CN106735288B - 一种以醋酸伐普肽为生物模板制备银纳米球壳的方法 - Google Patents

一种以醋酸伐普肽为生物模板制备银纳米球壳的方法 Download PDF

Info

Publication number
CN106735288B
CN106735288B CN201611075553.9A CN201611075553A CN106735288B CN 106735288 B CN106735288 B CN 106735288B CN 201611075553 A CN201611075553 A CN 201611075553A CN 106735288 B CN106735288 B CN 106735288B
Authority
CN
China
Prior art keywords
acetic acid
solution
spherical shell
vapreotide
silver nanoparticle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611075553.9A
Other languages
English (en)
Other versions
CN106735288A (zh
Inventor
高大威
李彦集
高发明
边可新
尹甜
牛康
刘欢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Hengzhou Technology Co.,Ltd.
Original Assignee
Yanshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanshan University filed Critical Yanshan University
Priority to CN201611075553.9A priority Critical patent/CN106735288B/zh
Publication of CN106735288A publication Critical patent/CN106735288A/zh
Application granted granted Critical
Publication of CN106735288B publication Critical patent/CN106735288B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0549Hollow particles, including tubes and shells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • B22F1/0655Hollow particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

一种以醋酸伐普肽为生物模板制备银纳米球壳的方法,其主要是配制成浓度为0.2~0.4mM的醋酸伐普肽溶液,于70~80℃保温10~30min;按摩尔比1:6~8的比例向醋酸伐普肽溶液中加入硝酸银溶液,放入水浴恒温振荡器中,80~100rpm,25℃孵育12~24h;按硝酸银溶液:硼氢化钠的摩尔比为1:1~5的比例,向孵育好的溶液中加入硼氢化钠,滴速为2滴/分钟,每滴60μL,25℃反应5~15min,从而得到粒径为80~100nm粒径均一、分散性好的银纳米球壳。本发明操作简单、制备条件温和、绿色环保、形貌易控,所制得的银纳米球壳克服了传统制备工艺易聚集、沉淀的缺点,且金属负载量较高。

Description

一种以醋酸伐普肽为生物模板制备银纳米球壳的方法
技术领域
本发明属于材料技术领域,特别涉及一种纳米材料的制备方法。
背景技术
纳米银粒子因具有表面效应、量子尺寸效应和宏观量子隧道效应等,显示出许多独特的物理和化学性质。近年来,纳米银粒子由于其优异的导电性、抗氧化性以及低温烧结性能而倍受人们的关注,被广泛应用于厚膜印刷电路、多层陶瓷电容器中的内部电极和传感器。此外,纳米银也时常被用作抗菌材料、生物传感器材料、和低温超导材料。
在众多形貌的银纳米粒子中,银球壳由于其特殊的结构,使得所制备的材料具有较高的比表面积及金属载量,这就赋予了银球壳在低浓度下依然能够保持很好的抗菌性能。另外,银球壳的表面等离子体共振峰发生红移,使其在光热转换、热疗领域的应用更加广泛。但是,粒子团聚现象是制备液相纳米粒子需要特别克服的一个问题,这会直接影响纳米材料本身性能的发挥。
目前,关于纳米银球壳的制备方法有电化学还原法、电化学法、电子束蒸发沉积法、光催化还原法、γ-射线法和激光融化法等。但是,这些方法所制得的纳米材料普遍存在易团聚、产率低、形貌不易控等缺点,另外,制备过程需要高强度的仪器,增加了成本。上述问题导致银纳米材料在实际应用和性能上受到了限制。
发明内容
本发明的目的在于提供一种成本低、形貌易控、产率较高且制备条件温和的以醋酸伐普肽为生物模板制备银纳米球壳的方法。本发明主要是在酸性条件下对醋酸伐普肽进行热处理,该模板会按照一定的空间构象进行自组装,暴露出活性基团,并形成特定的形貌,然后通过醋酸伐普肽与前驱金属溶液的共孵育,控制反应条件,在生物矿化作用下,在模板表面形成少量的“晶种”,最后,通过筛选还原剂的种类、控制还原反应的速度和还原程度等,确定利用还原剂硼氢化钠(NaBH4)在设定条件下将游离的银离子还原,使其沿着“晶种”的固定晶面进行生长、延伸,最终合成所预期的银纳米球壳。
本发明的技术方案如下:
(1)按每毫升pH 4~5的盐酸溶液中加入0.23~0.45mg醋酸伐普肽的比例,配制成浓度为0.2~0.4mM的醋酸伐普肽溶液;
(2)将上述醋酸伐普肽溶液置于70~80℃金属浴中10~30min进行热处理;
(3)按照醋酸伐普肽:硝酸银的摩尔比为1:6~8的比例,向步骤(2)热处理后的醋酸伐普肽溶液中加入摩尔浓度为1.5~2.5mM的硝酸银(AgNO3)溶液,混合均匀,将其放入水浴恒温振荡器中,80~100rpm,25℃孵育12~24h;
(4)按上述硝酸银(AgNO3):硼氢化钠(NaBH4)的摩尔比为1:1~5的比例,向步骤(3)孵育好的溶液中加入还原剂硼氢化钠(NaBH4),滴速控制在2滴/分钟,每滴60μL,反应温度在25℃,反应时间为5~15min,直至溶液从透明缓慢变为黑色为止,制得粒径为80~100nm,且粒径均一、分散性良好的银纳米球壳。
本发明与现有技术相比具有如下优点:
1、本发明采用醋酸伐普肽为模板,分子式为C57H70N12O9S2,其分子量小,结构简单,易于设计分析,且含有能与银特异性结合的氨基、巯基等活性基团。等电点在pH 10.0左右,在酸性条件下,模板会带有大量的正电荷,可通过静电作用,将金属离子吸附到其表面。
2、制备方法简单,成本较低,且制备条件温和,对环境无污染。
3、由于肽类模板表面特殊的氨基酸残基,使得银离子可以被特异性吸附到醋酸伐普肽表面,并且规整地排列,这在一定程度上解决了纳米粒子的团聚现象。
4、合成的银纳米球壳分散性好、粒径均一
5、醋酸伐普肽模板本身具有较高的生物相容性,通过其制备的纳米材料同样保持了一定的生物相容性,这就使得该银纳米球壳的应用领域更加广泛。
附图说明
图1为本发明实施例1制得的银纳米球壳的TEM图。
图2为本发明实施例2制得的银纳米球壳的TEM图。
图3为本发明实施例3制得的银纳米球壳的TEM图。
图4为本发明实施例3制得的银纳米球壳的EDS图。
图5为本发明实施例3制得的银纳米球壳的时间-温度曲线图。
具体实施方式
实施例1
取0.23mg的醋酸伐普肽(武汉东康源科技有限公司),溶于1mL pH 4.0的盐酸溶液中,制得醋酸伐普肽溶液,将醋酸伐普肽溶液置于70℃金属浴10min;将400μL金属浴后的醋酸伐普肽溶液与400μL浓度为1.5mM的硝酸银溶液(天津市化学试剂厂)混合后放入水浴恒温振荡器中,控制转速为80rpm,温度为25℃条件下孵育12h;最后滴加浓度为15mM的硼氢化钠(北京中胜华腾科技有限公司生产)60μL进行还原,60μL/滴,温度为25℃,反应5min,使其从透明缓慢变成黑色,制得银纳米球壳。
如图1所示,银纳米球壳的粒径为80nm左右,形貌规则,金属与模板结合较好。
实施例2
取0.34mg的醋酸伐普肽(武汉东康源科技有限公司),溶于1mL pH 4.5的盐酸溶液中,制得醋酸伐普肽溶液,将醋酸伐普肽溶液置于75℃金属浴20min;取400μL金属浴后的醋酸伐普肽溶液与400μL浓度为2.0mM的硝酸银溶液(天津市化学试剂厂)混合后放入水浴恒温振荡器中,控制转速为90rpm,温度为25℃条件下孵育18h;最后逐滴加入浓度为20mM的硼氢化钠(北京中胜华腾科技有限公司生产)120μL进行还原,滴速为2滴/分钟,60μL/滴,温度为25℃,反应10min,使其从透明缓慢变成黑色,制得银纳米球壳。
如图2所示,银纳米球壳的粒径为90nm左右,形貌规则,金属与模板结合状况良好。
实施例3
取0.45mg的醋酸伐普肽(武汉东康源科技有限公司),溶于1mL pH 5.0的盐酸溶液中,制得醋酸伐普肽溶液,将醋酸伐普肽溶液置于80℃金属浴30min;取400μL金属浴后的醋酸伐普肽溶液与400μL浓度为2.5mM的硝酸银溶液(天津市化学试剂厂)混合后放入水浴恒温振荡器中,控制转速为100rpm,温度为25℃条件下孵育24h;最后逐滴加入浓度为25mM的硼氢化钠(北京中胜华腾科技有限公司生产)180μL进行还原,滴速为2滴/分钟,60μL/滴,温度为25℃,反应15min,使其从透明缓慢变成黑色,即获得醋酸伐普肽-银纳米球壳。
如图3所示,银纳米球壳的粒径为100nm左右,形貌规则,金属与模板结合状况良好。
如图4所示,能谱中出现C、N、Ag、Cu、Al元素对应的峰,其中,Cu、C元素来自于碳膜覆盖的铜网,此外,醋酸伐普肽模板中也含有C元素和N元素;Al元素来自于透射电子显微镜的金属样品杆;Ag元素则是由结合在醋酸伐普肽模板表面的银粒子产生的,说明醋酸伐普肽与银纳米粒子结合良好,且纯度很高,没有杂质。醋酸伐普肽作为空间限域的模板在纳米粒子的排布上发挥很好的作用,进而能够使银纳米球壳的性能的发挥更有效地发挥,因此醋酸伐普肽是制备纳米银材料很好的模板剂。
使用808nm激光发射器对银球壳溶液进行照射,对其温度进行了监测,并绘制了时间-温度曲线,如图5所示,在10min后,银球壳(Vap-AgNSs)的温度最高可升至55℃,而单纯的银纳米粒子(AgNPs)溶液的温度最高为28℃。该结果表明,球壳结构赋予了其优良的光热转换性能,并且使其能够应用于肿瘤的热疗领域。

Claims (1)

1.一种以醋酸伐普肽为生物模板制备银纳米球壳的方法,其特征在于:
(1)按每毫升pH 4~5的盐酸溶液中加入0.23~0.45mg醋酸伐普肽的比例,配制成浓度为0.2~0.4mM的醋酸伐普肽溶液;
(2)将上述醋酸伐普肽溶液置于70~80℃金属浴中10~30min进行热处理;
(3)按照醋酸伐普肽:硝酸银的摩尔比为1:6~8的比例,向步骤(2)热处理后的醋酸伐普肽溶液中加入摩尔浓度为1.5~2.5mM的硝酸银(AgNO3)溶液,混合均匀,将其放入水浴恒温振荡器中,80~100rpm,25℃孵育12~24h;
(4)按上述硝酸银(AgNO3):硼氢化钠(NaBH4)的摩尔比为1:1~5的比例,向步骤(3)孵育好的溶液中加入还原剂硼氢化钠(NaBH4),滴速控制在2滴/分钟,每滴60μL,反应温度在25℃,反应时间为5~15min,直至溶液从透明缓慢变为黑色为止,制得粒径为80~100nm,且粒径均一、分散性良好的银纳米球壳。
CN201611075553.9A 2016-11-30 2016-11-30 一种以醋酸伐普肽为生物模板制备银纳米球壳的方法 Active CN106735288B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611075553.9A CN106735288B (zh) 2016-11-30 2016-11-30 一种以醋酸伐普肽为生物模板制备银纳米球壳的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611075553.9A CN106735288B (zh) 2016-11-30 2016-11-30 一种以醋酸伐普肽为生物模板制备银纳米球壳的方法

Publications (2)

Publication Number Publication Date
CN106735288A CN106735288A (zh) 2017-05-31
CN106735288B true CN106735288B (zh) 2018-12-28

Family

ID=58900783

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611075553.9A Active CN106735288B (zh) 2016-11-30 2016-11-30 一种以醋酸伐普肽为生物模板制备银纳米球壳的方法

Country Status (1)

Country Link
CN (1) CN106735288B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108339990A (zh) * 2018-03-30 2018-07-31 燕山大学 一种具有催化活性的银钯核壳纳米球的制备方法
CN112605393B (zh) * 2020-12-01 2022-11-11 浙江大学温州研究院 一种特异性结合多肽修饰银纳米颗粒的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008048375A1 (en) * 2006-05-19 2008-04-24 Bayer Healthcare Ag Pyridonecarboxamide derivatives useful in treating hyper-proliferative and angiogenesis disorders
CN104185523A (zh) * 2012-03-07 2014-12-03 住友金属矿山株式会社 银粉及其制造方法
CN104259471A (zh) * 2014-08-29 2015-01-07 昆明贵金属研究所 一种粒径均一的球形银纳米颗粒的快速制备方法
CN105057690A (zh) * 2015-07-20 2015-11-18 昆明理工大学 一种高分散性超细球形银粉的制备方法
CN105817645A (zh) * 2016-05-13 2016-08-03 溧阳市立方贵金属材料有限公司 一种可控粒度的超纯银粉的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008048375A1 (en) * 2006-05-19 2008-04-24 Bayer Healthcare Ag Pyridonecarboxamide derivatives useful in treating hyper-proliferative and angiogenesis disorders
CN104185523A (zh) * 2012-03-07 2014-12-03 住友金属矿山株式会社 银粉及其制造方法
CN104259471A (zh) * 2014-08-29 2015-01-07 昆明贵金属研究所 一种粒径均一的球形银纳米颗粒的快速制备方法
CN105057690A (zh) * 2015-07-20 2015-11-18 昆明理工大学 一种高分散性超细球形银粉的制备方法
CN105817645A (zh) * 2016-05-13 2016-08-03 溧阳市立方贵金属材料有限公司 一种可控粒度的超纯银粉的制备方法

Also Published As

Publication number Publication date
CN106735288A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
Ghassan et al. Nanomaterials: an overview of nanorods synthesis and optimization
Pagar et al. A review on bio-synthesized Co3O4 nanoparticles using plant extracts and their diverse applications
Sui et al. Low temperature synthesis of Cu2O crystals: shape evolution and growth mechanism
CN104148047B (zh) 一种碳掺杂氧化锌基可见光催化剂的宏量制备方法
Heli et al. Synthesis and applications of nanoflowers
CN105709782B (zh) 一种Ag/AgBr/BiOCl‐(001)纳米复合材料的制备及应用
CN103769604A (zh) 一种木质素—纳米银溶胶的绿色快速制备方法
CN106735288B (zh) 一种以醋酸伐普肽为生物模板制备银纳米球壳的方法
CN105478747B (zh) 对近红外光具有显著可调吸收性能的梭形金纳米粒子及其制备方法
CN104607216B (zh) 磷铝共掺杂型导电氧化锌纳米催化剂的一步合成方法
CN103722177A (zh) 一种金纳米棒的制备方法
CN106902350B (zh) 一种金属掺杂的光热碳纳米材料及其制备方法和应用
Kargbo et al. Recent advances in luminescent carbon dots
CN107986318B (zh) 水溶性CuS纳米晶及其合成方法和应用
CN108372310A (zh) 一种用于水基导电油墨的小尺寸纳米银的制备方法
CN103482675A (zh) 一种空心多面体结构氧化亚铜的制备方法
Liu et al. One-pot synthesis of flower-like Bi2WO6/BiOCOOH microspheres with enhanced visible light photocatalytic activity
CN106735289B (zh) 一种以醋酸奥曲肽为模板制备立方体状银纳米盒的方法
CN102328094B (zh) 一种粒度均匀超细银粉的制备方法
Gao et al. 2D laminated cylinder-like BiFeO3 composites: Hydrothermal preparation, formation mechanism, and photocatalytic properties
WO2024087551A1 (zh) 一种软模板法制备银纳米线的方法
CN106475574B (zh) 一种制备金纳米花的方法
CN101525158B (zh) 一种制备三氧化二铁一维纳米材料的方法
CN106694901B (zh) 一种基于醋酸伐普肽制备银金合金纳米球壳
CN105458287A (zh) 利用醋酸兰瑞肽模板制备笼状金纳米粒子的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20191212

Address after: 066004 No.13, middle Changjiang Road, Qinhuangdao Economic and Technological Development Zone, Hebei Province

Patentee after: Hebei Hengzhou Technology Co., Ltd

Address before: Hebei Street West Harbor area, 066004 Hebei city of Qinhuangdao province No. 438

Patentee before: Yanshan University

CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: Room 306-28, building A10, No. 9 Kechuang Avenue, intelligent manufacturing Industrial Park (Zhihe Park), Jiangbei new area, Nanjing, Jiangsu 210000

Patentee after: Nanjing Hengzhou Technology Co.,Ltd.

Address before: 066004 No. 13, Changjiang Middle Road, Qinhuangdao Economic and Technological Development Zone, Hebei Province

Patentee before: Hebei Hengzhou Technology Co.,Ltd.