosheet prepared using rose petal as biotemplate for photo-catalytic degradation of organic contaminants
Gu et al. Morphology modulation of hollow-shell ZnSn (OH) 6 for enhanced photodegradation of methylene blue
Chen et al. Application of inorganic perovskite LaNiO3 partial substituted by Ce and Cu in absorbance and photocatalytic degradation of antibiotics
Ngaw et al. A strategy for in-situ synthesis of well-defined core–shell Au@ TiO2 hollow spheres for enhanced photocatalytic hydrogen evolution
Zhu et al. Cu-Ni nanowire-based TiO2 hybrid for the dynamic photodegradation of acetaldehyde gas pollutant under visible light
Li et al. Controlled deposition of Au on (BiO) 2 CO 3 microspheres: the size and content of Au nanoparticles matter
CN107175115B (zh) 一种空间电荷分离型复合光催化剂的制备方法和应用
CN104707542A (zh) 一种光催化剂/SiO2复合气凝胶材料及其制备方法
Wang et al. In situ growth of Au nanoparticles on 3D Bi 2 O 2 CO 3 for surface plasmon enhanced visible light photocatalysis
CN103223338A (zh) 一种二氧化钛微球阵列负载铂可见光光催化剂及制备方法
Kang et al. Synthesis plasmonic Bi/BiVO4 photocatalysts with enhanced photocatalytic activity for degradation of tetracycline (TC)
Wang et al. Preparation of magnetic Fe 3 O 4@ SiO 2@ mTiO 2–Au spheres with well-designed microstructure and superior photocatalytic activity
CN106824223B (zh) Ru-Cu2O包裹Cu纳米线及其制备方法与应用
Zhang et al. Investigation of cocatalysts on silver-modified Sm2Ti2S2O5 photocatalyst for water reduction and oxidation under visible light irradiation
Zhou et al. Highly efficient light-induced hydrogen evolution from a stable Pt/CdS NPs-co-loaded hierarchically porous zeolite beta
CN105664969B (zh) 一种二氧化钛-铂-四氧化三钴三元复合光催化材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant