CN106731881B - 基于金属、非金属共掺杂nTiO2的可见光催化中空纤维超滤膜及制备方法 - Google Patents

基于金属、非金属共掺杂nTiO2的可见光催化中空纤维超滤膜及制备方法 Download PDF

Info

Publication number
CN106731881B
CN106731881B CN201611181737.3A CN201611181737A CN106731881B CN 106731881 B CN106731881 B CN 106731881B CN 201611181737 A CN201611181737 A CN 201611181737A CN 106731881 B CN106731881 B CN 106731881B
Authority
CN
China
Prior art keywords
ntio2
ultrafiltration membrane
visible light
hollow fiber
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611181737.3A
Other languages
English (en)
Other versions
CN106731881A (zh
Inventor
王秀菊
王立国
王仲鹏
刘思全
许伟颖
何芳
周凯丽
侯凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN201611181737.3A priority Critical patent/CN106731881B/zh
Publication of CN106731881A publication Critical patent/CN106731881A/zh
Application granted granted Critical
Publication of CN106731881B publication Critical patent/CN106731881B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/38Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明公开了一种基于金属、非金属共掺杂nTiO2的可见光催化中空纤维超滤膜及制备方法,属于膜分离技术领域。将10.0%~25.0%(w/w)聚砜或聚醚砜、8.0%~17.0%(w/w)致孔剂、0.1%~2.0%(w/w)表面活性剂、0.1%~5.0%(w/w)金属与非金属共掺杂nTiO2和51.0%~81.8%(w/w)溶剂按照一定的顺序加入到溶解罐中,在35~95℃温度下搅拌溶解5~16hr至完全溶解,静置脱泡8~36hr,制成铸膜液;采用干‑湿法纺丝工艺制备出可见光催化中空纤维超滤膜。本发明所制备超滤膜的纯水通量≥350L/m2·hr·0.1MPa,牛血清蛋白截留率≥90.00%,对黄腐酸的降解去除率达到70%左右(模拟可见光下,运行1小时),具有良好的抗污染性能和可见光催化性能。本发明产品特别适用于微污染水源水深度处理、海水淡化预处理及生物化工、医药领域废水的深度处理与回用等。

Description

基于金属、非金属共掺杂nTiO2的可见光催化中空纤维超滤膜 及制备方法
技术领域
本发明涉及一种高分子混合基质超滤膜及其制备方法,特别是涉及一种基于金属、非金属共掺杂nTiO2的可见光催化中空纤维超滤膜及制备方法。
背景技术
水资源的匮乏和日益严重的水污染已成为制约社会进步和经济发展的瓶颈,新水源开发和废污水资源化利用也成为全球普遍关注的问题。由于地球上海水资源极为丰富,且产生大量的废污水,污水资源化和海水淡化已成为解决水资源危机的战略选择。在诸多的污水资源化技术中,膜分离技术是最好的选择之一。
混合基质膜,又称杂化膜,是将有机和无机成分化学交联或微观混合形成的膜,又称“有机-无机杂化膜”,因兼具无机膜的耐腐蚀、耐热性和有机膜的高分离性和韧性等优点,成为了研究膜材料改性的热点之一。近年来,国内外学者采用共混法或溶胶凝胶法制备对紫外光响应的纳米无机材料/聚合物杂化超滤膜,使之同时具有光催化和膜分离的多功能性,有着很好的开发与应用前景;如中国专利ZL201410312781.8采用纳米无机材料与膜材料共混制备了对紫外光响应的超滤膜,使之在紫外光催化作用下具有对有机污染物的降解性能。
纳米二氧化钛具有光催化活性高、化学性质稳定、无毒和低成本等优势,是一种优良的光催化剂,但其只有在紫外光照射下才能表现出光催化活性,不能利用可见光进行光催化降解,而紫外光的光能只占不到5%的太阳光能,严重限制了二氧化钛改性膜的实际应用。因此,如何通过在nTiO2中掺杂其他元素来有效地延长二氧化钛的电子-空穴分离,并充分发挥nTiO2和其他元素的协同作用,进一步提高掺杂nTiO2的可见光催化活性,并通过掺杂nTiO2共混制备可见光催化超滤膜,在提高超滤膜的抗污染性的同时,又使超滤膜具有可见光催化活性,拓展超滤膜的应用范围,是近年来超滤膜研究的热点。
中国专利CN102989329A通过将AgNO3、TiO2共混改性制备超滤膜,事实上是主要利用了AgNO3的可见光催化活性,且降解速率较慢(专利中采用了光照10小时对亚甲基蓝的降解率进行光催化性能表征),无法制备同时用于分离和可见光催化的分离膜;中国专利CN104383820A则将Ag3PO4/TiO2复合物(Ag3PO4纳米颗粒沉积到TiO2表面)与聚偏氟乙烯材料共混改性,使改性膜具备可见光催化抗菌防污性能,主要利用沉积在TiO2表面的Ag3PO4颗粒降解分离膜应用过程中吸附的有机物,以减少膜污染,没有用于制备同时具有分离和可见光催化性能的分离膜;同时,这两个专利均没有通过协同效应以充分利用银盐和TiO2的催化性能,仅仅通过共混或沉积而利用了银盐或银盐与TiO2各自的催化活性,可见光催化效率较低。中国专利CN102895888A则先制备二氧化钛/聚偏氟乙烯膜,然后在其表面吸附、还原银离子来制备可见光响应性聚偏氟乙烯膜,所制备膜的亚甲基蓝降解率为33%~51%(可见光照射100mins);但本发明需要在完成二氧化钛/聚偏氟乙烯膜制备后,再通过吸附银离子、还原银离子为银单质、真空干燥等步骤才能完成专利产品的制备,且制备过程中需要暗室、紫外照射、真空干燥等条件,工艺复杂、制备成本高,产业化难度较大。中国专利CN104383821A采用氧化石墨烯负载核壳结构的磁性粒子@TiO2制备改性分离膜,认为分离膜对目标污染物牛血清蛋白表现出了良好的光催化降解性能和抗蛋白污染性能,但未在专利申请中阐明所制备膜的分离性能和可见光催化降解性能的优劣,且所述分离膜制备工艺复杂;同时,氧化石墨烯负载核壳结构的磁性粒子@TiO2制备方法复杂、成本高。中国专利CN104117291A采用TiO2/C杂化气凝胶改性制备了聚偏氟乙烯膜,所制备的膜在氙灯(可见光)照射下改性PVDF 膜对活性艳红X-3B 的降解率仅为13.96% ,而在汞灯(紫外光)照射下对活性艳红X-3B 降解率则为93.28%,可证明添加TiO2/C杂化气凝胶所制备的膜仍然是对紫外光响应的超滤膜,而不是可见光催化超滤膜。
由上述可知,目前国内外光催化分离膜的研究尚处于实验室探索阶段,可见光催化超滤膜的制备工艺复杂,难以实现产业化。由于掺杂物能有效地延长二氧化钛的电子-空穴分离,因此,通过同时掺杂金属、非金属较单一掺杂非金属能明显地提高二氧化钛的可见光催化效率。本发明通过在nTiO2中进行金属、非金属共掺杂来充分发挥一金属、一非金属和nTiO2的协同作用,进一步提高nTiO2的可见光催化活性,并采用金属、非金属共掺杂nTiO2改善高分子超滤膜的可见光光催化特性,制备具有可见光催化活性的中空纤维混合基质超滤膜并实现产业化,国内至今没有看到类似的可见光催化中空纤维超滤膜产品的生产,国内外也尚未见相关文献报道。
发明内容
本发明的目的是提供一种基于金属、非金属共掺杂nTiO2的可见光催化中空纤维超滤膜,本发明的另一个目的是提供该可见光催化中空纤维超滤膜的制备方法。
为实现上述目的,本发明采取的技术方案为:
一种基于金属、非金属共掺杂nTiO2的可见光催化中空纤维超滤膜,是由以下质量百分比的物质组成的:聚合物膜材料10.0%~25.0%(w/w)、致孔剂8.0%~17.0%(w/w)、表面活性剂0.1%~2.0%(w/w)、金属与非金属共掺杂nTiO2 0.1%~5.0%(w/w)、溶剂51.0%~81.8%(w/w);
所述的聚合物膜材料为聚砜、聚醚砜的一种,含量为10.0%~25.0%(w/w);
所述的致孔剂为聚乙二醇、聚乙烯吡咯烷酮的一种,含量为8.0%~17.0%(w/w);
所述的表面活性剂为非离子表面活性剂,如聚山梨酯(吐温)、脂肪酸甘油酯、脂肪酸山梨坦等的一种,含量为0.1%~2.0%(w/w);
所述的金属与非金属共掺杂nTiO2为铁氮掺杂nTiO2、镍氮掺杂nTiO2、锡氮掺杂nTiO2、钼硫掺杂nTiO2、铬硫掺杂nTiO2、铋硫掺杂nTiO2、铁硅掺杂nTiO2、锌硼掺杂nTiO2和铈硼掺杂nTiO2等可见光催化剂的一种,含量为0.1%~5.0%(w/w);
所述的溶剂为N,N-二甲基乙酰胺(DMAc)、N,N-二甲基甲酰胺(DMF)、N-甲基吡咯烷酮(NMP)的一种或两种混合,含量为51.0%~81.8%(w/w)。
一种基于金属、非金属共掺杂nTiO2的可见光催化中空纤维超滤膜的制备方法,包括以下步骤:
(1)将一定量的溶剂、致孔剂、表面活性剂、金属与非金属共掺杂nTiO2按照一定的比例、顺序分别加入到溶解罐中,常温下搅拌均匀;
(2)将一定量的聚合物膜材料加入到溶解罐中,在35~95℃温度下搅拌溶解5~16小时至完全溶解,配制成初始铸膜液;然后,将得到的铸膜液在搅拌溶解温度下静止放置8~36小时使其完全脱泡;
(3)采用传统的干-湿法纺丝工艺,控制铸膜液流速3.0~20.0mL/min,铸膜液温度为35~95℃,凝固浴温度为15~35℃,空气间高度为0~15cm,中空纤维超滤膜凝固时间为0.5~5.0分钟,制备出可见光催化中空纤维超滤膜;
(4)最后,将所制备的中空纤维超滤膜放入去离子水中浸泡、冲洗24 小时,以洗净添加剂;然后放到浓度为50%的甘油溶液中处理48小时,即制备出基于金属、非金属共掺杂nTiO2的可见光催化中空纤维超滤膜。
所述的凝固浴为去离子水。
本发明提供了一种基于金属、非金属共掺杂nTiO2的可见光催化中空纤维超滤膜及制备方法,将金属、非金属共掺杂nTiO2可见光催化材料引入到聚合物中制备混合基质超滤膜,并赋予混合基质超滤膜良好的抗污染性和可见光催化降解有机污染物的性能,这是本发明的创新之处。为了检验所制备的可见光催化超滤膜的抗污染性和可见光催化性能,本发明对所制备超滤膜的阻力增大系数和接触角进行了测试,结果表明阻力增大系数和接触角都明显降低,超滤膜的抗污染性得到了较大的提高。同时,以黄腐酸为目标污染物,将所制备的可见光催化混合基质超滤膜进行可见光催化降解去除率和超滤膜通量变化测试,结果表明,所制备的超滤膜在模拟可见光下运行时表现出良好的光催化降解性能和抗污染性能,膜的通量衰减明显降低。
本发明和已有技术相比,具有如下有益的效果:
(1)本发明所提供的金属与非金属共掺杂nTiO2共混改性所制备的可见光催化中空纤维超滤膜与传统聚砜、聚醚砜超滤膜和基于nTiO2的混合基质超滤膜相比,其抗污染性和可见光催化活性得到了明显改善,可在进行膜分离的同时实现对有机污染物的催化降解。
(2)本发明所提供的金属与非金属共掺杂nTiO2共混改性制备可见光催化中空纤维超滤膜的方法,所用的设备与传统中空纤维超滤膜纺制设备一样,简单、易控,膜制备工艺简单,成膜的同时赋予所制备超滤膜可见光催化活性和抗污染性,易实现产业化。
具体实施方式:
下面结合实施例对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1:
将62.0%(w/w)的二甲基乙酰胺、15.0%(w/w)的聚乙二醇400、1.0%(w/w)的吐温-80和3.0%(w/w)的铁氮掺杂nTiO2按照一定的顺序分别加入到溶解罐中,搅拌均匀;然后加入19.0%(w/w)的聚砜,在85℃温度下搅拌溶解8小时至完全溶解;然后,将得到的铸膜液在搅拌溶解温度下静止放置24小时,脱除铸膜液中残存的气泡。
控制铸膜液流速10.0mL/min,铸膜液温度为35℃,凝固浴温度为23℃,空气间高度为5cm,中空纤维膜凝固时间为1.0 分钟,采用传统的干-湿法纺丝工艺制备出可见光催化中空纤维超滤膜。所制备的中空纤维超滤膜放入去离子水中浸泡、冲洗24 小时,以洗净添加剂。然后放到浓度为50%的甘油溶液中处理48 小时,即制备出基于铁氮掺杂nTiO2的可见光催化中空纤维超滤膜。
本实施例所制备的可见光催化中空纤维超滤膜的纯水通量为362.63L/m2·hr·0.1MPa,牛血清蛋白截留率为92.15%,阻力增大系数为1.30,动态接触角为71.5°;对黄腐酸的降解去除率由42.72%(无光照,运行1小时)提高到69.36%(模拟可见光下,运行1小时)。
实施例2:
将铁氮掺杂nTiO2含量由3.0%(w/w)降为0.1%(w/w),二甲基乙酰胺的含量由62.0%(w/w)提高到64.9%(w/w),其余的同实施例1。则所制备的基于铁氮掺杂nTiO2的可见光催化中空纤维超滤膜的纯水通量为319.75 L/m2·hr·0.1MPa,牛血清蛋白截留率为92.92%,阻力增大系数为1.72,接触角为84.1°;对黄腐酸的降解去除率由29.69%(无光照,运行1小时)提高到41.91%(模拟可见光下,运行1小时)。
实施例3:
将铁氮掺杂nTiO2含量由3.0%(w/w)提高到5.0%(w/w),二甲基乙酰胺的含量由62.0%(w/w)降为60.0%(w/w),其余的同实施例1。则所制备的基于铁氮掺杂nTiO2的可见光催化中空纤维超滤膜的纯水通量为367.65 L/m2·hr·0.1MPa,牛血清蛋白截留率为91.61%,阻力增大系数为1.28,接触角为71.2°;对黄腐酸的降解去除率由43.07%(无光照,运行1小时)提高到70.64%(模拟可见光下,运行1小时)。
实施例4:
将金属与非金属共掺杂nTiO2由铁氮掺杂nTiO2替换为锌硼掺杂nTiO2,其余的同实施例1。则所制备的基于锌硼掺杂nTiO2的可见光催化中空纤维超滤膜的纯水通量为351.17L/m2·hr·0.1MPa,牛血清蛋白截留率为92.26%,阻力增大系数为1.32,接触角为71.7°;对黄腐酸的降解去除率由41.57%(无光照,运行1小时)提高到68.52%(模拟可见光下,运行1小时)。
实施例5:
将金属与非金属共掺杂nTiO2由铁氮掺杂nTiO2替换为铬硫掺杂nTiO2,其余的同实施例1。则所制备的基于铬硫掺杂nTiO2的可见光催化中空纤维超滤膜的纯水通量为371.58L/m2·hr·0.1MPa,牛血清蛋白截留率为92.26%,阻力增大系数为1.28,接触角为71.3°;对黄腐酸的降解去除率由43.23%(无光照,运行1小时)提高到70.29%(模拟可见光下,运行1小时)。
比较例1:
将65.0%(w/w)的二甲基乙酰胺、15.0%(w/w)的聚乙二醇400、1.0%(w/w)的吐温-80和19.0%(w/w)的聚砜按照一定的顺序分别加入到溶解罐中,在85℃温度下搅拌溶解8小时至完全溶解;然后,将得到的铸膜液在搅拌溶解温度下静止放置24小时,脱除铸膜液中残存的气泡。
控制铸膜液流速10.0mL/min,铸膜液温度为35℃,凝固浴温度为23℃,空气间高度为5cm,中空纤维超滤膜凝固时间为1.0 分钟,采用传统的干-湿法纺丝工艺制备出聚砜中空纤维超滤膜。所制备的中空纤维超滤膜放入去离子水中浸泡、冲洗24 小时,以洗净添加剂。然后放到浓度为50%的甘油溶液中处理48小时,即制备出商品化的聚砜中空纤维超滤膜。
本比较例所制备的聚砜中空纤维超滤膜的纯水通量为287.26 L/m2·hr·0.1MPa,牛血清蛋白截留率为93.46%,阻力增大系数为1.83,接触角为89.0°;对黄腐酸的降解去除率由23.96%(无光照,运行1小时)提高到24.23%(模拟可见光下,运行1小时)。
比较例2:
将62.0%(w/w)的二甲基乙酰胺、15.0%(w/w)的聚乙二醇400、1.0%(w/w)的吐温-80和3.0%(w/w)的纳米二氧化钛按照一定的顺序分别加入到溶解罐中,搅拌均匀;然后加入19.0%(w/w)的聚砜,在85℃温度下搅拌溶解8小时至完全溶解;然后,将得到的铸膜液在搅拌溶解温度下静止放置24小时,脱除铸膜液中残存的气泡。
控制铸膜液流速10.0mL/min,铸膜液温度为35℃,凝固浴温度为23℃,空气间高度为5cm,中空纤维膜凝固时间为1.0分钟,采用传统的干-湿法纺丝工艺制备出可见光催化中空纤维混合基质超滤膜。所制备的中空纤维膜放入去离子水中浸泡、冲洗24 小时,以洗净添加剂。然后放到浓度为50%的甘油溶液中处理48小时,即制备出基于nTiO2的中空纤维超滤膜。
本比较例所制备的中空纤维超滤膜的纯水通量为309.43L/m2·hr·0.1MPa,牛血清蛋白截留率为92.36%,阻力增大系数为1.57,动态接触角为82.5°;对黄腐酸的降解去除率由33.39%(无光照,运行1小时)提高到35.49%(模拟可见光下,运行1小时)。

Claims (3)

1.一种基于金属、非金属共掺杂nTiO2的可见光催化中空纤维超滤膜,其特征在于,其铸膜液中含有金属与非金属共掺杂nTiO2,并影响超滤膜的结构和性能;铸膜液由以下质量百分比的物质组成:聚合物膜材料10.0%~25.0%(w/w)、致孔剂8.0%~17.0%(w/w)、表面活性剂0.1%~2.0%(w/w)、金属与非金属共掺杂nTiO2 3.0%~5.0%(w/w),其余为溶剂;
所述的金属与非金属共掺杂nTiO2为铁氮掺杂nTiO2、镍氮掺杂nTiO2、锡氮掺杂nTiO2、钼硫掺杂nTiO2、铬硫掺杂nTiO2、铋硫掺杂nTiO2、铁硅掺杂nTiO2、锌硼掺杂nTiO2和铈硼掺杂nTiO2可见光催化剂中的一种;
所述的聚合物膜材料为聚砜、聚醚砜的一种;
所述致孔剂为聚乙二醇、聚乙烯吡咯烷酮的一种;
所述的表面活性剂为非离子表面活性剂,为聚山梨酯(吐温)、脂肪酸甘油酯、脂肪酸山梨坦中的一种;
所述的溶剂为N ,N-二甲基乙酰胺(DMAc)、N ,N-二甲基甲酰胺(DMF)、N-甲基吡咯烷酮(NMP)的一种或两种混合;
步骤(1)将一定量的溶剂、致孔剂、表面活性剂和金属与非金属共掺杂nTiO2按照一定的比例、顺序分别加入到溶解罐中,常温下搅拌均匀;
步骤(2)将聚砜或聚醚砜加入到溶解罐中,在35~95℃温度下搅拌溶解5~16小时至完全溶解,静止放置脱泡8~36小时,即得到可见光催化中空纤维超滤膜铸膜液;
步骤(3)采用传统的干-湿法纺丝工艺,控制铸膜液流速3.0~20.0mL/min,铸膜液温度为35~95℃,凝固浴温度为15~35℃,空气间高度为0~15cm,中空纤维超滤膜凝固时间为0.5~5.0分钟,制备出可见光催化中空纤维超滤膜;
步骤(4)将所制备的中空纤维超滤膜放入去离子水中浸泡、冲洗24 小时,以洗净添加剂;然后放到浓度为50%的甘油溶液中处理48小时,即制备出基于金属、非金属共掺杂nTiO2的可见光催化中空纤维超滤膜。
2.根据权利要求1 所述的基于金属、非金属共掺杂nTiO2的可见光催化中空纤维超滤膜,其特征在于:所述的超滤膜是采用传统的相转化法即干-湿法制备的。
3.根据权利要求1 所述的基于金属、非金属共掺杂nTiO2的可见光催化中空纤维超滤膜,其特征在于:所述的凝固浴为去离子水。
CN201611181737.3A 2016-12-20 2016-12-20 基于金属、非金属共掺杂nTiO2的可见光催化中空纤维超滤膜及制备方法 Active CN106731881B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611181737.3A CN106731881B (zh) 2016-12-20 2016-12-20 基于金属、非金属共掺杂nTiO2的可见光催化中空纤维超滤膜及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611181737.3A CN106731881B (zh) 2016-12-20 2016-12-20 基于金属、非金属共掺杂nTiO2的可见光催化中空纤维超滤膜及制备方法

Publications (2)

Publication Number Publication Date
CN106731881A CN106731881A (zh) 2017-05-31
CN106731881B true CN106731881B (zh) 2019-10-25

Family

ID=58890881

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611181737.3A Active CN106731881B (zh) 2016-12-20 2016-12-20 基于金属、非金属共掺杂nTiO2的可见光催化中空纤维超滤膜及制备方法

Country Status (1)

Country Link
CN (1) CN106731881B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015047587A (ja) * 2013-09-04 2015-03-16 日立造船株式会社 分離膜の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1891335A (zh) * 2005-06-30 2007-01-10 范莉 一种制备纳米二氧化钛光催化剂的方法及产品
CN101716531A (zh) * 2009-11-16 2010-06-02 南开大学 聚乙烯膜负载型铁、氮共掺杂二氧化钛光催化剂及其制备方法
CN102309927B (zh) * 2011-07-18 2014-04-30 济南大学 抑菌性聚醚砜中空纤维超滤膜及其制备方法
CN102989456A (zh) * 2011-09-14 2013-03-27 大汉光电股份有限公司 双掺杂的光触媒材料
CN103924280A (zh) * 2014-04-29 2014-07-16 张家港格林台科环保设备有限公司 一种钼碳共掺杂氧化钛纳米管阵列薄膜材料及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015047587A (ja) * 2013-09-04 2015-03-16 日立造船株式会社 分離膜の製造方法

Also Published As

Publication number Publication date
CN106731881A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
CN106669468B (zh) 基于金属掺杂g-C3N4的可见光催化平板式超滤膜及制备方法
CN106807257A (zh) 基于金属掺杂g‑C3N4的可见光催化中空纤维超滤膜及制备方法
Wang et al. Catalytic PVDF membrane for continuous reduction and separation of p-nitrophenol and methylene blue in emulsified oil solution
CN109550406B (zh) 两性粒子原位构筑金属有机框架分离膜的制备方法
CN102580560B (zh) 纳米材料掺杂聚合物膜的制备方法
CN104069752B (zh) 磺化聚醚醚酮-氨基酸修饰氧化石墨烯杂化膜及制备和应用
CN106693730B (zh) 基于非金属多掺杂nTiO2的可见光催化中空纤维超滤膜及制备方法
CN106731879B (zh) 基于金属掺杂nTiO2的可见光催化中空纤维超滤膜及制备方法
CN106693731A (zh) 一种纳米碳酸钙掺杂聚砜制备高通量超滤膜的方法
CN107837690A (zh) 基于金属有机骨架zif‑8的平板式混合基质正渗透膜及制备方法
CN111871234A (zh) 一种疏松纳滤膜及其制备方法和应用
CN109304088A (zh) 一种耐强酸强碱的海水淡化膜及其制备方法与应用
CN104841296A (zh) 一种纳米氧化硅球/聚哌嗪酰胺纳米复合纳滤膜及其制备方法
CN106943897A (zh) 基于掺杂纳米Cu2O的可见光催化平板式超滤膜及制备方法
CN108014655B (zh) 基于MIL-101(Cr)/GO的平板式混合基质正渗透膜及制备方法
Gao et al. Bimetallic polyphenol networks structure modified polyethersulfone membrane with hydrophilic and anti-fouling properties based on reverse thermally induced phase separation method
CN106731876A (zh) 基于掺杂纳米ZnO的可见光催化平板式超滤膜及制备方法
CN106310960A (zh) 一种基于静电纺和自组装的聚赖氨酸纳滤膜及其制备方法
CN106975359A (zh) 基于掺杂纳米Cu2O的可见光催化中空纤维超滤膜及制备方法
CN112090296A (zh) 基于F-TiO2/Fe-g-C3N4的自清洁平板式PVDF超滤膜及制备方法
CN106731880A (zh) 基于掺杂纳米ZnO的可见光催化中空纤维超滤膜及制备方法
CN106731881B (zh) 基于金属、非金属共掺杂nTiO2的可见光催化中空纤维超滤膜及制备方法
CN108043245B (zh) 基于金属有机骨架MIL-53(Fe)的醋酸纤维素共混中空纤维正渗透膜
CN106731875B (zh) 基于非金属多掺杂nTiO2的可见光催化平板式超滤膜及制备方法
CN113274890B (zh) 一种多孔高渗透性聚乙烯污水处理膜及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant