CN106750155A - 一种水性聚氨酯/含氟聚磷腈微球复合材料的制备方法 - Google Patents

一种水性聚氨酯/含氟聚磷腈微球复合材料的制备方法 Download PDF

Info

Publication number
CN106750155A
CN106750155A CN201611208713.2A CN201611208713A CN106750155A CN 106750155 A CN106750155 A CN 106750155A CN 201611208713 A CN201611208713 A CN 201611208713A CN 106750155 A CN106750155 A CN 106750155A
Authority
CN
China
Prior art keywords
fluorine
aqueous polyurethane
polyphosphazene microspheres
preparation
containing polyphosphazene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611208713.2A
Other languages
English (en)
Inventor
赵正平
胡佳捷
周泽平
钟明强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201611208713.2A priority Critical patent/CN106750155A/zh
Publication of CN106750155A publication Critical patent/CN106750155A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0804Manufacture of polymers containing ionic or ionogenic groups
    • C08G18/0819Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups
    • C08G18/0823Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups containing carboxylate salt groups or groups forming them
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4081Mixtures of compounds of group C08G18/64 with other macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4825Polyethers containing two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/64Macromolecular compounds not provided for by groups C08G18/42 - C08G18/63
    • C08G18/6461Macromolecular compounds not provided for by groups C08G18/42 - C08G18/63 having phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/6541Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen the low-molecular compounds being compounds of group C08G18/34
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/6692Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/34
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G79/00Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule
    • C08G79/02Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule a linkage containing phosphorus
    • C08G79/025Polyphosphazenes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种水性聚氨酯/含氟聚磷腈微球复合材料的制备方法。它六氯环三磷腈和4,4'‑(六氟异丙叉)双酚溶于乙腈溶剂中,加入三乙胺进行恒温亲核取代反应,经后处理得含氟聚磷腈微球,含氟聚磷腈微球加入聚丙二醇中,分步加入异佛尔酮二异氰酸酯、催化剂和2,2‑二羟甲基丙酸继续反应至结束,再三乙胺中和,恒温搅拌得到聚氨酯水性聚氨酯乳液并浇于拉伸样条模具中,在自然条件下固化脱模,即得水性聚氨酯/含氟聚磷腈微球复合材料。本发明将聚磷腈微球均匀分散在水性聚氨酯基体中,微球本身起到“滚轴”的自润滑作用,同时微球中P、N、F元素的存在,可以在摩擦副表面形成化学转移膜,起到综合减摩耐磨作用。

Description

一种水性聚氨酯/含氟聚磷腈微球复合材料的制备方法
技术领域
本发明涉及的是一种纳米材料技术领域的方法,具体是一种水性聚氨酯/含氟聚磷腈微球复合材料的制备方法。
背景技术
水性聚氨酯(WPU)是分子链上引入亲水集团后,能够稳定地溶解或分散在水中的一类聚合物。WPU可以分为两个阶段合成。首先是预逐步聚合,即由低聚物二元醇、二异氰酸酯、亲水性单体和扩链剂逐步聚合为相对分子质量较大的水性聚氨酯预聚体;其次中和,以及后预聚体在水中的分散。通过该方法合成的水性聚氨酯有机挥发物低,相对比较环保,通过近几年的研究,也得到了广泛的应用,比如说胶粘剂、表面处理剂、织物涂层、涂料与整理剂。
水性聚氨酯在合成与使用过程中不存在挥发性有机物(VOC),避免对环境造成污染,符合发展绿色工业资源、能源、无污染的三个前提和四E原则。其无毒、不燃、VOC值低、软段硬段可调节。由于水性聚氨酯热稳定性低,力学性能差,不耐磨等特点限制了水性聚氨酯产业的发展。为拓展其应用,制备高性能水性聚氨酯复合材料,需要对其进行改性研究。
已报道的纳米材料填充改性剂有纳米碳酸钙、纳米二氧化钛、纳米二氧化硅、碳纳米管、有机蒙脱土等。但在物理填充改性过程中,容易发生纳米粒子的团聚,从而导致填料分散不均和与基体树脂界面相容性差,进而引发复合材料综合性能显著下降的弊端。此外,由于大多无机纳米粒子表面无活性点,填充改性前必须对其进行表面处理,而这一过程需要经过复杂的多步化学反应,给生产工艺带来不便。复杂的修饰过程也会对纳米粒子的结构和形貌产生破坏,使其丧失部分功能性。因此,采用化学原位聚合方法,将纳米粒子通过化学键引入水性聚氨酯中,可以避免物理填充不足,显著增强水性聚氨酯复合材料综合性能。
发明内容
本发明针对现有技术存在的上述不足,目的是提供一种水性聚氨酯复合材料的制备方法,加入设计制备的含氟聚磷腈微球改性的水性聚氨酯复合材料的制备工艺,制备得到的水性聚氨酯复合材料具有优异的热稳定性、拉伸性能和摩擦磨损性能。
所述的一种水性聚氨酯/含氟聚磷腈微球复合材料的制备方法,其特征在于包括以下步骤:
1)将六氯环三磷腈和4,4'-(六氟异丙叉)双酚溶于乙腈溶剂中,超声至原料完全溶解,一次性加入三乙胺,超声条件下进行恒温亲核取代反应,反应结束后,用去离子水和乙醇分别清洗并离心分离,真空干燥得到含氟聚磷腈微球,所述的超声波清洗器的规格条件为300 W,40 Hz;
2)在氮气保护下,将步骤1)所得到的含氟聚磷腈微球加入聚丙二醇中并搅拌分散均匀,加入异佛尔酮二异氰酸酯和催化剂,在90-100 ℃下反应1.5-2.5 h后,加入2,2-二羟甲基丙酸继续反应2.5-3.5 h,反应结束后将反应体系温度降到30℃,加入三乙胺中和至pH值为7,恒温搅拌得到聚氨酯水性聚氨酯乳液,将水性聚氨酯乳液浇于拉伸样条模具中,在自然条件下固化脱模,即得水性聚氨酯/含氟聚磷腈微球复合材料。
所述的一种水性聚氨酯/含氟聚磷腈微球复合材料的制备方法,其特征在于步骤1)中的六氯环三磷腈、4,4'-(六氟异丙叉)双酚与三乙胺的投料摩尔比为1:2.5-3.5:5-8,优选为1:3:6。
所述的一种水性聚氨酯/含氟聚磷腈微球复合材料的制备方法,其特征在于步骤1)中的六氯环三磷腈质量与四氢呋喃的体积比为1:0.2-0.8,其单位为g/L。
所述的一种水性聚氨酯/含氟聚磷腈微球复合材料的制备方法,其特征在于步骤1)中的恒温亲核取代反应的温度为45-55℃,优选为50℃,反应时间为4-6小时,优选为5小时。
所述的一种水性聚氨酯/含氟聚磷腈微球复合材料的制备方法,其特征在于步骤1)中的离心机转速为3500-4500 r/min,优选为4000 r/min。
所述的一种水性聚氨酯/含氟聚磷腈微球复合材料的制备方法,其特征在于步骤2)中的聚丙二醇分子量为1000~10000。
所述的一种水性聚氨酯/含氟聚磷腈微球复合材料的制备方法,其特征在于步骤2)中所述的聚丙二醇、异佛尔酮二异氰酸酯、2,2-二羟甲基丙酸、三乙胺在反应前均经过真空脱水。
所述的一种水性聚氨酯/含氟聚磷腈微球复合材料的制备方法,其特征在于步骤2)中的催化剂为二月桂酸二丁基锡。
所述的一种水性聚氨酯/含氟聚磷腈微球复合材料的制备方法,其特征在于步骤2)中的聚氨酯预聚体在高速搅拌的转速为1800-2200 r/min。
所述的含氟聚磷腈微球合成路线及结构式如下:
本发明与现有技术相比具有如下的有益效果:本发明所制备的含氟聚磷腈微球表面具有大量活性羟基基团,通过一步反应可得,制备方法简单、产率较高。采用化学原位聚合方法,将其反应添加到水性聚氨酯基体中,成功制备的水性聚氨酯复合材料具有优异的热稳定性、拉伸性能和摩擦磨损性能。填充含氟聚磷腈微球的水性聚氨酯复合材料热稳定性较空白样条好,随着样条中混入的微球量的增加,样条的热稳定性能随之提升。在聚合过程中,聚磷腈微球和IPDI之间发生了化学反应,生成了共价键链接,起到一种交联剂的作用,因此,显著提高样条热稳定性能。填充质量百分含量为1.0 wt.%时,聚磷腈微球在水性聚氨酯基体中分散均匀,复合材料材料的拉伸强度提高到2.76 MPa,断裂伸长率提高到731.16%。含氟聚磷腈微球提高水性聚氨酯的减摩耐磨特性,聚磷腈微球含量为1.0 wt.%的样品摩擦系数为1.0641,磨损量为0.0098g,聚磷腈微球均匀分散在水性聚氨酯基体中,微球本身起到“滚轴”的自润滑作用,同时微球中P、N、F元素的存在,可以在摩擦副表面形成化学转移膜,起到综合减摩耐磨作用。
附图说明
图1为实施例1制备的含氟聚磷腈微球FTIR谱图;
图2为实施例1制备的含氟聚磷腈微球SEM照片;
图3为实施例1制备的含氟聚磷腈微球EDS谱图;
图4为实施例1制备的含氟聚磷腈微球水接触角;
图5为实施例3制备的水性聚氨酯复合材料脆断面的扫描电镜图。
具体实施方式
为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明的内容不仅仅局限于下面的实施例。以下实施例中的步骤一均以图1为合成路线进行具体说明。
实施例1:
步骤一:在300W超声条件下,在盛有50 mL乙腈的单口烧瓶中,加入0.1 g的六氯环三磷腈和0.28 g的4,4'-(六氟异丙叉)双酚,超声15分钟之后,加入0.24 mL 三乙胺,在50℃下反应5小时,通过去离子水和乙醇分别清洗3次,4000 r/min转速离心,40℃真空干燥24 h,得到含氟聚磷腈微球,产率为82%。
步骤二:将60 g PPG-2000置于三颈烧瓶中,充氮气保护。在100℃的油浴锅内连续搅拌0.5小时,加入23.34 g IPDI和5滴二月桂酸二丁基锡催化剂,在95℃下反应2小时。将事先真空干燥的2.01 g DMPA加入三颈烧瓶内,继续反应3小时。将体系温度降到30℃,加入TEA中和至pH值为7,恒温搅拌0.5 h得到PU预聚体。将预聚体在高速搅拌下分散于去离子水中,搅拌2 h,得到WPU乳液。将乳液浇于拉伸样条模具中,在自然条件下固化脱模。
实施例2:
步骤一:在300 W超声条件下,在盛有100 mL乙腈的单口烧瓶中,加入0.2 g的六氯环三磷腈和0.55 g的4,4'-(六氟异丙叉)双酚,超声15分钟之后,加入0.48 mL 三乙胺,在50℃下反应5小时,通过去离子水和乙醇分别清洗3次,4000 r/min转速离心,40℃真空干燥24h,得到含氟聚磷腈微球,产率为85%。
步骤二:将30 g PPG-2000置于三颈烧瓶中,同时加0.2552 g(0.5 wt.% )含氟聚磷腈微球,充氮气保护。在100℃的油浴锅内连续搅拌0.5小时,加入11.67 g IPDI和5滴二月桂酸二丁基锡催化剂,在95℃下反应2小时。将事先真空干燥的2.01 g DMPA加入三颈烧瓶内,继续反应3小时。将体系温度降到30℃,加入TEA中和至pH值为7,恒温搅拌0.5 h得到PU预聚体。将预聚体在高速搅拌下分散于去离子水中,搅拌2 h,得到WPU乳液。将乳液浇于拉伸样条模具中,在自然条件下固化脱模。
实施例3:
步骤一:在300 W超声条件下,在盛有200 mL乙腈的单口烧瓶中,加入0.4 g的六氯环三磷腈和1.23 g的4,4'-(六氟异丙叉)双酚,超声15分钟之后,加入0.96 mL 三乙胺,在50℃下反应5小时,通过去离子水和乙醇分别清洗3次,4000 r/min转速离心,40℃真空干燥24h,得到含氟聚磷腈微球,产率为85%。
步骤二:将30 g PPG-2000置于三颈烧瓶中,同时加入0.5104 g(1.0 wt.% )含氟聚磷腈微球,充氮气保护。在100℃的油浴锅内连续搅拌0.5小时,加入11.67 g IPDI和5滴二月桂酸二丁基锡催化剂,在95℃下反应2小时。将事先真空干燥的2.01 g DMPA加入三颈烧瓶内,继续反应3小时。将体系温度降到30℃,加入TEA中和至pH值为7,恒温搅拌0.5 h得到PU预聚体。将预聚体在高速搅拌下分散于去离子水中,搅拌2 h,得到WPU乳液。将乳液浇于拉伸样条模具中,在自然条件下固化脱模。
实施例4:
步骤一:在300 W超声条件下,在盛有400 mL乙腈的单口烧瓶中,加入0.8 g的六氯环三磷腈和2.02 g的4,4'-(六氟异丙叉)双酚,超声15分钟之后,加入1.92 mL 三乙胺,在50℃下反应5小时,通过去离子水和乙醇分别清洗3次,4000 r/min转速离心,40℃真空干燥24h,得到含氟聚磷腈微球,产率为85%。
步骤二:将30 g PPG-2000置于三颈烧瓶中,同时加入1.0209 g(2.0 wt.% )含氟聚磷腈微球,充氮气保护。在100℃的油浴锅内连续搅拌0.5小时,加入11.67 g IPDI和5滴二月桂酸二丁基锡催化剂,在95℃下反应2小时。将事先真空干燥的2.01 g DMPA加入三颈烧瓶内,继续反应3小时。将体系温度降到30℃,加入TEA中和至pH值为7,恒温搅拌0.5 h得到PU预聚体。将预聚体在高速搅拌下分散于去离子水中,搅拌2 h,得到WPU乳液。将乳液浇于拉伸样条模具中,在自然条件下固化脱模。
实施例5:
步骤一:在300 W超声条件下,在盛有500 mL乙腈的单口烧瓶中,加入1.0 g的六氯环三磷腈和2.5 g的4,4'-(六氟异丙叉)双酚,超声15分钟之后,加入2.4 mL 三乙胺,在50℃下反应5小时,通过去离子水和乙醇分别清洗3次,4000 r/min转速离心,40℃真空干燥24 h,得到含氟聚磷腈微球,产率为85%。
步骤二:将30 g PPG-2000置于三颈烧瓶中,同时加入2.0418 g(4.0 wt.% )含氟聚磷腈微球,充氮气保护。在100℃的油浴锅内连续搅拌0.5小时,加入11.67 g IPDI和5滴二月桂酸二丁基锡催化剂,在95℃下反应2小时。将事先真空干燥的2.01 g DMPA加入三颈烧瓶内,继续反应3小时。将体系温度降到30℃,加入TEA中和至pH值为7,恒温搅拌0.5 h得到PU预聚体。将预聚体在高速搅拌下分散于去离子水中,搅拌2 h,得到WPU乳液。将乳液浇于拉伸样条模具中,在自然条件下固化脱模。
实施例的试验效果:
通过傅里叶变换红外光谱测试、元素分析、扫描电子显微镜测试、热重测试、拉伸测试和摩擦磨损测试对本发明的含氟聚磷腈微球和水性聚氨酯复合材料进行了表征,测试结果请参见图1、图2、图3、图4和图5。
通过傅里叶红外变换红外光谱仪对聚磷腈微球的结构进行了表征,测试结果曲线如图1所示。波数在1608 cm-1(a)和1511 cm-1(b)处的吸收峰是双酚AF中的苯环的特征峰,波数在1209 cm-1(c)和1174 cm-1(d)处的吸收峰是-CF3的特征峰,波数在880 cm-1(f)处的吸收峰是六氯环三磷腈的P-N的特征峰,据此可以判断聚磷腈微球中含有双酚AF和六氯环三磷腈的结构;同时(e)处波数为940 cm-1的吸收峰是P-O-(Ph)特征峰。
图2表示的是含氟聚磷腈微球SEM图片。从图中可以看出含氟聚磷腈微球粒径均一,表面光滑,基本粒径在1μm左右。
图3为含氟聚磷腈微球EDS谱图,根据谱图及其报告可知,微球中富含大量的氟和氧元素,两者均来自双酚AF,而且O跟F的比值大概为1:3,也进一步的证明,双酚AF确实是跟HCCP反应,跟红外的结果是对应的;该分析结果也支持了微球中含有HCCP的结构。
图4为含氟聚磷腈微球水接触角,其中a为空白玻璃片接触角,b为涂有聚膦腈微球的玻璃片。接触角由原来的107°增至为约141°这说明聚膦腈微球呈现出疏水性。造成疏水的原因为聚膦腈微球中的F、P元素在疏水性中有一定的作用。
图5为水性聚氨酯/含氟聚磷腈微球复合材料脆断面SEM图片。由图可知,在聚氨酯树脂中聚磷腈微球分布均匀,界面结合力较好,无明显裂纹,图中微球直接被撕裂两半并与基体结合为一体,微球周围出现典型塑性变形“银纹”。这说明本发明制备的水性聚氨酯复合材料中微球与基体分子链断间存在化学反应,形成化学键交联结构,其与基体间结合力远远大于物理共混法制备的样条中微球与基体的结合力。
实施例1-5所得的水性聚氨酯复合材料的热重测试(利用美国TA公司Q5000IR型热分析仪进行分析。测试范围为室温至800℃,升温速度为10℃/min,氮气气氛)结果如下:
表1水性聚氨酯复合材料热失重
制备的水性聚氨酯/含氟聚磷腈微球复合材料热重分析的结果表1所示。其中Ton表示初始解温度,T5%表示降解5%时的温度,T50%表示降解一半时的温度。随着含氟聚磷腈微球含量的增加,初始分解温度、5%分解温度、50%分解温度有一定量的提升,热稳定性有所提高。这是由于聚磷腈微球的热稳定性比较好,随着样条中混入的微球的量的增加,样条的热稳定性能随之提升,而且在聚合过程中,微球和水性聚氨酯之间发生了化学反应,生成了共价键提高样条热稳定性能。
实施例1-5所得的水性聚氨酯复合材料的拉伸测试(利用美国instron5966型高低温双立柱试验机进行测试。事先将样条拉伸部分宽度和厚度填入,拉伸速度为50 mm/min。)结果如下:
表2水性聚氨酯复合材料拉伸性能
由表2可知,复合材料样条的拉伸强度均随着微球含量增加而上升,到达含量为1.0wt.% 的实施例3时,最大拉伸强度为2.76 MPa之后,拉伸强度随着含量继续上升而下降。复合材料样条的断裂伸长率均随着微球含量增加而上升,到达含量为1.0 wt.% 的实施例3时,最大断裂伸长率为731.16%之后,断裂伸长率随着含量继续上升而下降。微球的质量分数比较小时,微球是可以比较均匀的分散到水性聚氨酯的体系当中的,可以提高水性聚氨酯的力学性能;随着体系中的微球含量过多,微球容易团聚在一起,会降低水性聚氨酯的力学性能。
实施例1-5所得的水性聚氨酯复合材料的摩擦磨损测试(准备长30 mm,宽10 mm,厚3 mm的小样,在载荷10 N、转速200 r/min、试验周期10 min的干摩擦条件下进行测试。)结果如下:
表3水性聚氨酯复合材料摩擦系数、磨损量
由表3可知,水性聚氨酯复合材料的摩擦系数和磨损量相比较于空白样均有所下降,也即聚磷腈微球改性对水性聚氨酯的摩擦磨损性能提高。微球含量为1.0 wt.%的实施例3样品最耐磨,聚磷腈微球均匀分散在水性聚氨酯基体中,微球本身起到“滚轴”的自润滑作用,同时微球中P、N、F元素的存在,可以在摩擦副表面形成化学转移膜,起到综合减摩耐磨作用。

Claims (9)

1.一种水性聚氨酯/含氟聚磷腈微球复合材料的制备方法,其特征在于包括以下步骤:
1)将六氯环三磷腈和4,4'-(六氟异丙叉)双酚溶于乙腈溶剂中,超声至原料完全溶解,一次性加入三乙胺,超声条件下进行恒温亲核取代反应,反应结束后,用去离子水和乙醇分别清洗并离心分离,真空干燥得到含氟聚磷腈微球;
2)在氮气保护下,将步骤1)所得到的含氟聚磷腈微球加入聚丙二醇中并搅拌分散均匀,加入异佛尔酮二异氰酸酯和催化剂,在90-100 ℃下反应1.5-2.5 h后,加入2,2-二羟甲基丙酸继续反应2.5-3.5 h,反应结束后将反应体系温度降到30℃,加入三乙胺中和至pH值为7,恒温搅拌得到聚氨酯水性聚氨酯乳液,将水性聚氨酯乳液浇于拉伸样条模具中,在自然条件下固化脱模,即得水性聚氨酯/含氟聚磷腈微球复合材料。
2.根据权利要求1所述的一种水性聚氨酯/含氟聚磷腈微球复合材料的制备方法,其特征在于步骤1)中的六氯环三磷腈、4,4'-(六氟异丙叉)双酚与三乙胺的投料摩尔比为1:2.5-3.5:5-8,优选为1:3:6。
3.根据权利要求1所述的一种水性聚氨酯/含氟聚磷腈微球复合材料的制备方法,其特征在于步骤1)中的六氯环三磷腈质量与四氢呋喃的体积比为1:0.2-0.8,其单位为g/L。
4.根据权利要求1所述的一种水性聚氨酯/含氟聚磷腈微球复合材料的制备方法,其特征在于步骤1)中的恒温亲核取代反应的温度为45-55℃,优选为50℃,反应时间为4-6小时,优选为5小时。
5.根据权利要求1所述的一种水性聚氨酯/含氟聚磷腈微球复合材料的制备方法,其特征在于步骤1)中的离心机转速为3500-4500 r/min,优选为4000 r/min。
6.根据权利要求1所述的一种水性聚氨酯/含氟聚磷腈微球复合材料的制备方法,其特征在于步骤2)中的聚丙二醇分子量为1000~10000。
7.根据权利要求1所述的一种水性聚氨酯/含氟聚磷腈微球复合材料的制备方法,其特征在于步骤2)中所述的聚丙二醇、异佛尔酮二异氰酸酯、2,2-二羟甲基丙酸、三乙胺在反应前均经过真空脱水。
8.根据权利要求1所述的一种水性聚氨酯/含氟聚磷腈微球复合材料的制备方法,其特征在于步骤2)中的催化剂为二月桂酸二丁基锡。
9.根据权利要求1所述的一种水性聚氨酯/含氟聚磷腈微球复合材料的制备方法,其特征在于步骤2)中的聚氨酯预聚体在高速搅拌的转速为1800-2200 r/min。
CN201611208713.2A 2016-12-23 2016-12-23 一种水性聚氨酯/含氟聚磷腈微球复合材料的制备方法 Pending CN106750155A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611208713.2A CN106750155A (zh) 2016-12-23 2016-12-23 一种水性聚氨酯/含氟聚磷腈微球复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611208713.2A CN106750155A (zh) 2016-12-23 2016-12-23 一种水性聚氨酯/含氟聚磷腈微球复合材料的制备方法

Publications (1)

Publication Number Publication Date
CN106750155A true CN106750155A (zh) 2017-05-31

Family

ID=58920187

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611208713.2A Pending CN106750155A (zh) 2016-12-23 2016-12-23 一种水性聚氨酯/含氟聚磷腈微球复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN106750155A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108285516A (zh) * 2018-02-09 2018-07-17 济南大学 一种高产率制备含硅聚氨酯单分散微球的方法
CN109666124A (zh) * 2018-12-12 2019-04-23 合众(佛山)化工有限公司 一种聚苯乙烯微球改性聚氨酯水性树脂及制备方法
CN110577748A (zh) * 2018-06-07 2019-12-17 北京化工大学 一种提高聚膦腈复合材料力学性能的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA911100A (en) * 1972-09-26 Szewczyk Stanislas Derivative of phospho-nitrile chloride
CN103694632A (zh) * 2013-11-27 2014-04-02 浙江工业大学之江学院工业研究院 一种环氧树脂复合材料的制备方法
RU2537403C1 (ru) * 2013-07-03 2015-01-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Российский химико-технологический университет им. Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) Способ получения эпоксидной смолы, модифицированной эпоксифосфазенами
CN104312411A (zh) * 2014-10-20 2015-01-28 芜湖县双宝建材有限公司 一种耐水高硬水性聚氨酯涂料
CN104403548A (zh) * 2014-12-29 2015-03-11 中科院广州化学有限公司 含聚醚多元醇/纳米TiO2杂化材料的水性聚氨酯涂料
CN105399959A (zh) * 2015-12-23 2016-03-16 江南大学 一种基于聚磷腈微球的酚醛树脂模塑料添加剂及其制备方法
CN105523541A (zh) * 2016-01-29 2016-04-27 上海交通大学 杂原子掺杂的多孔碳空心微球及其制备方法
CN104046224B (zh) * 2014-07-09 2016-05-18 段宝荣 一种阻燃性水性聚氨酯涂料的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA911100A (en) * 1972-09-26 Szewczyk Stanislas Derivative of phospho-nitrile chloride
RU2537403C1 (ru) * 2013-07-03 2015-01-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Российский химико-технологический университет им. Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) Способ получения эпоксидной смолы, модифицированной эпоксифосфазенами
CN103694632A (zh) * 2013-11-27 2014-04-02 浙江工业大学之江学院工业研究院 一种环氧树脂复合材料的制备方法
CN104046224B (zh) * 2014-07-09 2016-05-18 段宝荣 一种阻燃性水性聚氨酯涂料的制备方法
CN104312411A (zh) * 2014-10-20 2015-01-28 芜湖县双宝建材有限公司 一种耐水高硬水性聚氨酯涂料
CN104403548A (zh) * 2014-12-29 2015-03-11 中科院广州化学有限公司 含聚醚多元醇/纳米TiO2杂化材料的水性聚氨酯涂料
CN105399959A (zh) * 2015-12-23 2016-03-16 江南大学 一种基于聚磷腈微球的酚醛树脂模塑料添加剂及其制备方法
CN105523541A (zh) * 2016-01-29 2016-04-27 上海交通大学 杂原子掺杂的多孔碳空心微球及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WEI WEI等: "A rapid and efficient strategy for preparation of super-hydrophobic surface with cross-linked cyclotriphosphazene 6F-bisphenol A copolymer microspheres", 《CHEMICAL COMMUNICATIONS》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108285516A (zh) * 2018-02-09 2018-07-17 济南大学 一种高产率制备含硅聚氨酯单分散微球的方法
CN108285516B (zh) * 2018-02-09 2020-08-04 济南大学 一种高产率制备含硅聚氨酯单分散微球的方法
CN110577748A (zh) * 2018-06-07 2019-12-17 北京化工大学 一种提高聚膦腈复合材料力学性能的方法
CN110577748B (zh) * 2018-06-07 2020-11-20 北京化工大学 一种提高聚膦腈复合材料力学性能的方法
CN109666124A (zh) * 2018-12-12 2019-04-23 合众(佛山)化工有限公司 一种聚苯乙烯微球改性聚氨酯水性树脂及制备方法

Similar Documents

Publication Publication Date Title
Cheng et al. Design and synthesis of novel aminosiloxane crosslinked linseed oil-based waterborne polyurethane composites and its physicochemical properties
Yu et al. Crosslinked waterborne polyurethane with high waterproof performance
Zhu et al. Preparation and properties of a novel low crystallinity cross-linked network waterborne polyurethane for water-based ink
Jung et al. High solid and high performance UV cured waterborne polyurethanes
Ma et al. Synthesis of a novel silica modified environmentally friendly waterborne polyurethane matting coating
US8664298B1 (en) Self-healing polymer nanocomposite coatings for use on surfaces made of wood
Deng et al. Effects of the reagent ratio on the properties of waterborne polyurethanes-acrylate for application in damping coating
CN103254400A (zh) 一种氧化石墨烯/水性聚氨酯纳米复合材料的制备方法
CN110305621A (zh) 一种脱醇型室温固化有机硅密封胶及其制备方法
CN106750155A (zh) 一种水性聚氨酯/含氟聚磷腈微球复合材料的制备方法
CN101280061A (zh) 有机硅-聚氨酯-丙烯酸酯三元复合离聚物乳液的合成方法
CN104231209A (zh) 一种高硬度水性聚氨酯分散液的制备方法
Zhao et al. Synthesis and investigation of well-defined silane terminated and segmented waterborne hybrid polyurethanes
CN110616032A (zh) 一种有机-无机硅改性聚氨酯超疏水涂料及其制法
Ding et al. Preparation of waterborne polyurethane-silica nanocomposites by a click chemistry method
CN105566606A (zh) 一种含有硅氧烷基侧链的水性聚氨酯及其制备方法
CN113024803A (zh) 一种含氟耐水性聚酰胺6及其制备方法
Park et al. Hyperbranched waterborne polyurethanes
CN110845981A (zh) 一种汽车用环保型水性聚氨酯胶粘剂及其制备方法
Zhang et al. Preparation and characterization of castor oil‐based waterborne polyurethane crosslinked with 2‐amino‐2‐(hydroxymethyl)‐1, 3‐propanediol
Xu et al. Preparation and characterization of rosin-based waterborne polyurethane from maleopimaric acid polyester polyol
Yuan et al. Aqueous PUA emulsion prepared by dispersing polyurethane prepolymer in polyacrylate emulsion
CN106967288A (zh) 一种水性聚氨酯/含氟聚磷腈纳米管复合材料的制备方法
Song et al. Poly (methyl dihydroxybenzoate) modified waterborne polyurethane sizing coatings with chemical and hydrogen-bonded complex cross-linking structures for improving the surface wettability and mechanical properties of carbon fiber
Cai et al. Preparation and surface properties of silicon-containing waterborne polyurethane functionalized with fluorine-containing acrylate and micro-nano silica

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170531