CN106783128A - 制备低重稀土高矫顽力钕铁硼磁体的方法 - Google Patents
制备低重稀土高矫顽力钕铁硼磁体的方法 Download PDFInfo
- Publication number
- CN106783128A CN106783128A CN201611191110.6A CN201611191110A CN106783128A CN 106783128 A CN106783128 A CN 106783128A CN 201611191110 A CN201611191110 A CN 201611191110A CN 106783128 A CN106783128 A CN 106783128A
- Authority
- CN
- China
- Prior art keywords
- neodymium iron
- iron boron
- rare earth
- heavy rare
- deposition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0572—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes with a protective layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
- H01F41/0266—Moulding; Pressing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/02—Compacting only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/04—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0575—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
- Hard Magnetic Materials (AREA)
Abstract
本发明公开了一种制备低重稀土高矫顽力钕铁硼磁体的方法,包括:配料、熔炼、速凝铸片;采用物理气相沉积方法,在惰性气氛下将重稀土粒子或者高熔质粒子沉积在钕铁硼薄片上;进行破碎制粉、取向成型、烧结热处理,制备钕铁硼磁体。本发明可使钕铁硼磁体矫顽力显著提高,细化磁体晶粒,大幅降低重稀土元素使用量。
Description
技术领域
本发明涉及一种稀土永磁材料制备技术,具体说,涉及一种制备低重稀土高矫顽力钕铁硼磁体的方法。
背景技术
钕铁硼永磁材料是我国稀土行业最为关注的稀土应用产业,随着科学技术的发展和技术的进步对高性能钕铁硼永磁材料的需求日益广泛。众所周知,为了提高钕铁硼的矫顽力和高温使用性,通常采用的方法是加入少量重稀土元素(如Dy、Tb等)或优化工艺细化磁体晶粒。
目前使用的降低重稀土使用量的方法主要包括双合金工艺和晶间扩散重稀土元素工艺。双合金工艺是分别熔炼主合金和包含重稀土元素的辅合金,破碎制粉,将主合金磁粉和辅合金粉按配比混合,取向压制,烧结,该工艺中重稀土元素使用量仍较高。晶间扩散重稀土元素工艺是通过涂抹、喷洒、浸渍和镀膜等方式在钕铁硼表面形成重稀土元素覆盖层,经高温晶间扩散将重稀土元素扩散至磁体内部以达到提高磁体矫顽力,少量使用重稀土的目的。但是该工艺仅限于制作较薄的磁件(厚度一般不超过5mm),在制备大块磁体时矫顽力提升不明显。
目前通常采用的细化磁体晶粒的方法主要是在磁体成分中加入微量的W、Mo、V、Ti、Ta、Zr、Nb、Co、Cr、Ga等元素抑制磁体晶粒的长大,但此类元素在磁体中会发生偏析等不均匀分布,对晶粒长大的抑制效果有限,加入量过高则会对磁体性能产生严重的影响。
发明内容
本发明所解决的技术问题是提供一种制备低重稀土高矫顽力钕铁硼磁体的方法,可使钕铁硼磁体矫顽力显著提高,细化磁体晶粒,大幅降低重稀土元素使用量。
技术方案如下:
一种制备低重稀土高矫顽力钕铁硼磁体的方法,包括:
配料、熔炼、速凝铸片;
采用物理气相沉积方法,在惰性气氛下将重稀土粒子或者高熔质粒子沉积在钕铁硼薄片上;
进行破碎制粉、取向成型、烧结热处理,制备钕铁硼磁体。
进一步:重稀土粒子采用Dy或者Tb元素的粒子,高熔质粒子采用W、Mo、V、Ti、Ta、Zr、Nb、Co、Cr或者Ga元素的粒子。
进一步:惰性气氛采用真空、充入氩气或充入氦气。
进一步:物理气相沉积的温度为300~500℃,沉积速率为0.01~50μm/min。
进一步,沉积微量重稀土粒子的步骤包括:
选择所需重稀土靶材;
将钕铁硼合金薄片和重稀土靶材置于物理气相沉积装置内;
抽真空至真空度高于2.0×10-2Pa,充入氩气至0.2~1.0Pa;
调节参数,对钕铁硼薄片加热,加热温度300~500℃;
开启物理气相沉积装置,利用物理气相沉积将靶材粒子沉积在钕铁硼薄片上;
停止物理气相沉积,待钕铁硼薄片温度降至室温后取出;
将制得的钕铁硼薄片破碎制粉、取向压制成型、真空烧结、回火热处理,获得最终钕铁硼磁体。
进一步:物理气相沉积采用磁控溅射沉积、离子镀沉积或者蒸发源沉积;粒子沉积速率为0.01~50μm/min。
进一步:重稀土靶材为Dy或Tb中至少一种元素的纯金属、合金或氧化物。
进一步,沉积高熔质粒子的步骤包括:
选择所需高熔质靶材;
将钕铁硼合金薄片和高熔质靶材分别置于物理气相沉积装置内;
抽真空至真空度高于2.0×10-2Pa,充入氩气至0.2~1.0Pa;
调节参数,对钕铁硼薄片加热,加热温度300~500℃;
开启物理气相沉积装置,利用物理气相沉积将靶材粒子沉积在钕铁硼薄片上;
停止物理气相沉积,待钕铁硼薄片温度降至室温后取出;
将制得的钕铁硼薄片破碎制粉、取向压制成型、真空烧结、回火热处理,获得最终钕铁硼磁体。
进一步:高熔质靶材采用W、Mo、V、Ti、Ta、Zr、Nb、Co、Cr或者Ga中至少一种元素的纯金属、合金或氧化物。
进一步:物理气相沉积采用磁控溅射沉积、离子镀沉积或者蒸发源沉积,粒子沉积速率为0.01~50μm/min。
与现有技术相比,本发明技术效果包括:
1、本发明可使重稀土粒子或者高熔质粒子在磁体中均匀分散在晶界处,提高磁体矫顽力,细化磁体晶粒,减少重稀土使用量,剩磁和磁能积优异。采用本发明制备钕铁硼磁体,可使钕铁硼磁体矫顽力显著提高,细化磁体晶粒,大幅降低重稀土元素使用量,降低钕铁硼磁体制造成本,同时可降低磁体中氧含量。
2、经济效益显著。钕铁硼磁体生产企业都在力争用降低Dy/Tb等重稀土元素的使用量,在降低Dy/Tb用量的同时提高性能,使钕铁硼磁体的生产成本降下来。目前,在高性能钕铁硼磁体中,平均重量高于2%,特别是矫顽力大于30Koe的产品,Dy/Tb高达4%以上,按目前Dy/Tb价计算价格高达80元/Kg,影响成本达40-80元/Kg,每公斤钕铁硼Dy/Tb等重稀土元素的使用量一般在20g以上,成本影响大约在每公斤40元,按3万吨钕铁硼毛坯计算,成本影响达12-24亿元。
具体实施方式
下面参考示例实施方式对本发明技术方案作详细说明。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本发明更全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。
制备低重稀土高矫顽力钕铁硼磁体的方法,具体步骤如下:
步骤1:配料、熔炼、速凝铸片;
步骤2:采用物理气相沉积方法,在惰性气氛下将靶材粒子(微量重稀土粒子或者高熔质粒子)沉积在钕铁硼薄片上;
物理气相沉积的靶材粒子选用重稀土元素Dy或者Tb粒子,或者高熔质元素W、Mo、V、Ti,Ta、Zr、Nb,Co、Cr、Ga粒子中的一种或者多种粒子。惰性气氛为氩气或氦气或真空。
步骤3:进而进行破碎制粉、烧结制备钕铁硼磁体。
方案1:沉积微量重稀土粒子
步骤11:配料、熔炼、速凝铸片;
步骤12:选择所需重稀土靶材;
步骤13:将钕铁硼合金薄片和重稀土靶材分别置于物理气相沉积装置内;
重稀土靶材为Dy、Tb或Dy-Tb的至少一种纯金属、合金或氧化物。
步骤14:抽真空至真空度高于2.0×10-2Pa,充入氩气至0.2~1.0Pa;
步骤15:调节参数,对钕铁硼薄片加热,加热温度300~500℃;
步骤16:开启物理气相沉积装置,利用物理气相沉积将靶材粒子沉积在钕铁硼薄片上;
物理气相沉积包括磁控溅射沉积、离子镀沉积和蒸发源沉积。粒子沉积速率为0.01~50μm/min。
步骤17:停止物理气相沉积,待钕铁硼薄片温度降至室温后取出;
步骤18:将制得的钕铁硼薄片破碎制粉、取向压制成型、真空烧结、回火热处理,获得最终钕铁硼磁体。
方案2:沉积高熔质粒子
步骤21:配料、熔炼、速凝铸片;
步骤22:选择所需高熔质靶材;
步骤23:将钕铁硼合金薄片和高熔质靶材分别置于物理气相沉积装置内;
高熔质靶材为W、Mo、V、Ti、Ta、Zr、Nb、Co、Cr、Ga等元素的至少一种纯金属、合金或氧化物。
步骤24:抽真空至真空度高于2.0×10-2Pa,充入氩气至0.2~1.0Pa;
步骤25:调节参数,对钕铁硼薄片加热,加热温度300~500℃;
步骤26:开启物理气相沉积装置,利用物理气相沉积将靶材粒子沉积在钕铁硼薄片上;
物理气相沉积包括磁控溅射沉积、离子镀沉积和蒸发源沉积。粒子沉积速率为0.01~50μm/min。
步骤27:停止物理气相沉积,待钕铁硼薄片温度降至室温后取出;
步骤28:将制得的钕铁硼薄片破碎制粉、取向压制成型、真空烧结、回火热处理,获得最终钕铁硼磁体。
实施例1:
一种低重稀土高矫顽力钕铁硼磁体的制备方法,具体包括如下步骤:
(1)配料、熔炼、速凝铸片制备钕铁硼薄片;
(2)将所得钕铁硼薄片进行物理气相沉积:
选择Dy金属靶材,抽真空至2.0×10-2Pa,充入氩气至0.2Pa,采用磁控溅射,调整溅射功率,使Dy粒子沉积速率为0.01μm/min;
(3)将所得的钕铁硼薄片盘磨破碎、球磨制粉、取向成型、烧结、热处理,获得最终磁体。
采用磁性能测量仪测试本实施例制备的磁体磁能积和矫顽力,与传统方法制备的磁体进行对比,结果如表1所示。
表1
实施例2:
一种低重稀土高矫顽力钕铁硼磁体的制备方法,具体包括如下步骤:
(1)配料、熔炼、速凝铸片制备钕铁硼薄片;
(2)将所得钕铁硼薄片进行物理气相沉积:
选择Tb金属靶材,抽真空至5.0×10-3Pa,充入氦气至0.5Pa,将钕铁硼薄片加热到300℃,采用离子镀,调整氩气发射源电流,使Tb粒子沉积速率为50μm/min。
(3)将所得的钕铁硼薄片氢破碎、气流磨、取向成型、烧结、热处理,获得最终磁体。
采用磁性能测量仪测试本实施例制备的磁体磁能积和矫顽力,与传统方法制备的磁体进行对比,结果如表2所示。
表2
实施例3:
一种低重稀土高矫顽力钕铁硼磁体的制备方法,具体包括如下步骤:
(1)配料、熔炼、速凝铸片制备钕铁硼薄片;
(2)将所得钕铁硼薄片进行物理气相沉积:
选择CoZr金属靶材,抽真空至9.0×10-4Pa,将钕铁硼薄片加热到500℃
采用蒸发沉积,调整蒸发舟加热源功率,使CoZr原子气化蒸发,沉积速率为3μm/min。
(3)将所得的钕铁硼薄片氢破碎、气流磨、取向成型、烧结、热处理,获得最终磁体。
采用磁性能测量仪测试本实施例制备的磁体磁能积和矫顽力,与传统方法制备的磁体进行对比,结果如表3所示。
表3
实施例4:
一种低重稀土高矫顽力钕铁硼磁体的制备方法,具体包括如下步骤:
(1)配料、熔炼、速凝铸片制备钕铁硼薄片;
(2)将所得钕铁硼薄片进行物理气相沉积:
选择Dy2O3靶材,Mo靶材,抽真空至3.0×10-2Pa,充入氩气至0.3Pa,将钕铁硼薄片加热到420℃,采用磁控溅射,同时对两种靶材进行溅射,调整溅射功率,使粒子沉积速率为0.2μm/min。
(3)将所得的钕铁硼薄片氢破碎、气流磨、取向成型、烧结、热处理,获得最终磁体。
采用磁性能测量仪测试本实施例制备的磁体磁能积和矫顽力,与传统方法制备的磁体进行对比,结果如表4所示。
表4
本发明所用的术语是说明和示例性、而非限制性的术语。由于本发明能够以多种形式具体实施而不脱离发明的精神或实质,所以应当理解,上述实施例不限于任何前述的细节,而应在随附权利要求所限定的精神和范围内广泛地解释,因此落入权利要求或其等效范围内的全部变化和改型都应为随附权利要求所涵盖。
Claims (10)
1.一种制备低重稀土高矫顽力钕铁硼磁体的方法,包括:
配料、熔炼、速凝铸片;
采用物理气相沉积方法,在惰性气氛下将重稀土粒子或者高熔质粒子沉积在钕铁硼薄片上;
进行破碎制粉、取向成型、烧结热处理,制备钕铁硼磁体。
2.如权利要求1所述制备低重稀土高矫顽力钕铁硼磁体的方法,其特征在于:重稀土粒子采用Dy或者Tb元素的粒子,高熔质粒子采用W、Mo、V、Ti、Ta、Zr、Nb、Co、Cr或者Ga元素的粒子。
3.如权利要求1所述制备低重稀土高矫顽力钕铁硼磁体的方法,其特征在于:惰性气氛采用真空、充入氩气或充入氦气。
4.如权利要求1所述制备低重稀土高矫顽力钕铁硼磁体的方法,其特征在于:物理气相沉积的温度为300~500℃,沉积速率为0.01~50μm/min。
5.如权利要求1至4任一项所述制备低重稀土高矫顽力钕铁硼磁体的方法,其特征在于,沉积微量重稀土粒子的步骤包括:
选择所需重稀土靶材;
将钕铁硼合金薄片和重稀土靶材置于物理气相沉积装置内;
抽真空至真空度高于2.0×10-2Pa,充入氩气至0.2~1.0Pa;
调节参数,对钕铁硼薄片加热,加热温度300~500℃;
开启物理气相沉积装置,利用物理气相沉积将靶材粒子沉积在钕铁硼薄片上;
停止物理气相沉积,待钕铁硼薄片温度降至室温后取出;
将制得的钕铁硼薄片破碎制粉、取向压制成型、真空烧结、回火热处理,获得最终钕铁硼磁体。
6.如权利要求5所述制备低重稀土高矫顽力钕铁硼磁体的方法,其特征在于:物理气相沉积采用磁控溅射沉积、离子镀沉积或者蒸发源沉积;粒子沉积速率为0.01~50μm/min。
7.如权利要求6所述制备低重稀土高矫顽力钕铁硼磁体的方法,其特征在于:重稀土靶材为Dy或Tb中至少一种元素的纯金属、合金或氧化物。
8.如权利要求1至4任一项所述制备低重稀土高矫顽力钕铁硼磁体的方法,其特征在于,沉积高熔质粒子的步骤包括:
选择所需高熔质靶材;
将钕铁硼合金薄片和高熔质靶材分别置于物理气相沉积装置内;
抽真空至真空度高于2.0×10-2Pa,充入氩气至0.2~1.0Pa;
调节参数,对钕铁硼薄片加热,加热温度300~500℃;
开启物理气相沉积装置,利用物理气相沉积将靶材粒子沉积在钕铁硼薄片上;
停止物理气相沉积,待钕铁硼薄片温度降至室温后取出;
将制得的钕铁硼薄片破碎制粉、取向压制成型、真空烧结、回火热处理,获得最终钕铁硼磁体。
9.如权利要求8所述制备低重稀土高矫顽力钕铁硼磁体的方法,其特征在于:高熔质靶材采用W、Mo、V、Ti、Ta、Zr、Nb、Co、Cr或者Ga中至少一种元素的纯金属、合金或氧化物。
10.如权利要求8所述制备低重稀土高矫顽力钕铁硼磁体的方法,其特征在于:物理气相沉积采用磁控溅射沉积、离子镀沉积或者蒸发源沉积,粒子沉积速率为0.01~50μm/min。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611191110.6A CN106783128B (zh) | 2016-12-21 | 2016-12-21 | 制备低重稀土高矫顽力钕铁硼磁体的方法 |
JP2019527538A JP6783935B2 (ja) | 2016-12-21 | 2017-12-21 | ネオジム−鉄−ボロン永久磁石材料の製造方法 |
EP17884729.9A EP3547333B1 (en) | 2016-12-21 | 2017-12-21 | Method for preparing neodymium-iron-boron permanent magnetic material |
US16/472,034 US11305345B2 (en) | 2016-12-21 | 2017-12-21 | Method for preparing neodymium-iron-boron permanent magnetic material |
PCT/CN2017/117641 WO2018113717A1 (zh) | 2016-12-21 | 2017-12-21 | 钕铁硼永磁材料的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611191110.6A CN106783128B (zh) | 2016-12-21 | 2016-12-21 | 制备低重稀土高矫顽力钕铁硼磁体的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106783128A true CN106783128A (zh) | 2017-05-31 |
CN106783128B CN106783128B (zh) | 2019-06-21 |
Family
ID=58893541
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611191110.6A Active CN106783128B (zh) | 2016-12-21 | 2016-12-21 | 制备低重稀土高矫顽力钕铁硼磁体的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106783128B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018113717A1 (zh) * | 2016-12-21 | 2018-06-28 | 包头稀土研究院 | 钕铁硼永磁材料的制备方法 |
CN110335735A (zh) * | 2019-07-18 | 2019-10-15 | 宁波科田磁业有限公司 | 一种r-t-b永磁材料及其制备方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102280240A (zh) * | 2011-08-23 | 2011-12-14 | 南京理工大学 | 一种低镝含量高性能烧结钕铁硼的制备方法 |
CN102347126A (zh) * | 2010-07-30 | 2012-02-08 | 沈阳中北通磁科技股份有限公司 | 一种高性能烧结钕铁硼稀土永磁材料及制造方法 |
CN103366943A (zh) * | 2013-07-17 | 2013-10-23 | 宁波韵升股份有限公司 | 一种提高烧结钕铁硼薄片磁体性能的方法 |
CN103456451A (zh) * | 2013-09-12 | 2013-12-18 | 南京理工大学 | 一种室温高磁能积耐腐蚀烧结钕铁硼的制备方法 |
CN103824668A (zh) * | 2014-01-17 | 2014-05-28 | 浙江东阳东磁有限公司 | 一种低重稀土高矫顽力烧结钕铁硼磁体及其制备方法 |
CN104124052A (zh) * | 2014-07-25 | 2014-10-29 | 安徽大地熊新材料股份有限公司 | 一种高性能稀土-铁-硼系烧结永磁体的制备方法 |
CN104505247A (zh) * | 2014-12-05 | 2015-04-08 | 华南理工大学 | 一种改善钕铁硼磁体性能的固体扩散工艺 |
CN105810424A (zh) * | 2014-12-29 | 2016-07-27 | 天津三环乐喜新材料有限公司 | 一种耐蚀性钕铁硼永磁体的制备方法 |
-
2016
- 2016-12-21 CN CN201611191110.6A patent/CN106783128B/zh active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102347126A (zh) * | 2010-07-30 | 2012-02-08 | 沈阳中北通磁科技股份有限公司 | 一种高性能烧结钕铁硼稀土永磁材料及制造方法 |
CN102280240A (zh) * | 2011-08-23 | 2011-12-14 | 南京理工大学 | 一种低镝含量高性能烧结钕铁硼的制备方法 |
CN103366943A (zh) * | 2013-07-17 | 2013-10-23 | 宁波韵升股份有限公司 | 一种提高烧结钕铁硼薄片磁体性能的方法 |
CN103456451A (zh) * | 2013-09-12 | 2013-12-18 | 南京理工大学 | 一种室温高磁能积耐腐蚀烧结钕铁硼的制备方法 |
CN103824668A (zh) * | 2014-01-17 | 2014-05-28 | 浙江东阳东磁有限公司 | 一种低重稀土高矫顽力烧结钕铁硼磁体及其制备方法 |
CN104124052A (zh) * | 2014-07-25 | 2014-10-29 | 安徽大地熊新材料股份有限公司 | 一种高性能稀土-铁-硼系烧结永磁体的制备方法 |
CN104505247A (zh) * | 2014-12-05 | 2015-04-08 | 华南理工大学 | 一种改善钕铁硼磁体性能的固体扩散工艺 |
CN105810424A (zh) * | 2014-12-29 | 2016-07-27 | 天津三环乐喜新材料有限公司 | 一种耐蚀性钕铁硼永磁体的制备方法 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018113717A1 (zh) * | 2016-12-21 | 2018-06-28 | 包头稀土研究院 | 钕铁硼永磁材料的制备方法 |
US11305345B2 (en) | 2016-12-21 | 2022-04-19 | Baotou Research Institute of Rare Earths | Method for preparing neodymium-iron-boron permanent magnetic material |
CN110335735A (zh) * | 2019-07-18 | 2019-10-15 | 宁波科田磁业有限公司 | 一种r-t-b永磁材料及其制备方法 |
US20230049109A1 (en) * | 2019-07-18 | 2023-02-16 | Ningbo Ketian Magnet Co., Ltd. | R-t-b based permanent magnet material and method for preparing the same |
EP4002397A4 (en) * | 2019-07-18 | 2023-08-09 | Ningbo Ketian Magnet Co., Ltd. | R-T-B PERMANENT MAGNET MATERIAL AND METHOD OF MANUFACTURE THEREOF |
US11837390B2 (en) * | 2019-07-18 | 2023-12-05 | Ningbo Ketian Magnet Co., Ltd. | R-T-B based permanent magnet material and method for preparing the same |
Also Published As
Publication number | Publication date |
---|---|
CN106783128B (zh) | 2019-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102280240B (zh) | 一种低镝含量高性能烧结钕铁硼的制备方法 | |
CN103456451B (zh) | 一种室温高磁能积耐腐蚀烧结钕铁硼的制备方法 | |
CN106783129A (zh) | 低重稀土高矫顽力钕铁硼磁体的制备方法 | |
CN105321702B (zh) | 一种提高烧结NdFeB磁体矫顽力的方法 | |
JP7220300B2 (ja) | 希土類永久磁石材料、原料組成物、製造方法、応用、モーター | |
CN107546027A (zh) | 低重稀土高矫顽力钕铁硼磁体的制备方法 | |
CN103456452B (zh) | 低镝耐腐蚀烧结钕铁硼制备方法 | |
CN104700973B (zh) | 一种由白云鄂博共伴生原矿混合稀土制成的稀土永磁体及其制备方法 | |
CN108766753A (zh) | 高磁能积高矫顽力烧结钕铁硼磁体的制备方法 | |
US10644230B2 (en) | Magnetic material sputtering target and method for producing same | |
CN106783130B (zh) | 制备低重稀土高矫顽力钕铁硼磁体的方法 | |
CN109360728A (zh) | 一种蒸发晶界扩散增强钕铁硼磁体矫顽力的方法 | |
CN106881459A (zh) | 采用重稀土制备钕铁硼磁粉的方法 | |
JP5877517B2 (ja) | 希土類磁石用スパッタリングターゲット及びその製造方法 | |
CN103714928B (zh) | 一种铈铁基快淬永磁粉及其制备方法 | |
CN110853854A (zh) | 一种两步扩散法制备高性能双主相烧结混合稀土铁硼磁体的方法 | |
CN108133796B (zh) | 一种烧结磁体用钕铁硼磁粉的制备方法 | |
EP3547333B1 (en) | Method for preparing neodymium-iron-boron permanent magnetic material | |
CN104733148B (zh) | 一种高性能Re‑TM‑B永磁材料的制作方法 | |
CN110534280A (zh) | 一种基于晶界添加的高性能烧结钕铁硼磁体的制备方法 | |
CN107424697A (zh) | 钕铁硼细粉的制备方法 | |
CN108565086A (zh) | 高磁能积高矫顽力烧结钕铁硼磁体的制备方法 | |
CN106783128B (zh) | 制备低重稀土高矫顽力钕铁硼磁体的方法 | |
CN114864264A (zh) | 一种低重稀土高矫顽力稀土钕铁硼永磁体的制备工艺 | |
CN109754970B (zh) | 一种稀土磁体及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |