CN106783623B - 一种倒t型埋栅结构的二维材料场效应晶体管及其制造方法 - Google Patents

一种倒t型埋栅结构的二维材料场效应晶体管及其制造方法 Download PDF

Info

Publication number
CN106783623B
CN106783623B CN201611170853.5A CN201611170853A CN106783623B CN 106783623 B CN106783623 B CN 106783623B CN 201611170853 A CN201611170853 A CN 201611170853A CN 106783623 B CN106783623 B CN 106783623B
Authority
CN
China
Prior art keywords
grid
prepared
foot
dimensional material
upside
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611170853.5A
Other languages
English (en)
Other versions
CN106783623A (zh
Inventor
曹正义
吴云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 55 Research Institute
Original Assignee
CETC 55 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 55 Research Institute filed Critical CETC 55 Research Institute
Priority to CN201611170853.5A priority Critical patent/CN106783623B/zh
Publication of CN106783623A publication Critical patent/CN106783623A/zh
Application granted granted Critical
Publication of CN106783623B publication Critical patent/CN106783623B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66015Multistep manufacturing processes of devices having a semiconductor body comprising semiconducting carbon, e.g. diamond, diamond-like carbon, graphene
    • H01L29/66037Multistep manufacturing processes of devices having a semiconductor body comprising semiconducting carbon, e.g. diamond, diamond-like carbon, graphene the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66045Field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/42376Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明公开了一种倒T型埋栅结构的二维材料场效应晶体管及其制备方法,首先制备倒T型栅极栅帽和栅脚,然后制备栅介质及二维材料转移,并在衬底表面以平面光刻显影技术制备出隔离区图形,在衬底表面以平面光刻显影技术制备出源漏电极图形,制备出源漏电极;最后在衬底表面以电子束光刻显影技术制备出栅脚图形,与栅脚金属对准,以湿法腐蚀技术来将自对准法中连接源漏电极的金属从栅脚图形下断开,实现自对准,从而得到倒T型埋栅结构的二维材料场效应晶体管。本发明的栅脚栅长可以做到几十纳米量级,栅帽的金属可以使栅极的电阻减小,倒T型的结构使得栅极结构稳定,不会出现T型倒掉的情况。

Description

一种倒T型埋栅结构的二维材料场效应晶体管及其制造方法
技术领域
本发明属于微电子技术领域,特别是一种倒T型埋栅结构的二维材料场效应晶体管及其制造方法。
背景技术
石墨烯的出现打破了“二维材料不能在室温下稳定存在”的理论预研,随后因其优异的物理化学性能在各领域的广泛应用而备受关注,在全球掀起了二维材料的研究热潮,之后MoS2,WS2,WSe2,BN等二维材料也相继出现。全新的二维材料进入电子领域的时间不长,取得的成果却相当显著。如石墨烯具有高电子迁移率、高电子饱和速度和高热导率等优良特性,在毫米波、亚毫米波乃至太赫兹器件、超级计算机等方面具有广阔应用前景。基于石墨烯的超高速、超低噪声、超低功耗场效应晶体管及其集成电路,有望突破当前电子器件的高成本、低分辨率及高功耗的瓶颈,为开发更高性能电子器件提供新的思路和方案。
开发二维材料电学性能的研究以二维材料的场效应晶体管的研制为主,就现状而言,二维材料晶体管的电学性能主要受以下几个因素的制约:(1)散射问题。二维材料由单层碳原子构成的二维结构,因而同传统半导体材料相比更易受到与之接触的材料对它的散射而影响其电学性能。对于常规的顶栅结构的场效应晶体管,导电沟道处于衬底和栅介质之间,受到散射也较大,影响了二维材料的电学性能。(2)寄生问题。二维材料晶体管的有源区在栅的正下方,而栅电极和源(漏)电极之间未覆盖的区域则会产生寄生电阻,影响晶体管的电学性能,因而为优化二维材料晶体管的性能,在确保稳定隔离的同时减小栅电极和源(漏)电极的间距是一个关键。(3)栅长问题,栅长越小,二维材料晶体管的fT(电流截至频率)会越大,但是栅长越小,栅金属的电阻会越大,导致fMAX(功率截止频率)会减小,所以设计出T栅的结构,栅帽金属做大,保证栅阻较小,栅脚线宽做小,可以有效提高晶体管频率特性。
在石墨烯埋栅结构设计上,已经有文献报道(RF performance of pre-patternedlocally-embedded-back-gate graphene device,IEDM,2010,23.5.1),但是该工艺设计仍然不能很好的解决二维材料制作场效应晶体管时遇到的散射及寄生电阻大的技术问题。
发明内容
本发明的目的在于提供一种倒T型埋栅结构的二维材料场效应晶体管及其制造方法,减小二维材料应用于场效应晶体管时普遍存在的散射以及寄生电阻,优化了器件电学性能。
实现本发明目的的技术解决方案为:一种倒T型埋栅结构的二维材料场效应晶体管及其制备方法,由以下步骤按顺序制备而得:
(1)制备倒T型栅极栅帽:在绝缘衬底上以电子束光刻显影技术制备出场效应晶体管的倒T型栅极的栅帽图形,采用干法刻蚀技术在绝缘衬底上刻蚀出栅帽图形的凹槽,再金属化,辅以溶胶剥离技术,将凹槽填满,作为倒T型栅极的栅帽;
(2)制备倒T型栅极栅脚:在绝缘衬底表面生长一层介质层,再以电子束光刻显影技术制备出场效应晶体管的倒T型栅极的栅脚图形,采用干法刻蚀技术刻蚀介质层直至下层金属,再金属化,金属厚度略高于介质层厚度,辅以溶胶剥离技术,制备出倒T型栅极的栅脚;
(3)栅介质制备及二维材料转移:在栅脚上生长一层高k绝缘材料作为栅介质,采用金属转移工艺转移二维材料到衬底表面;
(4)隔离区工艺:在衬底表面以平面光刻显影技术制备出隔离区图形,湿法腐蚀去除其他部分金属,再氧化去除隔离区外的二维材料;
(5)源漏电极制备:在衬底表面以平面光刻显影技术制备出源漏电极图形,金属化,辅以溶胶剥离技术,制备出源漏电极;
(6)自对准工艺:在衬底表面以电子束光刻显影技术制备出栅脚图形,与栅脚金属对准,以湿法腐蚀技术来将自对准法中连接源漏电极的金属从栅脚图形下断开,实现自对准,从而得到倒T型埋栅结构的二维材料场效应晶体管。
本发明与现有技术相比,其显著优点:(1)腐金液的侧向腐蚀形成的对准间距同自对准去金属厚度一致,小于常规工艺中电子束曝光系统形成的对准间距,降低了寄生电阻。(2)埋栅结构从设计上将二维材料受到的散射降到最低,优化了二维材料的电学性能。(3)倒T型栅的结构设计,栅脚的栅长可以做到几十纳米量级,栅帽的金属可以使栅极的电阻减小,倒T型的结构使得栅极结构稳定,不会出现T型倒掉的情况。
下面结合附图对本发明作进一步详细描述。
附图说明
图1是在衬底材料上刻蚀出栅帽凹槽示意图。
图2是蒸发金属填满凹槽示意图。
图3是生长介质层示意图。
图4是栅脚制备示意图。
图5是栅介质生长示意图。
图6是金转移石墨烯示意图。
图7是自对准腐蚀示意图。
图8是本发明的流程图。
具体实施方式
本发明倒T型埋栅结构的二维材料场效应晶体管及其制备方法,步骤如下:
(1)制备倒T型栅极栅帽:在绝缘衬底上以电子束光刻显影技术制备出场效应晶体管的倒T型栅极的栅帽图形,采用干法刻蚀技术在绝缘衬底上刻蚀出栅帽图形的凹槽,再金属化,辅以溶胶剥离技术,将凹槽填满,作为倒T型栅极的栅帽;步骤(1)中的栅长为500nm-2um,凹槽深度为200nm-1um。
(2)制备倒T型栅极栅脚:在绝缘衬底表面生长一层介质层(指氮化硅或氧化硅),再以电子束光刻显影技术制备出场效应晶体管的倒T型栅极的栅脚图形,采用干法刻蚀技术刻蚀介质层直至下层金属,再金属化,金属厚度略高于介质层厚度,辅以溶胶剥离技术,制备出倒T型栅极的栅脚;步骤(2)中的介质层厚度为50nm-200nm。
(3)栅介质制备及二维材料转移:在栅脚上生长一层高k绝缘材料作为栅介质,采用金属转移工艺转移二维材料到衬底表面;步骤(3)中的高k绝缘材料厚度为5nm-20nm。
(4)隔离区工艺:在衬底表面以平面光刻显影技术制备出隔离区图形,湿法腐蚀去除其他部分金属,再氧化去除隔离区外的二维材料。
(5)源漏电极制备:在衬底表面以平面光刻显影技术制备出源漏电极图形,金属化,辅以溶胶剥离技术,制备出源漏电极。
(6)自对准工艺:在衬底表面以电子束光刻显影技术制备出栅脚图形,与栅脚金属对准,以湿法腐蚀技术来将自对准法中连接源漏电极的金属从栅脚图形下断开,实现自对准,从而得到倒T型埋栅结构的二维材料场效应晶体管。
实施例
本发明基于二维材料的平面制备工艺制作出一种倒T栅埋栅结构的石墨烯场效应晶体管,具体制备步骤如下:
(1)在Si/SiO2衬底上用电子束电子束光刻显影技术制备出场效应晶体管的倒T型栅极的栅帽图形,栅长500nm,采用干法刻蚀技术在Si/SiO2衬底上刻蚀出深度200nm的凹槽,再蒸发200nmAu,辅以溶胶剥离技术,将凹槽填满,作为倒T型栅极的栅帽,如图1、图2所示。
(2)在Si/SiO2衬底表面生长一层氮化硅(生长技术为常规技术即可),厚度50nm,使表面平坦化,再以电子束光刻显影技术制备出场效应晶体管的倒T型栅极的栅脚图形,栅长100nm,采用干法刻蚀技术刻蚀氮化硅直至下层金属,蒸发100nmAu,辅以溶胶剥离技术,制备出倒T型栅极的栅脚,如图3、图4所示。
(3)采用ALD生长Al2O3作为栅介质,厚度10nm,采用Au转移工艺转移石墨烯到衬底表面,Au厚度30nm,如图5、图6所示。
(4)以平面光刻显影技术制备出隔离区图形,湿法腐蚀去除其他部分Au,再氧化去除隔离区外石墨烯。
(5)以平面光刻显影技术制备出源漏电极图形,蒸发20nmTi/200nmAu作为源漏金属,辅以溶胶剥离技术,制备出源漏电极。
(6)以电子束光刻显影技术制备出栅极图形,栅长100nm,与栅脚金属对准,以湿法腐蚀技术来将自对准法中连接源漏电极的金属从栅脚图形下断开,实现自对准,完成倒T型埋栅结构的二维材料场效应晶体管制备,如图7所示。
通过上述方法制备得到的倒T型埋栅结构的石墨烯FET(场效应晶体管)器件具有如下特性:(1)腐金液的侧向腐蚀形成的对准间距同自对准去金属厚度一致,小于常规工艺中电子束曝光系统形成的对准间距,利于降低寄生电阻。(2)埋栅结构从设计上将二维材料受到的散射降到最低,利于优化二维材料的电学性能。(3)倒T型栅的结构设计,栅脚的栅长可以做到几十纳米量级,栅帽的金属可以使栅极的电阻减小,倒T型的结构使得栅极结构稳定。

Claims (4)

1.一种倒T型埋栅结构的二维材料场效应晶体管,其特征在于由以下步骤按顺序制备而得:
(1)制备倒T型栅极栅帽:在绝缘衬底上以电子束光刻显影技术制备出场效应晶体管的倒T型栅极的栅帽图形,采用干法刻蚀技术在绝缘衬底上刻蚀出栅帽图形的凹槽,再金属化,辅以溶胶剥离技术,将凹槽填满,作为倒T型栅极的栅帽;其中,栅长为500nm-2um,凹槽深度为200nm-1um;
(2)制备倒T型栅极栅脚:在绝缘衬底表面生长一层介质层,再以电子束光刻显影技术制备出场效应晶体管的倒T型栅极的栅脚图形,采用干法刻蚀技术刻蚀介质层直至下层金属,再金属化,金属厚度略高于介质层厚度,辅以溶胶剥离技术,制备出倒T型栅极的栅脚;
(3)栅介质制备及二维材料转移:在栅脚上生长一层高k绝缘材料作为栅介质,采用金属转移工艺转移二维材料到衬底表面;
(4)隔离区工艺:在衬底表面以平面光刻显影技术制备出隔离区图形,湿法腐蚀去除其他部分金属,再氧化去除隔离区外的二维材料;
(5)源漏电极制备:在衬底表面以平面光刻显影技术制备出源漏电极图形,金属化,辅以溶胶剥离技术,制备出源漏电极;
(6)自对准工艺:在衬底表面以电子束光刻显影技术制备出栅脚图形,与栅脚金属对准,以湿法腐蚀技术来将自对准法中连接源漏电极的金属从栅脚图形下断开,实现自对准,从而得到倒T型埋栅结构的二维材料场效应晶体管。
2.一种倒T型埋栅结构的二维材料场效应晶体管的制备方法,其特征在于步骤如下:
(1)制备倒T型栅极栅帽:在绝缘衬底上以电子束光刻显影技术制备出场效应晶体管的倒T型栅极的栅帽图形,采用干法刻蚀技术在绝缘衬底上刻蚀出栅帽图形的凹槽,再金属化,辅以溶胶剥离技术,将凹槽填满,作为倒T型栅极的栅帽;其中,栅长为500nm-2um,凹槽深度为200nm-1um;
(2)制备倒T型栅极栅脚:在绝缘衬底表面生长一层介质层,再以电子束光刻显影技术制备出场效应晶体管的倒T型栅极的栅脚图形,采用干法刻蚀技术刻蚀介质层直至下层金属,再金属化,金属厚度略高于介质层厚度,辅以溶胶剥离技术,制备出倒T型栅极的栅脚;
(3)栅介质制备及二维材料转移:在栅脚上生长一层高k绝缘材料作为栅介质,采用金属转移工艺转移二维材料到衬底表面;
(4)隔离区工艺:在衬底表面以平面光刻显影技术制备出隔离区图形,湿法腐蚀去除其他部分金属,再氧化去除隔离区外的二维材料;
(5)源漏电极制备:在衬底表面以平面光刻显影技术制备出源漏电极图形,金属化,辅以溶胶剥离技术,制备出源漏电极;
(6)自对准工艺:在衬底表面以电子束光刻显影技术制备出栅脚图形,与栅脚金属对准,以湿法腐蚀技术来将自对准法中连接源漏电极的金属从栅脚图形下断开,实现自对准,从而得到倒T型埋栅结构的二维材料场效应晶体管。
3.根据权利要求2所述的制备方法,其特征在于步骤(2)中的介质层厚度为50nm-200nm。
4.根据权利要求2所述的制备方法,其特征在于步骤(3)中的高k绝缘材料厚度为5nm-20nm。
CN201611170853.5A 2016-12-16 2016-12-16 一种倒t型埋栅结构的二维材料场效应晶体管及其制造方法 Active CN106783623B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611170853.5A CN106783623B (zh) 2016-12-16 2016-12-16 一种倒t型埋栅结构的二维材料场效应晶体管及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611170853.5A CN106783623B (zh) 2016-12-16 2016-12-16 一种倒t型埋栅结构的二维材料场效应晶体管及其制造方法

Publications (2)

Publication Number Publication Date
CN106783623A CN106783623A (zh) 2017-05-31
CN106783623B true CN106783623B (zh) 2019-10-18

Family

ID=58892429

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611170853.5A Active CN106783623B (zh) 2016-12-16 2016-12-16 一种倒t型埋栅结构的二维材料场效应晶体管及其制造方法

Country Status (1)

Country Link
CN (1) CN106783623B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108258035B (zh) * 2018-01-15 2020-09-29 中国科学院微电子研究所 一种GaN基增强型场效应器件及其制作方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103563080A (zh) * 2011-05-19 2014-02-05 国际商业机器公司 具有嵌入的栅电极的自对准碳电子装置
CN103700592A (zh) * 2013-11-29 2014-04-02 中国电子科技集团公司第五十五研究所 基于自对准埋栅结构的二维材料场效应晶体管的制造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8557643B2 (en) * 2011-10-03 2013-10-15 International Business Machines Corporation Transistor device with reduced gate resistance
US9246112B2 (en) * 2014-01-08 2016-01-26 International Business Machines Corporation Semiconductor device with ballistic gate length structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103563080A (zh) * 2011-05-19 2014-02-05 国际商业机器公司 具有嵌入的栅电极的自对准碳电子装置
CN103700592A (zh) * 2013-11-29 2014-04-02 中国电子科技集团公司第五十五研究所 基于自对准埋栅结构的二维材料场效应晶体管的制造方法

Also Published As

Publication number Publication date
CN106783623A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
Xu et al. High performance indium-zinc-oxide thin-film transistors fabricated with a back-channel-etch-technique
CN103700592B (zh) 基于自对准埋栅结构的二维材料场效应晶体管的制造方法
CN105762078B (zh) GaN基纳米沟道高电子迁移率晶体管及制作方法
CN105304689B (zh) 基于氟化石墨烯钝化的AlGaN/GaN HEMT器件及制作方法
US20130302963A1 (en) Graphene transistors with self-aligned gates
CN102810564B (zh) 一种射频器件及其制作方法
CN105895704B (zh) 一种石墨烯场效应晶体管及其制造方法
CN103985762A (zh) 超低欧姆接触电阻石墨烯晶体管及其制备方法
JP7019218B2 (ja) ワイドギャップIII-V族化合物半導体ドレインを有するSi-MOSFET、及びその製造方法
Yu et al. 650 mW/mm output power density of H‐terminated polycrystalline diamond MISFET at 10 GHz
CN105789032A (zh) 一种石墨烯场效应晶体管及其制造方法
CN105742345A (zh) 一种隧穿场效应晶体管及其制备方法
CN106684151A (zh) 一种GaN侧墙绝缘栅鳍式高电子迁移率晶体管及其制造方法
CN104282575A (zh) 一种制备纳米尺度场效应晶体管的方法
CN106898640A (zh) 一种增强型氮化物场效应晶体管及其制备方法
CN106783623B (zh) 一种倒t型埋栅结构的二维材料场效应晶体管及其制造方法
Li et al. Design and investigation of dopingless dual-gate tunneling transistor based on line tunneling
Münzenrieder et al. Focused ion beam milling for the fabrication of 160 nm channel length IGZO TFTs on flexible polymer substrates
CN206116406U (zh) 一种具有复合势垒层结构的常关型iii‑v异质结场效应晶体管
Betz et al. High-frequency characterization of thermionic charge transport in silicon-on-insulator nanowire transistors
CN105428417A (zh) 自对准石墨烯/黑磷晶体管结构的制备方法
Kumar et al. Reduction of Drain Induced Barrier Lowering in DM‐HD‐NA GAAFET for RF Applications
CN102915929A (zh) 一种石墨烯场效应器件制备方法
Mi et al. Record combination fmax· Vbr of 25 THz· V in AlGaN/GaN HEMT with plasma treatment
CN104282751A (zh) 高集成度高迁移率源漏栅辅控型无结晶体管

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant