CN106747382A - Ba2+置换无机聚合物制备钡长石块体陶瓷的方法 - Google Patents

Ba2+置换无机聚合物制备钡长石块体陶瓷的方法 Download PDF

Info

Publication number
CN106747382A
CN106747382A CN201710101837.9A CN201710101837A CN106747382A CN 106747382 A CN106747382 A CN 106747382A CN 201710101837 A CN201710101837 A CN 201710101837A CN 106747382 A CN106747382 A CN 106747382A
Authority
CN
China
Prior art keywords
inorganic polymer
displacement
baryta fledspar
aqueous solution
block ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710101837.9A
Other languages
English (en)
Other versions
CN106747382B (zh
Inventor
何培刚
付帅
苑景坤
贾德昌
王胜金
杨治华
段小明
蔡德龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201710101837.9A priority Critical patent/CN106747382B/zh
Publication of CN106747382A publication Critical patent/CN106747382A/zh
Application granted granted Critical
Publication of CN106747382B publication Critical patent/CN106747382B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6022Injection moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

本发明提供了一种Ba2+置换无机聚合物制备钡长石块体陶瓷的方法,属于制备钡长石块体陶瓷方法技术领域。制备无机聚合物:将铝硅酸盐粉体溶解于硅酸盐或铝酸盐水溶液中,注模成型,经固化后获得无机聚合物。配置含Ba2+水溶液,摩尔浓度为0.1~2mol/L。将步骤一制备的无机聚合物浸泡在步骤二制备的含Ba2+水溶液中进行离子置换。将步骤三获得的置换后的无机聚合物干燥,即获得非晶态钡长石前驱体。将步骤四获得的钡长石前驱体进行高温处理,即获得钡长石块体陶瓷。铝硅酸盐聚合物可直接浇筑成型复杂形状构件,经过离子置换和高温处理后可直接获得复杂形状BAS陶瓷;铝硅酸盐聚合物技术将为高效合成兼具复杂形状的BAS陶瓷及其复合材料提供一条新途径。

Description

Ba2+置换无机聚合物制备钡长石块体陶瓷的方法
技术领域
本发明涉及一种Ba2+置换无机聚合物制备钡长石块体陶瓷的方法,属于制备钡长石块体陶瓷的方法技术领域。
背景技术
以钡长石为主晶相的玻璃陶瓷具有相稳定、耐高温(>1590℃)、热膨胀系数小、抗氧化性好、耐酸碱腐蚀能力强、介电常数和介电损耗低等优点,因此其被广泛用于高温热强材料、集成电路基板、雷达天线罩、先进发动机高温结构件的复合材料基体等航空航天领域。传统制备BAS玻璃陶瓷的方法包括高温熔融法、溶胶凝胶法和离子交换法。高温熔融法具有成分可控、操作方便、产量大的优点,但是存在制备温度高、高温污染坩埚、二次烧结成型的缺点;溶胶凝胶法可在分子尺度对BAS的化学组成进行设计,并且成分均匀性好,但是存在成本高、工艺复杂且不易控制的问题;离子交换法一般以A型沸石为前驱体,通过浸泡在含Ba+溶液中实现Ba+替代碱金属离子,对离子交换后的沸石进行高温处理即可获得BAS玻璃陶瓷,离子交换法具有沸石前驱体价格低且种类多、较好的成分可设计性、可重复性高的优点,但是由于沸石具有特定的晶体结构,碱金属离子受到较强的化学键束缚,因此离子置换工艺较为复杂,一般要经过多次、长时间重复置换才可获得纯度较高的BAS前驱体。
发明内容
本发明的目的是为了解决上述现有技术存在的问题,进而提供一种Ba2+置换无机聚合物制备钡长石块体陶瓷的方法。
本发明的目的是通过以下技术方案实现的:
一种Ba2+置换无机聚合物制备钡长石块体陶瓷的方法,步骤如下:
步骤一、制备无机聚合物:将铝硅酸盐粉体溶解于硅酸盐水溶液或铝酸盐水溶液中,注模成型,经固化后获得无机聚合物。
步骤二、配置含Ba2+水溶液,摩尔浓度为0.1~2mol/L。
步骤三、将步骤一制备的无机聚合物浸泡在步骤二制备的含Ba2+水溶液中进行离子置换。
步骤四、将步骤三获得的置换后的无机聚合物干燥,即获得非晶态钡长石前驱体。
步骤五、将步骤四获得的钡长石前驱体进行高温处理,即获得钡长石块体陶瓷。
本发明使用的无机聚合物由含Si、Al和O元素的物质在碱性硅酸盐水溶液中聚合而成、其空间结构为AlO4和SiO4单元相互交联形成的三维网络结构,并通过分布于网络孔隙间的Li+,Na+,K+或Cs+等碱金属离子来平衡四配位铝的多余负电荷,具有制备温度低、易掺杂改性、轻质、耐热、耐腐蚀、环境友好等优点。铝硅酸盐聚合物类似于沸石组成但是具有非晶结构的特点,将使得Ba+替代其结构中的碱金属离子更为容易实现;此外铝硅酸盐聚合物可直接浇筑成型复杂形状构件,经过离子置换和高温处理后可直接获得复杂形状BAS陶瓷;因此理论上讲铝硅酸盐聚合物技术将为高效合成兼具复杂形状的BAS陶瓷及其复合材料提供了一条新途径。
附图说明
图1是置换后的钡长石前驱体和经高温烧结后获得的钡长石陶瓷物相分析,可以看出钡长石前驱体呈非晶态,而烧结后完全转变为钡长石陶瓷。
具体实施方式
下面将对本发明做进一步的详细说明:本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式,但本发明的保护范围不限于下述实施例。
本实施例所涉及的一种Ba2+置换无机聚合物制备钡长石块体陶瓷的方法,包括以下步骤:
步骤一、制备无机聚合物:将铝硅酸盐粉体溶解于硅酸盐水溶液或铝酸盐水溶液中,注模成型,经固化后获得无机聚合物(硅酸盐水溶液质量百分浓度为10-40wt%、铝酸盐水溶液质量百分浓度为15-45wt%)。
步骤二、配置含Ba2+水溶液,摩尔浓度为0.1~2mol/L。
步骤三、将步骤一制备的无机聚合物浸泡在步骤二制备的含Ba2+水溶液中进行离子置换。
步骤四、将步骤三获得的置换后的无机聚合物干燥,即获得非晶态钡长石前驱体。
步骤五、将步骤四获得的钡长石前驱体进行高温处理,即可获得钡长石块体陶瓷。
步骤一中,所述铝硅酸盐粉体为偏高岭土、粉煤灰、硅灰中的一种或几种的任意比例(重量比)的混合。
步骤一中,所述硅酸盐水溶液为硅酸钠水溶液、硅酸钾水溶液、硅酸铯水溶液中的一种或几种的任意比例(重量比或容积比)的混合。
步骤一中,所述铝酸盐水溶液为铝酸钠水溶液、铝酸钾水溶液、铝酸铯水溶液中的一种或几种的任意比例(重量比或容积比)的混合。
步骤二中,所述含Ba2+水溶液为硝酸钡水溶液、醋酸钡水溶液或氯化钡水溶液。
步骤三中,所述无机聚合物和含Ba2+水溶液的固液比为1:5~1:50、置换温度为30~80℃、置换压力为0.1MPa-1MPa、每次置换时间为6小时~48小时、共置换3~6次。
步骤三中,每次置换时间为18小时、共置换5次。
步骤四中,所述无机聚合物干燥的条件为:温度为30~80℃、时间为24小时~72小时。
步骤五中,所述高温处理的温度为900~1400℃、升温速度为1~20℃/分、保温时间为0.5~4小时。每次置换时间为6小时~48小时、共置换3~6次。
步骤五中,所述高温处理的温度为1100℃、升温速度为10℃/分、保温时间为2.5小时。每次置换时间为18小时、共置换5次。
以上所述,仅为本发明较佳的具体实施方式,这些具体实施方式都是基于本发明整体构思下的不同实现方式,而且本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (10)

1.一种Ba2+置换无机聚合物制备钡长石块体陶瓷的方法,其特征在于,
步骤一、制备无机聚合物:将铝硅酸盐粉体溶解于硅酸盐水溶液或铝酸盐水溶液中,注模成型,经固化后获得无机聚合物;
步骤二、配置含Ba2+水溶液,摩尔浓度为0.1~2mol/L;
步骤三、将步骤一制备的无机聚合物浸泡在步骤二制备的含Ba2+水溶液中进行离子置换;
步骤四、将步骤三获得的置换后的无机聚合物干燥,即获得非晶态钡长石前驱体;
步骤五、将步骤四获得的钡长石前驱体进行高温处理,即获得钡长石块体陶瓷。
2.根据权利要求1所述的Ba2+置换无机聚合物制备钡长石块体陶瓷的方法,其特征在于,步骤一中,所述铝硅酸盐粉体为偏高岭土、粉煤灰、硅灰中的一种或几种的任意比例的混合。
3.根据权利要求1所述的Ba2+置换无机聚合物制备钡长石块体陶瓷的方法,其特征在于,步骤一中,所述硅酸盐水溶液为硅酸钠水溶液、硅酸钾水溶液、硅酸铯水溶液中的一种或几种的任意比例的混合。
4.根据权利要求1所述的Ba2+置换无机聚合物制备钡长石块体陶瓷的方法,其特征在于,步骤一中,所述铝酸盐水溶液为铝酸钠水溶液、铝酸钾水溶液、铝酸铯水溶液中的一种或几种的任意比例的混合。
5.根据权利要求1所述的Ba2+置换无机聚合物制备钡长石块体陶瓷的方法,其特征在于,步骤二中,所述含Ba2+水溶液为硝酸钡水溶液、醋酸钡水溶液或氯化钡水溶液。
6.根据权利要求1所述的Ba2+置换无机聚合物制备钡长石块体陶瓷的方法,其特征在于,步骤三中,所述无机聚合物和含Ba2+水溶液的固液比为1:5~1:50、置换温度为30~80℃、置换压力为0.1MPa-1MPa、每次置换时间为6小时~48小时、共置换3~6次。
7.根据权利要求6所述的Ba2+置换无机聚合物制备钡长石块体陶瓷的方法,其特征在于,步骤三中,每次置换时间为18小时、共置换5次。
8.根据权利要求1所述的Ba2+置换无机聚合物制备钡长石块体陶瓷的方法,其特征在于,步骤四中,所述无机聚合物干燥的条件为:温度为30~80℃、时间为24小时~72小时。
9.根据权利要求1所述的Ba2+置换无机聚合物制备钡长石块体陶瓷的方法,其特征在于,步骤五中,所述高温处理的温度为900~1400℃、升温速度为1~20℃/分、保温时间为0.5~4小时。
10.根据权利要求9所述的Ba2+置换无机聚合物制备钡长石块体陶瓷的方法,其特征在于,步骤五中,所述高温处理的温度为1100℃、升温速度为10℃/分、保温时间为2.5小时,每次置换时间为18小时、共置换5次。
CN201710101837.9A 2017-02-24 2017-02-24 Ba2+置换无机聚合物制备钡长石块体陶瓷的方法 Active CN106747382B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710101837.9A CN106747382B (zh) 2017-02-24 2017-02-24 Ba2+置换无机聚合物制备钡长石块体陶瓷的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710101837.9A CN106747382B (zh) 2017-02-24 2017-02-24 Ba2+置换无机聚合物制备钡长石块体陶瓷的方法

Publications (2)

Publication Number Publication Date
CN106747382A true CN106747382A (zh) 2017-05-31
CN106747382B CN106747382B (zh) 2020-09-08

Family

ID=58959281

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710101837.9A Active CN106747382B (zh) 2017-02-24 2017-02-24 Ba2+置换无机聚合物制备钡长石块体陶瓷的方法

Country Status (1)

Country Link
CN (1) CN106747382B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101531535A (zh) * 2009-04-02 2009-09-16 哈尔滨工业大学 连续纤维增强无机聚合物基复合材料的制备方法
CN102430419A (zh) * 2011-09-16 2012-05-02 西安建筑科技大学 Ni2+掺杂地质聚合物催化剂的制备及在有机物降解中的应用
CN105541370A (zh) * 2015-12-21 2016-05-04 哈尔滨工业大学 多孔碳化硅陶瓷材料的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101531535A (zh) * 2009-04-02 2009-09-16 哈尔滨工业大学 连续纤维增强无机聚合物基复合材料的制备方法
CN102430419A (zh) * 2011-09-16 2012-05-02 西安建筑科技大学 Ni2+掺杂地质聚合物催化剂的制备及在有机物降解中的应用
CN105541370A (zh) * 2015-12-21 2016-05-04 哈尔滨工业大学 多孔碳化硅陶瓷材料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HANNA RUNTTI等: "Sulphate removal over barium-modified blast-furnace-slag geopolymer", 《JOURNAL OF HAZARDOUS MATERIALS》 *
PEIGAGN HE 等: "Low-temperature sintered pollucite ceramic from geopolymer precursor using synthetic metakaolin", 《JOURNAL OF MATERIALS SCIENCE》 *

Also Published As

Publication number Publication date
CN106747382B (zh) 2020-09-08

Similar Documents

Publication Publication Date Title
Lewis Glasses and glass-ceramics
Bell et al. Formation of ceramics from metakaolin‐based geopolymers. Part II: K‐based geopolymer
He et al. Thermal evolution and crystallization kinetics of potassium-based geopolymer
Shao et al. Open-cell mullite ceramic foams derived from porous geopolymer precursors with tailored porosity
He et al. Celsian formation from barium-exchanged geopolymer precursor: Thermal evolution
CN108947253B (zh) 含Y4.67(SiO4)3O磷灰石晶相的钇铝硅酸盐玻璃陶瓷及其制备方法
Chlique et al. XRD analysis of the role of cesium in sodium‐based geopolymer
CN101982435B (zh) 低温、无铅、近零膨胀微晶陶瓷涂层的制备方法
Kim et al. Immobilization mechanism of radioactive borate waste in phosphate-based geopolymer waste forms
Hu et al. Crystallization and properties of B2O3 doped LZAS vitrified bond for diamond grinding tools
Xiang et al. Rapid transformation from Cs-geopolymers to Cs-defined ceramics by microwave sintering
CN103449789B (zh) 一种超早强微膨胀双液注浆材料及其制备方法
US4818729A (en) Process for preparing stabilized high cristobalite
Zhao et al. From bulk to porous structures: Tailoring monoclinic SrAl2Si2O8 ceramic by geopolymer precursor technique
Soares et al. Effect of ion exchange on the sinter–crystallisation of low expansion Li2O. Al2O3. SiO2 glass-ceramics
CN103274602B (zh) 改进的溶胶-凝胶工艺制备BaO-Al2O3-SiO2微晶玻璃及方法
Xia et al. Nearly zero thermal expansion of β-spodumene glass ceramics prepared by sol–gel and hot pressing method
CN110698070B (zh) 一种用于ltcc封装材料的镁铝硅微晶玻璃的制备方法
CN106747382A (zh) Ba2+置换无机聚合物制备钡长石块体陶瓷的方法
CN100352782C (zh) 一种含磷锂铝硅玻璃陶瓷及其制备方法
CN102716701B (zh) 一种超声喷雾制备镍掺杂硅酸铋微米球的方法
Dvornichenko et al. Production of iron-containing crystalline glazes
CN108585512B (zh) 一种尾矿mas系玻璃陶瓷绝缘材料及其制备方法
Enoh et al. Effect of Sodium Silicate to Hydroxide Ratio and Sodium Hydroxide Concentration on the Physico-Mechanical Properties of Geopolymer Binders
Hai et al. Mechanical Properties and Hardening Mechanism of Magnesium Ammonium Phosphate Cements Modified by Fly Ash

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant