CN106744731B - 一种多孔氮化钒纳米带气凝胶的制备方法及应用 - Google Patents

一种多孔氮化钒纳米带气凝胶的制备方法及应用 Download PDF

Info

Publication number
CN106744731B
CN106744731B CN201710015929.5A CN201710015929A CN106744731B CN 106744731 B CN106744731 B CN 106744731B CN 201710015929 A CN201710015929 A CN 201710015929A CN 106744731 B CN106744731 B CN 106744731B
Authority
CN
China
Prior art keywords
vanadium
nanobelt
aeroge
ammonia
nitride porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710015929.5A
Other languages
English (en)
Other versions
CN106744731A (zh
Inventor
王桂强
张伟
王彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bohai University
Original Assignee
Bohai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bohai University filed Critical Bohai University
Priority to CN201710015929.5A priority Critical patent/CN106744731B/zh
Publication of CN106744731A publication Critical patent/CN106744731A/zh
Application granted granted Critical
Publication of CN106744731B publication Critical patent/CN106744731B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)

Abstract

一种多孔氮化钒纳米带气凝胶的制备方法及应用,在搅拌下,将偏钒酸铵溶于水/乙醇混合溶剂中,然后用无机酸调节pH值到2–3,将调pH值后的偏钒酸铵溶液加入密封的水热釜中,在140℃–220℃下水热反应,收集产品,用去离子水冲洗,冷冻干燥后,得到氧化钒纳米带气凝胶;将氧化钒纳米带气凝胶放入管式炉中,通入保护气,升温到500℃–650℃进行加热处理,得到多孔氮化钒纳米带气凝胶。优点是:制备方法简单,容易操作,所制备的多孔氮化钒纳米带气凝胶具有快速的一维电子传输结构、三维的电解质扩散通道以及较高的比表面积,可以作为高性能的电极材料用于超级电容器中。

Description

一种多孔氮化钒纳米带气凝胶的制备方法及应用
技术领域
本发明涉及一种多孔氮化钒纳米带气凝胶的制备方法及应用。
背景技术
过渡金属的氮化物与贵金属具有相似的电子结构,因此过渡金属氮化物表现出与贵金属相似的催化性能。氮化钒电导率高、化学稳定性好,因此在能量转换和储存领域具有广阔的应用前景。但通常的氮化钒材料(如氮化钒纳米粒子等)作为电极材料电化学性能无法满足超级电容器的要求。
发明内容
本发明要解决的技术问题是提供一种多孔氮化钒纳米带气凝胶的制备方法及应用,制备方法简单,容易操作,所制备的多孔氮化钒纳米带气凝胶具有快速的一维电子传输结构、三维的电解质扩散通道以及较高的比表面积,可以作为高性能的电极材料用于超级电容器中。
本发明的技术解决方案是:
一种多孔氮化钒纳米带气凝胶的制备方法,其具体制备步骤:
(1)在搅拌下,将偏钒酸铵(NH4VO3)溶于水/乙醇混合溶剂中配制成浓度为20g/L–60g/L的偏钒酸铵溶液,所述水/乙醇混合溶剂中水与无水乙醇的体积比为10:1–6:1,然后用无机酸调节pH值到2–3;
(2)将调pH值后的偏钒酸铵溶液加入密封的水热釜中,在140℃–220℃温度下反应18小时–26小时,收集产品,用去离子水冲洗,冷冻干燥后,得到氧化钒纳米带气凝胶;
(3)将氧化钒纳米带气凝胶放入管式炉中,通入保护气,升温到500℃–650℃进行加热处理,升温速率为5℃/分钟–15℃/分钟,加热处理时间为1.5小时–4小时,冷却到室温后,得到多孔氮化钒纳米带气凝胶。
进一步的,所述无机酸为盐酸或硝酸。
进一步的,所述保护气为氨气和氩气混合气、或氨气和氮气混合气。
进一步的,所述氨气和氩气混合气中氨气与氩气的体积比为2:1–1:2,所述或氨气和氮气混合气中氨气与氮气的体积比为2:1–1:2。
进一步的,所述保护气为氨气和氩气混合气,氨气和氩气混合气总流量为60sccm-100sccm。
进一步的,所述保护气为氨气和氮气混合气,氨气和氮气混合气总流量为60sccm-100sccm。
一种多孔氮化钒纳米带气凝胶的制备方法制备的多孔氮化钒纳米带气凝胶在电极材料中的应用。
进一步的,所述多孔氮化钒纳米带气凝胶在电极材料中的应用,其具体步骤如下:
将多孔氮化钒纳米带气凝胶与聚四氟乙烯和导电碳黑按重量比85:10:5混合均匀,然后将混合物压入镍网中,混合物压入量为2mg/cm2,真空干燥后,制成超级电容器用电极。
本发明的有益效果:
(1)多孔氮化钒纳米带气凝胶的制备方法简单,易操作,通过调控氮化钒的形貌结构,可以提高氮化钒的电化学性能。
(2)所制备的多孔氮化钒纳米带气凝胶能同时提供较高的比表面积、快速一维电子传输通道和三维电解质扩散通道。
(3)所制备的多孔氮化钒纳米带气凝胶能够制备高性能的超级电容器电极,电流密度为0.5A/g时,比电容达到292.2F/g。
附图说明
图1是本发明(对应实施例1)的水热反应后五氧化二钒(V2O5)纳米带气凝胶的照片和SEM图;
图2是本发明(对应实施例1)的多孔氮化钒纳米带气凝胶产品的照片和SEM图;
图3是本发明(对应实施例1)水热制备的V2O5样品(B)和混合气热处理后制备的氮化钒样品(A)的XRD曲线;
图4是本发明(对应实施例2)水热制备的氧化钒样品的XRD曲线
图5是本发明利用多孔氮化钒纳米带气凝胶制备电极在电流密度为0.5A/g下的充放电曲线图;
图6是本发明(对应对比例1)的氮化钒纳米颗粒材料的SEM图。
具体实施方式
实施例1
(1)搅拌下将4g偏钒酸铵溶于100mL水/乙醇(体积比9:1)混合溶剂中,用盐酸调节pH值到2;
(2)然后将步骤(1)配制的溶液加入密封的水热釜中,在180℃下反应24小时,产品用去离子水冲洗后,经过冷冻干燥,得到五氧化二钒(V2O5)纳米带气凝胶(如图1);所制备V2O5呈平滑纳米带结构,纳米带宽度约50nm-150nm,长度约十几微米;
(3)将五氧化二钒纳米带气凝胶放入管式炉中,通入氨气/氩气混合气(氨气与氩气体积比为1:1),混合气总流量为80sccm;升温到550℃,升温速率每分钟10℃,加热处理3小时;冷却到室温后,得到多孔氮化钒纳米带气凝胶(图2)。氮化钒纳米带的尺寸和形貌基本与V2O5纳米带相近,只是变成了多孔结构。图3是水热反应产物和混合气热处理后产物的X-射线衍射(XRD)图。水热反应产物的XRD图在2θ为16.6°、25.5°、34.2°、42.9°、46.7°、49.8°以及61.2°处出现了7个衍射峰,分别对应V2O5的(200)、(201)、(310)、(202)、(600)、(112)以及(321)晶面。混合气热处理后样品的XRD曲线在2θ为38.1°、44.3°、64.3°以及76.8°处出现4个衍射峰,分别对应立方晶结构氮化钒的(111)、(200)、(220)以及(311)晶面。这表明经过混合气热处理后,V2O5完全转变为氮化钒。
实施例2
(1)在搅拌下将2g偏钒酸铵溶于100mL水/乙醇(体积比10:1)混合溶剂中,用硝酸调节pH值到3;
(2)然后将步骤(1)配制的溶液加入密封的水热釜中,在140℃反应26小时,产品用去离子水冲洗后,冷冻干燥后得到绿色氧化钒(V2O5和VO2混合体)纳米带气凝胶,其SEM图与图1相似,呈平滑纳米带结构;图4是相应的XRD图,图中的衍射峰表明所制备的氧化钒是V2O5和VO2混合体;
(3)将绿色氧化钒纳米带气凝胶放入管式炉中,通入氨气/氮气混合气(氨气与氮气体积比为2:1),混合气总流量为60sccm;升温到650℃,加热处理4小时,升温速率每分钟5℃。冷却到室温后,得到多孔氮化钒纳米带气凝胶,其SEM图与图2相似,氮化钒纳米带的尺寸和形貌基本与绿色氧化钒纳米带相近,只是变成了多孔结构。
实施例3
(1)在搅拌下将6g偏钒酸铵溶于100mL水/乙醇(体积比6/1)混合溶剂中,用盐酸调节pH值到2.5;
(2)然后将步骤(1)配制的溶液加入密封的水热釜中,在一定温度下220℃反应18小时,产品用去离子水冲洗后,冷冻干燥后得到V2O5纳米带气凝胶,其SEM图与图1相似,呈平滑纳米带结构;
(3)将V2O5纳米带气凝胶放入管式炉中,通入氨气/氩气混合气(氨气与氩气体积比为1:2),混合气总流量为100sccm。升温到500℃,加热处理1.5小时,升温速率每分钟15℃;冷却到室温后,得到多孔氮化钒纳米带气凝胶,其SEM图与图2相似,氮化钒纳米带的尺寸和形貌基本与V2O5纳米带相近,只是变成了多孔结构。
本发明实施例1-实施例3的多孔氮化钒纳米带气凝胶可以应用于超级电容器电极。利用本发明实施例1的多孔氮化钒纳米带气凝胶制备电极,应用于超级电容器时,步骤如下:
(1)将实施例1所制备多孔氮化钒纳米带气凝胶样品与聚四氟乙烯和导电碳黑按85:10:5(重量比)的比例混合均匀;
(2)将混合物压入镍网中,真空干燥后制成测试电极,混合物压入量为2mg/cm2
(3)以2M KOH溶液为电解质,采用二电极体系通过恒流充放电实验测量多孔氮化钒纳米带气凝胶的比电容性能。根据恒流充放电曲线,由式(1)计算比电容;
其中Cs是单电极比电容(F/g),I是放电电流(A),Δt是放电时间(s),ΔV是放电电压范围(V),m是一个电极上活性材料质量(g)。图5是所测的恒流充放电曲线,由式(1)计算比电容值为292.2F/g。
将实施例2和实施例3制备的多孔氮化钒纳米带气凝胶按照上述方法制备成测试电极,并组装成超级电容器,在电流密度为0.5A/g时,其比容值分别为289.1F/g(实施例2)和290.3F/g(实施例3)。
对比例1
以三氯氧钒(VOCl3)和尿素为原料,合成了如图6所示的氮化钒纳米颗粒材料。氮化钒纳米颗粒的尺寸大约在30nm左右。
按实施例1-实施例3制备测试电极组装电容器的方法测量对比例1的氮化钒纳米颗粒的电容性能。在电流密度为0.5A/g时,氮化钒纳米颗粒材料的比电容为85.3F/g。
以上仅为本发明的具体实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种多孔氮化钒纳米带气凝胶的制备方法,其特征是:
具体制备步骤如下:
(1)在搅拌下,将偏钒酸铵溶于水/乙醇混合溶剂中配制成浓度为20g/L-60g/L的偏钒酸铵溶液,所述水/乙醇混合溶剂中水与无水乙醇的体积比为10:1-6:1,然后用无机酸调节pH值到2-3;
(2)将调pH值后的偏钒酸铵溶液加入密封的水热釜中,在140℃-220℃温度下反应18小时–26小时,收集产品,用去离子水冲洗,冷冻干燥后,得到氧化钒纳米带气凝胶;
(3)将氧化钒纳米带气凝胶放入管式炉中,通入保护气,所述保护气为氨气和氩气混合气、或氨气和氮气混合气;其中,氨气和氩气混合气中氨气与氩气的体积比为2:1-1:2,氨气和氩气混合气总流量为60sccm-100sccm;氨气和氮气混合气中氨气与氮气的体积比为2:1-1:2,氨气和氮气混合气总流量为60sccm-100sccm,升温到500℃-650℃进行加热处理,升温速率为5℃/分钟-15℃/分钟,加热处理时间为1.5小时-4小时,冷却到室温后,得到多孔氮化钒纳米带气凝胶。
2.根据权利要求1所述的多孔氮化钒纳米带气凝胶的制备方法,其特征是:所述无机酸为盐酸或硝酸。
3.如权利要求1所述的多孔氮化钒纳米带气凝胶的制备方法制备的多孔氮化钒纳米带气凝胶在电极材料中的应用。
4.根据权利要求3所述的多孔氮化钒纳米带气凝胶在电极材料中的应用,其具体步骤如下:
将多孔氮化钒纳米带气凝胶与聚四氟乙烯和导电碳黑按重量比85:10:5混合均匀,然后将混合物压入镍网中,混合物压入量为2mg/cm2,真空干燥后,制成超级电容器用电极。
CN201710015929.5A 2017-01-10 2017-01-10 一种多孔氮化钒纳米带气凝胶的制备方法及应用 Expired - Fee Related CN106744731B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710015929.5A CN106744731B (zh) 2017-01-10 2017-01-10 一种多孔氮化钒纳米带气凝胶的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710015929.5A CN106744731B (zh) 2017-01-10 2017-01-10 一种多孔氮化钒纳米带气凝胶的制备方法及应用

Publications (2)

Publication Number Publication Date
CN106744731A CN106744731A (zh) 2017-05-31
CN106744731B true CN106744731B (zh) 2019-03-05

Family

ID=58948824

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710015929.5A Expired - Fee Related CN106744731B (zh) 2017-01-10 2017-01-10 一种多孔氮化钒纳米带气凝胶的制备方法及应用

Country Status (1)

Country Link
CN (1) CN106744731B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110444408B (zh) * 2019-08-30 2021-05-18 哈尔滨理工大学 一种氮化钒纳米片柔性复合电极材料及其制备方法与应用
CN112813498B (zh) * 2019-11-15 2022-06-10 中国科学院福建物质结构研究所 一种钒基多孔单晶材料及其制备方法与应用
CN111591962A (zh) * 2020-05-26 2020-08-28 南京邮电大学 一种叠层多孔氮化物微米片/s复合正极材料的制备方法
CN113023691B (zh) * 2021-03-11 2022-08-26 中国检验检疫科学研究院 一种单晶多孔Mo2N纳米带的合成方法及应用
CN114558605B (zh) * 2022-03-29 2024-05-14 上海保鼎科技服务有限公司 一种氨基钒氧化物气凝胶及其制备方法与应用
CN115020723B (zh) * 2022-06-20 2024-06-14 巢湖学院 一种超薄氮化钒\氮掺杂碳复合材料及制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105895382B (zh) * 2016-03-23 2018-04-03 中国航空工业集团公司北京航空材料研究院 一种自支撑柔性复合电极薄膜及其制备方法和用途

Also Published As

Publication number Publication date
CN106744731A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
CN106744731B (zh) 一种多孔氮化钒纳米带气凝胶的制备方法及应用
Cao et al. Preparation of mesoporous nanocrystalline Co3O4 and its applicability of porosity to the formation of electrochemical capacitance
EP3057104B1 (en) Conductive composition, slurry composition for forming electrode of lithium secondary battery using same, and lithium secondary battery
AU2006201026B2 (en) An improved process for the manufacture of strontium doped lanthanum manganite (LSM) ceramic powder suitable for solid oxide fuel cell (SOFC) applications
US9570745B2 (en) Cathode active material and method for making the same
Xu et al. Citrate method synthesis, characterization and mixed electronic–ionic conduction properties of La0. 6Sr0. 4Co0. 8Fe0. 2O3 perovskite-type complex oxides
CN108807986A (zh) 一种碱式氯化铅微纳结构晶体的制备方法
CN103972508A (zh) 一种无机掺杂/包覆改性天然石墨、制备方法及其应用
CN110234181A (zh) 一种自支撑的石墨烯基复合电热薄膜的制备方法
CN108470918A (zh) 一种F阴离子掺杂La0.8Sr0.2MnFxO3-x-δ阴极材料及其制备方法
Makhloufi et al. Structural, Electrical and Electrochemical Characterizations of Perovskite Ni-Doped SrCoO 3− δ
Park et al. Ammonium hexavanadate nanorods prepared by homogeneous precipitation using urea as cathodes for lithium batteries
CN108390087A (zh) 一种复合固体电解质及其制备方法
CN112408490A (zh) 水热合成Ba掺杂Sr2Fe1.5Mo0.5O6双钙钛矿纳米材料的方法
Jena et al. Preparation, characterization and electrical conductivity studies of nanocrystalline scheelite Ba1− xDyxMoO4+ δ
Zou et al. A comparative study of the photoconduction, photocatalytic and electrocatalytic performance of gC 3 N 4/ZnS/CuS heterojunctions with different morphologies
CN110420656B (zh) 一种气相酸化g-C3N4纳米片及其制备方法
CN105489905B (zh) 一种钙钛矿型空气电池电极催化层的制备方法
Wu et al. Aspect ratio controlled growth of MnOOH in mixtures of Mn3O4 and MnOOH single crystals for supercapacitors
CN102856562A (zh) 一种燃料电池用碳纳米管掺杂炭凝胶催化剂及其应用
CN106992294B (zh) 高电压镍锰酸锂正极复合材料及其制备方法、锂离子电池
CN110642293B (zh) 一种氧空位Li3VO4锂离子电池负极材料及其制备方法
Wang et al. Water-retention effect of composite membranes with different types of nanometer silicon dioxide
Jiang et al. A stable NH4PO3-glass proton conductor for intermediate temperature fuel cells
CN114214657A (zh) 钼基氮化物/碳化物电催化剂及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190305

Termination date: 20200110