CN106807325B - Fe/C复合材料及其应用 - Google Patents
Fe/C复合材料及其应用 Download PDFInfo
- Publication number
- CN106807325B CN106807325B CN201610994493.4A CN201610994493A CN106807325B CN 106807325 B CN106807325 B CN 106807325B CN 201610994493 A CN201610994493 A CN 201610994493A CN 106807325 B CN106807325 B CN 106807325B
- Authority
- CN
- China
- Prior art keywords
- iron
- composite material
- containing liquor
- carbon source
- waste water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/20—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
- G21F9/04—Treating liquids
- G21F9/06—Processing
- G21F9/12—Processing by absorption; by adsorption; by ion-exchange
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2220/00—Aspects relating to sorbent materials
- B01J2220/40—Aspects relating to the composition of sorbent or filter aid materials
- B01J2220/42—Materials comprising a mixture of inorganic materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2220/00—Aspects relating to sorbent materials
- B01J2220/40—Aspects relating to the composition of sorbent or filter aid materials
- B01J2220/48—Sorbents characterised by the starting material used for their preparation
- B01J2220/4806—Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
本发明属于材料化学技术领域,公开一种Fe/C复合材料。其采用包括下述步骤的碳热还原法制备:1)将铁盐溶解配制含铁溶液,向含铁溶液中加入碳源,振荡摇匀,控制含铁溶液的pH值为8.0左右,搅拌加热直至生成凝胶,然后转移至真空干燥箱中烘干其中的水分;2)将步骤一所得产物放入具有氮气保护的管式电阻炉中,在500~1000℃条件下,碳化4h,冷却粉碎后用去离子水进行清洗,去除其中的水溶性成分,再过滤烘干,碾磨成粉末状,即得负载零价Fe/C复合材料。本发明还提供了Fe/C复合材料作为吸附剂用于固定废水中铀的应用。本发明解决了传统NaBH4液相还原法合成零价铁易团聚的技术问题,对废水中的铀酰离子具有高效的固定作用,可用于治理矿山含铀废水污染。
Description
技术领域
本发明属于材料化学技术领域,涉及Fe/C复合材料,具体涉及一种采用碳热还原法制备的Fe/C复合材料,以及这种Fe/C复合材料作为吸附剂用于固定废水中铀的应用。
背景技术
随着核能和核科学技术的飞速发展,人类社会对铀资源的需求急剧增加。然而在铀矿开采、核燃料加工、核电利用及后处理过程中产生的含铀放射性废液量也逐渐增加。放射性废料的处置费用已成为各国重要的财经负担,放射性废物处置的研究越来越受到有关国家的重视。
铀作为放射性元素的一种,其在废水中主要以可溶解性的水合铀酰离子(UO2 2+)或铀酰碳酸盐络合物(UO2 2+(CO3)n)(2-2n))等U6+氧化态存在,对环境和人类健康造成严重威胁。含铀废水的传统处理方法主要包括混凝沉淀法、蒸发浓缩法、离子交换法、膜分离法、吸附法和零价铁还原法。
其中,零价铁还原是通过其还原作用,将可溶解的U(VI)还原为不易溶解的U(IV),从而形成沉淀达到去除铀的目的。但是,零价铁由于有磁性,易团聚,并且零价铁的合成主要是通过NaBH4还原制得。碳热还原铁是一种廉价的制备纳米零价铁的主要方法,类似于从铁钢矿石中提炼铁的方法。该方法是利用热能和热分解碳基材料(炭黑、碳纳米颗粒、中空碳超细石墨粉末等)所生成的还原性气体(H2、CO等)促使氧化铁或Fe2+还原为纳米零价铁。目前,在碳热法还原制备负载零价铁的研究中,主要以有机物和炭材料为碳源,通过碳化将铁盐还原为零价铁,从而对零价铁进行负载。然而,有关碳热还原制备负载零价铁复合材料的研究,当前尚未得到关注。
发明内容
本发明针对传统NaBH4液相还原法制备零价铁易团聚的问题,提供一种Fe/C复合材料的碳热还原制备方法。本发明所述Fe/C复合材料的制备方法是在无氧条件下,通过热解有机质产生还原物质,在高温条件下,将铁盐还原为零价铁,有机质变为稳定的碳材料,合成负载零价Fe/C复合材料。
具体而言,本发明给出的Fe/C复合材料,采用优化的碳热还原法制备,包括下述步骤的制备:
步骤一:将铁盐溶解配制含铁溶液,向含铁溶液中加入碳源,振荡摇匀,控制含铁溶液的pH值为8.0左右,搅拌加热直至生成凝胶,然后转移至真空干燥箱中烘干其中的水分;
步骤二:将步骤一所得产物放入具有氮气保护的管式电阻炉中,在500~1000℃条件下,碳化4h,冷却粉碎后用去离子水进行清洗,去除其中的水溶性成分,再过滤烘干,碾磨成粉末状,即得负载零价Fe/C复合材料。
为了进一步明确本发明所述方法,使其更具操作性和实用性。作为优选的实施方式之一,在本发明所述制备Fe/C复合材料方法的步骤一中,选用硫酸亚铁、硫酸铁、硝酸亚铁和硝酸铁中的一种或其混合铁盐,用于配制含铁溶液;同时,选用面粉、蔗糖、污泥中的一种或其混合物作为所述碳源;并用氨水调节加入碳源的含铁溶液的pH值为8.0左右,真空干燥箱的加热温度设置为100~110℃。
作为优选的实施方式之一,所述Fe/C复合材料由下述方法制备:
步骤一:向体积为1L浓度为5mol/L的含铁溶液中,加入碳源100~500g,振荡摇匀,在40℃的水浴温度下,磁力搅拌混合24h,然后用氨水控制加入碳源的含铁溶液pH值为8.0,在70℃的水浴温度下搅拌加热,直至生成凝胶,然后转入105℃真空干燥箱中加热至干燥完全;
步骤二:将步骤一所得产物置于陶瓷方舟中,放入具有氮气保护的管式电阻炉中,在500~1000℃条件下,碳化4h,冷却后取出,粉碎过100目筛后,将所得样品用去离子水进行清洗,去除其中的水溶性成分,再过滤烘干,碾磨成粉末状,过100目筛,得到负载零价Fe/C复合材料。
作为优选的实施方式之一,所述管式电阻炉为可提供还原氛围的石英管电炉。
另一方面,本发明还提供了所述Fe/C复合材料在制备吸附剂中的应用。
作为优选的实施方式之一,所述Fe/C复合材料在处理含铀废水中的应用。
作为优选的实施方式之一,所述吸附剂用于固定废水中可溶性铀。
与现有技术相比,本发明所述Fe/C复合材料至少具有下述的有益效果或优点:
本发明所述Fe/C复合材料的碳热还原制备方法,不同于传统NaBH4液相还原法,其选择不同的铁盐为零价铁前驱物,将其溶解后,将一定量的碳源加入到含铁溶液中,振荡摇匀,然后放入磁力搅拌器中,搅拌加热至凝胶状,转移至真空干燥箱烘干其中的水分后,放入管式电阻炉中,在500~1000℃条件下,碳化4h后,再用去离子水进行清洗,震荡去除其中的水溶性无机盐成分,震荡24h,去除其中的水溶性成分,再过滤烘干,碾磨成粉末状,过100目筛,得到负载零价铁/碳复合材料。
本发明所述零价铁前驱物选用硫酸亚铁、硫酸铁、硝酸亚铁和硝酸铁中的一种或其混合铁盐,而碳源选用廉价易得的选用面粉、蔗糖、污泥中的一种或其混合物。通过无氧加热碳化的方法,营造还原性氛围,用于合成负载零价铁/碳复合材料,该负载方法可避免零价铁的团聚,而且在非液相环境中进行,避免生产过程产生废水。
本发明所述Fe/C复合材料具有纳米片状结构,且纳米片状结构能够分散在碳载体上,对废水中的铀酰离子具有高效的固定作用,可用于治理矿山含铀废水污染,应用前景广泛。
在以下实施例中进一步描述本发明,而不以任何形式旨在限制如权利要求所表明的本发明的保护范围。
具体实施方式
实施例一
本实施例选用面粉作为碳源,零价铁前驱物选用硫酸亚铁。将硫酸亚铁配制成5mol/L的含铁溶液备用。本实施例Fe/C复合材料的制备,可包括下述步骤:
步骤1):向体积为1L浓度为5mol/L的含铁溶液中,加入100g面粉,振荡摇匀,为了使面粉与硫酸亚铁溶液充分混合,可辅助超声。在40℃的水浴温度下,磁力搅拌混合24h,充分搅拌混合,然后用氨水控制加入碳源的含铁溶液pH值为8.5。调节好pH值后,在70℃的水浴温度下搅拌加热,直至生成凝胶,然后转入100℃真空干燥箱中加热至干燥完全。
步骤2):将步骤1)所得产物置于陶瓷方舟中,放入具有氮气保护的管式电阻炉中,在本实施例中,管式电阻炉优选为可提供还原氛围的石英管电炉。在500℃条件下,碳化4h,冷却后取出,粉碎过100目筛后,将所得样品用去离子水进行清洗。为了彻底除去其中的水溶性成分,将所得样品用去离子水进行清洗时,可震荡24h,再过滤烘干,碾磨成粉末状,过100目筛,得到负载零价Fe/C复合材料。
实施例二
本实施例选用蔗糖作为碳源,零价铁前驱物选用硫酸铁。将硫酸铁配制成5mol/L的含铁溶液备用。本实施例Fe/C复合材料的制备,可包括下述步骤:
步骤1):向体积为1L浓度为5mol/L的含铁溶液中,加入150g蔗糖,振荡摇匀。在40℃的水浴温度下,磁力搅拌混合24h,然后用氨水控制加入碳源的含铁溶液pH值为8.1。调节好pH值后,在70℃的水浴温度下搅拌加热,直至生成凝胶,然后转入110℃真空干燥箱中加热至干燥完全。
步骤2):将步骤1)所得产物置于陶瓷方舟中,放入具有氮气保护的可提供还原氛围的石英管电炉。在1000℃条件下,碳化4h,冷却后取出,粉碎过100目筛后,将所得样品用去离子水进行清洗。为了彻底除去其中的水溶性成分,将所得样品用去离子水进行清洗时,可震荡24h,再过滤烘干,碾磨成粉末状,过100目筛,得到负载零价Fe/C复合材料。
实施例三
本实施例选用污泥作为碳源,零价铁前驱物选用硝酸铁。将硝酸铁配制成5mol/L的含铁溶液备用。本实施例Fe/C复合材料的制备,可包括下述步骤:
步骤1):向体积为1L浓度为5mol/L的含铁溶液中,加入500g污泥,振荡摇匀。为了使污泥与硝酸铁溶液充分混合,可辅助超声30min。在40℃的水浴温度下,磁力搅拌混合24h,然后用氨水控制加入污泥的含铁溶液pH值为8.3。调节好pH值后,在70℃的水浴温度下搅拌加热,直至生成凝胶,然后转入105℃真空干燥箱中加热至干燥完全。
步骤2):将步骤1)所得产物置于陶瓷方舟中,放入具有氮气保护的可提供还原氛围的石英管电炉。在900℃条件下,碳化4h,冷却后取出,粉碎过100目筛后,将所得样品用去离子水进行清洗。为了彻底除去其中的水溶性成分,将所得样品用去离子水进行清洗时,可震荡24h,再过滤烘干,碾磨成粉末状,过100目筛,得到负载零价Fe/C复合材料。
实施例四
本实施例选用污泥作为碳源,零价铁前驱物选用硫酸铁。将硫酸铁配制成5mol/L的含铁溶液备用。本实施例Fe/C复合材料的制备,可包括下述步骤:
步骤1):向体积为1L浓度为5mol/L的含铁溶液中,加入300g污泥,振荡摇匀。为了使污泥与硫酸铁溶液充分混合,可辅助超声30min。在40℃的水浴温度下,磁力搅拌混合24h,然后用氨水控制加入污泥的含铁溶液pH值为7.8。调节好pH值后,在70℃的水浴温度下搅拌加热,直至生成凝胶,然后转入110℃真空干燥箱中加热至干燥完全。
步骤2):将步骤1)所得产物置于陶瓷方舟中,放入具有氮气保护的可提供还原氛围的石英管电炉。在950℃条件下,碳化4h,冷却后取出,粉碎过100目筛后,将所得样品用去离子水进行清洗。为了彻底除去其中的水溶性成分,将所得样品用去离子水进行清洗时,可震荡24h,再过滤烘干,碾磨成粉末状,过100目筛,得到负载零价Fe/C复合材料。
实施例五
本实施例选用面粉作为碳源,零价铁前驱物选用硫酸铁。将硫酸铁配制成5mol/L的含铁溶液备用。本实施例Fe/C复合材料的制备,可包括下述步骤:
步骤1):向体积为1L浓度为5mol/L的含铁溶液中,加入200g面粉,振荡摇匀。为了使面粉与硫酸铁溶液充分混合,可辅助超声30min。在40℃的水浴温度下,磁力搅拌混合24h,然后用氨水控制加入碳源的含铁溶液pH值为8.0。调节好pH值后,在70℃的水浴温度下搅拌加热,直至生成凝胶,然后转入100℃真空干燥箱中加热至干燥完全。
步骤2):将步骤1)所得产物置于陶瓷方舟中,放入具有氮气保护的可提供还原氛围的石英管电炉。在600℃条件下,碳化4h,冷却后取出,粉碎过100目筛后,将所得样品用去离子水进行清洗。为了彻底除去其中的水溶性成分,将所得样品用去离子水进行清洗时,可震荡24h,再过滤烘干,碾磨成粉末状,过100目筛,得到负载零价Fe/C复合材料。
实施例六
本实施例选用面粉作为碳源,零价铁前驱物选用硝酸亚铁。将硝酸亚铁配制成5mol/L的含铁溶液备用。本实施例Fe/C复合材料的制备,可包括下述步骤:
步骤1):向体积为1L浓度为5mol/L的含铁溶液中,加入260g面粉,振荡摇匀,为了使面粉与硝酸亚铁溶液充分混合,可辅助超声30min。在40℃的水浴温度下,磁力搅拌混合24h,充分搅拌混合,然后用氨水控制加入碳源的含铁溶液pH值为7.9。调节好pH值后,在70℃的水浴温度下搅拌加热,直至生成凝胶,然后转入110℃真空干燥箱中加热至干燥完全。
步骤2):将步骤1)所得产物置于陶瓷方舟中,放入具有氮气保护的管式电阻炉中,在本实施例中,管式电阻炉优选为可提供还原氛围的石英管电炉。在700℃条件下,碳化4h,冷却后取出,粉碎过100目筛后,将所得样品用去离子水进行清洗。为了彻底除去其中的水溶性成分,将所得样品用去离子水进行清洗时,可震荡24h,再过滤烘干,碾磨成粉末状,过100目筛,得到负载零价Fe/C复合材料。
实施例七
本实施例选用面粉和蔗糖的混合物作为碳源,零价铁前驱物选用硝酸亚铁。将硝酸亚铁配制成5mol/L的含铁溶液备用。本实施例Fe/C复合材料的制备,可包括下述步骤:
步骤1):向体积为1L浓度为5mol/L的含铁溶液中,加入300g碳源(面粉与蔗糖的质量比为3:2),振荡摇匀,为了使面粉与硝酸亚铁溶液充分混合,可辅助超声30min。在40℃的水浴温度下,磁力搅拌混合24h,充分搅拌混合,然后用氨水控制加入碳源的含铁溶液pH值为8.2。调节好pH值后,在70℃的水浴温度下搅拌加热,直至生成凝胶,然后转入100℃真空干燥箱中加热至干燥完全。
步骤2):将步骤1)所得产物置于陶瓷方舟中,放入具有氮气保护的管式电阻炉中,在本实施例中,管式电阻炉优选为可提供还原氛围的石英管电炉。在750℃条件下,碳化4h,冷却后取出,粉碎过100目筛后,将所得样品用去离子水进行清洗。为了彻底除去其中的水溶性成分,将所得样品用去离子水进行清洗时,可震荡24h,再过滤烘干,碾磨成粉末状,过100目筛,得到负载零价Fe/C复合材料。
实施例七
本实施例选用面粉和污泥的混合物作为碳源,零价铁前驱物选用硝酸铁。将硝酸铁配制成5mol/L的含铁溶液备用。本实施例Fe/C复合材料的制备,可包括下述步骤:
步骤1):向体积为1L浓度为5mol/L的含铁溶液中,加入200g碳源(面粉与污泥的质量比为1:1),振荡摇匀,为了使面粉、污泥与硝酸铁溶液充分混合,可辅助超声40min。在40℃的水浴温度下,磁力搅拌混合24h,充分搅拌混合,然后用氨水控制加入碳源的含铁溶液pH值为8.4。调节好pH值后,在70℃的水浴温度下搅拌加热,直至生成凝胶,然后转入110℃真空干燥箱中加热至干燥完全。
步骤2):将步骤1)所得产物置于陶瓷方舟中,放入具有氮气保护的管式电阻炉中,在本实施例中,管式电阻炉优选为可提供还原氛围的石英管电炉。在800℃条件下,碳化4h,冷却后取出,粉碎过100目筛后,将所得样品用去离子水进行清洗。为了彻底除去其中的水溶性成分,将所得样品用去离子水进行清洗时,可震荡24h,再过滤烘干,碾磨成粉末状,过100目筛,得到负载零价Fe/C复合材料。
实施例八
本实施例选用污泥作为碳源,零价铁前驱物选用硫酸铁和硝酸铁的混合物。将硫酸铁和硝酸铁配制成5mol/L的含铁溶液备用,硫酸铁与硝酸铁的质量比为1:4。本实施例Fe/C复合材料的制备,可包括下述步骤:
步骤1):向体积为1L浓度为5mol/L的含铁溶液中,加入300g污泥,振荡摇匀。为了使污泥与硫酸铁溶液充分混合,可辅助超声40min。在40℃的水浴温度下,磁力搅拌混合24h,然后用氨水控制加入污泥的含铁溶液pH值为8.2。调节好pH值后,在70℃的水浴温度下搅拌加热,直至生成凝胶,然后转入110℃真空干燥箱中加热至干燥完全。
步骤2):将步骤1)所得产物置于陶瓷方舟中,放入具有氮气保护的可提供还原氛围的石英管电炉。在900℃条件下,碳化4h,冷却后取出,粉碎过100目筛后,将所得样品用去离子水进行清洗。为了彻底除去其中的水溶性成分,将所得样品用去离子水进行清洗时,可震荡24h,再过滤烘干,碾磨成粉末状,过100目筛,得到负载零价Fe/C复合材料。
实施例九
取一定量上述实施例一、二、三、七制得的任一复合材料,投入初始浓度为20mg/L(U)的硝酸双氧铀中,搅拌吸附2小时后,离心分离负载零价铁/碳复合材料,用紫外可见分光光度计(UV-3150,岛津)测量溶液中剩余铀酰离子的浓度,计算吸附量。优选得出的吸附剂,吸附量能够达到17.66mg g-1(U)。
实施例十
取一定量上述实施例一、四、五、八制备的Fe/C复合材料,制成吸附剂。将吸附剂投入浓度为5mg/L(U)的矿山废水中,在恒温振荡器上以120r/min的速率振荡2h,分离上清液,并采用ICP-MS测定溶液中剩余铀酰离子的浓度,计算对铀酰离子的吸附量去和去除率,其最大吸附量能够达到4.99mg g-1,去除率达到99.8%。
实施例十一
取一定量上述实施例一、三、四制备的Fe/C复合材料,制成吸附剂。将吸附剂置于自制的填充柱反应器中,按一定流量通入初始浓度为5mg/L(U)矿山废水,测其对铀酰离子的吸附穿透效果。吸附剂对铀酰离子的吸附量能够达到9.56mg g-1。
上面结合实施例对本发明做了进一步的叙述,但本发明并不限于上述实施方式,在本领域的普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下做出各种变化。
Claims (5)
1.Fe/C复合材料,其特征在于,采用包括下述步骤的碳热还原法制备:
步骤一:向体积为1L浓度为5mol/L的含铁溶液中,加入碳源100~500g,振荡摇匀,在40℃的水浴温度下,磁力搅拌混合24h,然后用氨水控制加入碳源的含铁溶液pH值8.0,在70℃的水浴温度下搅拌加热,直至生成凝胶,然后转入105℃真空干燥箱中加热至干燥完全;
步骤二:将步骤一所得产物置于陶瓷方舟中,放入具有氮气保护的管式电阻炉中,在500~1000℃条件下,碳化4h,冷却后取出,粉碎过100目筛后,将所得样品用去离子水进行清洗,去除其中的水溶性成分,再过滤烘干,碾磨成粉末状,过100目筛,得到负载零价Fe/C复合材料;
所述含铁溶液选用硫酸亚铁、硫酸铁、硝酸亚铁和硝酸铁中的一种或其混合铁盐配制;
所述碳源选用面粉、蔗糖、污泥中的一种或其混合物。
2.根据权利要求1所述Fe/C复合材料,其特征在于,所述管式电阻炉为提供还原氛围的石英管电炉。
3.权利要求1或2所述Fe/C复合材料在制备吸附剂中的应用。
4.权利要求1或2所述Fe/C复合材料在处理含铀废水中的应用。
5.根据权利要求4所述应用,所述吸附剂用于固定废水中可溶性铀。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610994493.4A CN106807325B (zh) | 2016-11-10 | 2016-11-10 | Fe/C复合材料及其应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610994493.4A CN106807325B (zh) | 2016-11-10 | 2016-11-10 | Fe/C复合材料及其应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106807325A CN106807325A (zh) | 2017-06-09 |
CN106807325B true CN106807325B (zh) | 2019-05-07 |
Family
ID=59106518
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610994493.4A Active CN106807325B (zh) | 2016-11-10 | 2016-11-10 | Fe/C复合材料及其应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106807325B (zh) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107456984B (zh) * | 2017-09-04 | 2020-01-31 | 山东师范大学 | 具有可见光光解水制氢性能的铁碳复合材料及制备方法 |
CN108191005B (zh) * | 2018-02-01 | 2021-12-28 | 桐乡市易清环保科技有限公司 | 一种改性铁炭电解微纳米结构制备方法及污水处理方法 |
CN108906052B (zh) * | 2018-06-29 | 2021-06-08 | 南京理工大学 | 零价铁/碳材料催化剂及其制备方法 |
CN108854959A (zh) * | 2018-07-04 | 2018-11-23 | 湖南农业大学 | 一种纳米零价铁污泥基生物质炭的制备方法及其应用 |
CN109012588B (zh) * | 2018-08-24 | 2019-04-09 | 黑龙江科技大学 | 一种以褐煤为原料制备污水处理剂的方法 |
CN111215026A (zh) * | 2018-11-26 | 2020-06-02 | 西南科技大学 | 一种利用纳米碳管负载纳米零价铁处理含铀废水的方法 |
CN112548095B (zh) * | 2019-09-26 | 2023-04-28 | 南开大学 | 碳包覆纳米零价铁及其制备方法和应用 |
CN113694884B (zh) * | 2020-11-05 | 2023-08-29 | 核工业北京化工冶金研究院 | 一种纳米零价铁负载的多孔碳复合材料铀吸附剂制备方法 |
CN113694883B (zh) * | 2020-11-05 | 2022-09-20 | 核工业北京化工冶金研究院 | 一种以杨木为载体的载铁生物炭制备方法 |
CN114162953B (zh) * | 2022-01-10 | 2023-04-28 | 西安交通大学 | 一种硫化螯合态零价铁及其制备方法和应用 |
CN114505054B (zh) * | 2022-02-17 | 2023-03-10 | 江西省水利科学院 | 一种负载高含量零价铁磁性生物炭的制备方法及其应用 |
CN115532263B (zh) * | 2022-11-03 | 2024-05-07 | 清华大学 | 一种铁碳复合材料及其辐照制备方法和应用方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105060454A (zh) * | 2015-07-02 | 2015-11-18 | 华北电力大学 | 一种磁场强化杭锦2#土负载纳米零价铁去除水中污染物的方法 |
CN105344325A (zh) * | 2015-11-04 | 2016-02-24 | 同济大学 | 一种处理重金属污染水体的纳米铁/介孔硅复合材料的制备方法 |
CN105502558A (zh) * | 2015-12-11 | 2016-04-20 | 闽南师范大学 | 一种活性污泥及纳米铁铜复合材料的制备方法 |
CN105817212A (zh) * | 2016-05-13 | 2016-08-03 | 合肥工业大学 | 一种用沉积菱铁矿制备Fe/C复合多孔结构材料的方法 |
-
2016
- 2016-11-10 CN CN201610994493.4A patent/CN106807325B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105060454A (zh) * | 2015-07-02 | 2015-11-18 | 华北电力大学 | 一种磁场强化杭锦2#土负载纳米零价铁去除水中污染物的方法 |
CN105344325A (zh) * | 2015-11-04 | 2016-02-24 | 同济大学 | 一种处理重金属污染水体的纳米铁/介孔硅复合材料的制备方法 |
CN105502558A (zh) * | 2015-12-11 | 2016-04-20 | 闽南师范大学 | 一种活性污泥及纳米铁铜复合材料的制备方法 |
CN105817212A (zh) * | 2016-05-13 | 2016-08-03 | 合肥工业大学 | 一种用沉积菱铁矿制备Fe/C复合多孔结构材料的方法 |
Non-Patent Citations (2)
Title |
---|
Fe /C 复合纳米炭粉的制备及其磁学性能研究;王同华等;《新型炭材料》;20120430;第93-99页 |
Simultaneous reduction and adsorption for immobilization of uranium from aqueous solution by nano-flake Fe-SC;Lingjun Kong et al.;《Journal of Hazardous Materials》;20160825;第435-441页 |
Also Published As
Publication number | Publication date |
---|---|
CN106807325A (zh) | 2017-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106807325B (zh) | Fe/C复合材料及其应用 | |
Chen et al. | Co-microwave pyrolysis of electroplating sludge and municipal sewage sludge to synergistically improve the immobilization of high-concentration heavy metals and an analysis of the mechanism | |
Ying et al. | Removal of uranium using MnO2/orange peel biochar composite prepared by activation and in-situ deposit in a single step | |
CN103706328B (zh) | 氮杂化的磁性有序介孔碳吸附剂、制备方法和应用 | |
CN109364940A (zh) | 生物炭负载铁锰双金属氧化物光芬顿复合材料及其制备方法 | |
CN106318400B (zh) | 修复含As固废和As污染土壤的稳定化药剂及方法 | |
CN113368809B (zh) | 铋基二氧化硅材料的制备方法及在捕集放射性碘中的应用 | |
CN110642322A (zh) | 一种利用产电微生物负载Fe/C纳米复合材料处理含铀废水的方法 | |
Abdel-Galil et al. | Sorption of some radionuclides from nuclear waste effluents by polyaniline/SiO2 composite: Characterization, thermal stability, and gamma irradiation studies | |
CN103894155A (zh) | 一种用于水体中铀提取的离子筛及其制备方法 | |
Zhao et al. | Remediation of cadmium contaminated soil by modified gangue material: characterization, performance and mechanisms | |
CN109046397A (zh) | 一种负载型氧基氯化铁芬顿试剂及其制备方法 | |
CN108190883A (zh) | 一种人造金刚石的提纯方法 | |
CN115007109A (zh) | 一种硝酸铁改性生物炭及其制备方法与应用 | |
CN109967029A (zh) | 用于去除水体中心得安的氧化石墨烯/凹凸棒土磁性复合材料的制备方法 | |
CN114395764A (zh) | 一种硫边界缺陷二硫化钼在电化学海水提铀中的应用 | |
Chen et al. | Dissolution behavior and mechanism of low valence vanadium of vanadium-iron spinel in sulfuric acid solution | |
CN111871361A (zh) | 环境修复材料及其制备方法和应用 | |
CN109279921A (zh) | 一种利用工业废混酸生产高效过磷酸钙的方法 | |
Eliwa et al. | Polyacryl-dimethyl-heptadecanamine-mullite as a promising sorbent for chromium and vanadium sorption from ilmenite | |
CN106493384A (zh) | 一种高纯度零价铁生物碳制备方法 | |
CN104587982B (zh) | 可富集分离水溶液中铀的材料及制备方法 | |
CN110064369A (zh) | 一种生物炭负载纳米金属颗粒的制备方法及其应用 | |
CN110997562A (zh) | 用于制备钒磷酸盐的方法 | |
Huang et al. | In situ electrosynthesis of magnetic Prussian blue/ferrite composites for removal of cesium in aqueous radioactive waste |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |