CN106729770B - 一种用于肿瘤成像与治疗的纳米材料及其制备方法 - Google Patents

一种用于肿瘤成像与治疗的纳米材料及其制备方法 Download PDF

Info

Publication number
CN106729770B
CN106729770B CN201611077005.XA CN201611077005A CN106729770B CN 106729770 B CN106729770 B CN 106729770B CN 201611077005 A CN201611077005 A CN 201611077005A CN 106729770 B CN106729770 B CN 106729770B
Authority
CN
China
Prior art keywords
nagdf
treatment
mpeg
nano material
pmh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611077005.XA
Other languages
English (en)
Other versions
CN106729770A (zh
Inventor
刘金亮
王佳昕
施利毅
孙丽宁
牟晓明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201611077005.XA priority Critical patent/CN106729770B/zh
Publication of CN106729770A publication Critical patent/CN106729770A/zh
Application granted granted Critical
Publication of CN106729770B publication Critical patent/CN106729770B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • A61K49/12Macromolecular compounds
    • A61K49/126Linear polymers, e.g. dextran, inulin, PEG
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0063Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres
    • A61K49/0069Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the agent being in a particular physical galenical form
    • A61K49/0089Particulate, powder, adsorbate, bead, sphere
    • A61K49/0091Microparticle, microcapsule, microbubble, microsphere, microbead, i.e. having a size or diameter higher or equal to 1 micrometer
    • A61K49/0093Nanoparticle, nanocapsule, nanobubble, nanosphere, nanobead, i.e. having a size or diameter smaller than 1 micrometer, e.g. polymeric nanoparticle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1827Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
    • A61K49/1851Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule
    • A61K49/1857Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule the organic macromolecular compound being obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. PLGA
    • A61K49/186Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule the organic macromolecular compound being obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. PLGA the organic macromolecular compound being polyethyleneglycol [PEG]

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Nanotechnology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Radiology & Medical Imaging (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种用于肿瘤成像与治疗的纳米材料及其制备方法,先通过热裂解法制备Fe3O4纳米晶,其后通过自组装法,制备具有空腔的、内部包含有Fe3O4纳米晶的空心聚合物壳纳米球,将外壳碳化后再通过溶剂挥发法在碳壳表面装载一层上转换发光纳米粒子层,最后通过PEG进行表面修饰,得到具有磁靶向、磁共振成像(MRI)、上转换发光成像、光热治疗功能,可实现肿瘤的诊断治疗一体化的纳米材料。该纳米材料具有核‑壳结构,包括外部壳层与内部核心,所述外部壳层包括碳化聚合物壳层,碳化聚合物壳层上还附着有上转换发光纳米粒子(UCNPs)层,上转换发光纳米粒子层表面经过mPEG改性修饰,所述内部核心为均匀分散在内部空腔中的具有超顺磁性的Fe3O4纳米晶。

Description

一种用于肿瘤成像与治疗的纳米材料及其制备方法
技术领域
本发明涉及一种纳米材料,尤其涉及一种用于肿瘤成像与治疗的纳米材料。
背景技术
《世界癌症报告》指出,全球癌症的发病率与死亡率呈持续上升的趋势。中国2015年约有430万人确诊癌症,280万人死于癌症,平均每天7500人。癌症给患者、家庭、社会带来极大的痛楚,因此,癌症的诊断和治疗已成为目前医学研究中的当务之急。
在癌症的成像诊断方面,磁共振成像(Magnetic Resonance Imaging,MRI)是一种非损伤性的成像方式,组织分辨率高,能实现全方位的成像。此外,上转换发光材料采用近红外光为激发源,光的穿透深度较深,没有生物背景荧光,生物相容性好,因此上转换发光(upconversion luminescence,UCL)成像也具有较好的生物应用前景。光热治疗(photothermal therapy,PTT)是癌症治疗一种全新的方法,不同于化疗和光动力疗法,它具有毒副作用较小,能治疗不同类型的肿瘤,治疗具有可重复性等优点。
针对目前临床上癌症诊断和治疗相互独立,治疗周期长,费用高,化学治疗、放射治疗、手术治疗等治疗手段副作用大等问题,为提高治疗的精准度,缩短治疗周期,减少对正常组织的损伤,将多模式成像与治疗相结合,制备具有诊疗一体化功能的新型纳米材料,成为癌症治疗的新方向。由于不同类型材料的物理化学性质迥异,合成多功能复合材料的难度增大。因此,研究制备多功能纳米诊疗剂,实现肿瘤诊断治疗一体化的纳米材料具有重要的理论意义和临床应用价值。
发明内容
针对上述不足,本发明的目的在于提供一种用于肿瘤成像与治疗的纳米材料及其制备方法,克服目前癌症诊疗过程中所遇到的诊断治疗互相独立,肿瘤治疗药物靶向效果差,副作用大等问题,实现T1/T2成像与上转换荧光成像的双模成像与通过热效应进行肿瘤治疗,实现诊疗一体化。
本发明为达到上述目的所采用的技术方案是:
一种用于肿瘤成像与治疗的纳米材料的制备方法,包括以下步骤:
(1)以油酸钠与氯化铁为原料,溶于于乙醇、去离子水与环己烷的混合液,在60-80℃冷凝回流的环境中反应3-6小时,加水振荡反复洗涤后,弃去油相,于100-140℃下真空干燥一夜,得油酸铁;
(2)采用热裂解法,以步骤(1)所得油酸铁为原料,溶于油酸与十八烯的混合液中、在真空100-120℃的环境下加热20-40min,其后充入惰性气体,逐步升温至310-320℃并冷凝回流20-40min,冷却至室温后加入乙醇沉淀,取该沉淀溶于正己烷或环己烷中,离心取清液,再向清液中加入适量乙醇,离心取沉淀,如此重复洗涤3次,得到的黑色固体Fe3O4纳米晶,溶于正己烷或环己烷中,得到Fe3O4分散液;
(3)将油酸钠溶于80-100℃的去离子水中,取步骤(2)配好的Fe3O4分散液加至油酸钠溶液中,超声分散5-20min后,放入烘箱中40-70℃干燥至溶液不分层,得到混合物A;
(4)以2,4-二羟基苯甲酸、六次甲基四胺、步骤(3)得到的混合物A为原料,溶于80-100℃的去离子水中,超声分散5-20min后,在160℃下保温4h,在弱酸-弱碱相互作用的诱导下,通过水热过程分子进行自组装,生成具有空腔的、内部包含有Fe3O4纳米晶的空心聚合物壳纳米球(hollowpolymernanospheres,简称h-P),即Fe3O4@h-P,自然冷却后离心、洗涤、干燥成Fe3O4@h-P粉末;
(5)采用热解法,在弱还原气氛中(H2/Ar=5%/95%),在500℃下加热2h,使Fe3O4@h-P的聚合物壳碳化,生成具有空腔的、内部包含有含有Fe3O4纳米晶的空心碳壳纳米球(hollow carbon shell nanospheres,简称h-C),即Fe3O4@h-C;
(6)采用溶剂挥发法,以上转换发光纳米粒子(upconversion nanoparticles,简称UCNPs)的环己烷溶液与步骤(5)中合成的Fe3O4@h-C为原料,先将Fe3O4@h-C溶于乙醇中,再将UCNPs的环己烷溶液用环己烷稀释,其后将Fe3O4@h-C的乙醇溶液在搅拌下缓慢加入该混合溶液中,搅拌20-50min后,加热至40-60℃,敞口搅拌至溶剂除尽,UCNPs均匀附着至Fe3O4@h-C上,冷却后将所得固体用环己烷反复离心洗涤,至离心所得上清液用980nm激光照射观察不到荧光,取离心所得固体,既为Fe3O4@h-C@UCNPs;
(7)采用EDC偶联法合成C18PMH-mPEG,将聚(马来酸酐-1-十八碳烯)(C18PMH)与溶于CH2Cl2/TEA混合溶液中的氨基聚乙二醇(mPEG-NH2)在室温下反应2-4h,然后加入1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐(EDC·HCl)为偶联剂,再搅拌12-36h,得到其mPEG-C18PMH粗产物,采用超纯水对所得mPEG-C18PMH粗产物进行透析,通过透析膜(截留分子量MWCO为8000-14000)两天,最后冷冻干燥,即得C18PMH-mPEG粉末;所述C18PMH与mPEG-NH2质量比为1:5;
(8)通过油酸链-C18链的疏水作用,在Fe3O4@h-C@UCNPs表面负载mPEG-C18PMH,先将步骤(6)所得Fe3O4@h-C@UCNPs分散于氯仿中,得到Fe3O4@h-C@UCNPs的氯仿分散液,再将步骤(7)所得C18PMH-mPEG溶于等体积的氯仿中,其后缓慢加入Fe3O4@h-C@UCNPs的氯仿分散液,升温至30-45℃并进行敞口搅拌,直至氯仿挥发完全,得到灰黑色胶状物,立即加入去离子水,继续搅拌使固体均匀分散,离心后用去离子水反复洗涤,既得具有亲水性的Fe3O4@h-C@UCNPs@PEG。
其中,所述UCNPs包括有NaGdF4:Yb3+/Er3+、NaGdF4:Yb3+/Er3+@NaGdF4、NaGdF4:Yb3+/Tm3+、NaGdF4:Yb3+/Tm3+@NaGdF4
进一步地,所述步骤(1)中油酸钠与氯化铁的摩尔比为1:1。
进一步地,所述步骤(2)中油酸铁、油酸、十八烯的摩尔比为:2:1:39.6。
进一步地,所述步骤(3)中油酸钠与Fe3O4纳米晶的质量比为20:3。
进一步地,所述步骤(6)中UCNPs与Fe3O4@h-C的质量比为1:170~1:50。
进一步地,所述步骤(7)中C18PMH与mPEG-NH2质量比为1:5。
进一步地,所述步骤(8)中mPEG-C18PMH与Fe3O4@h-C@UCNPs的质量比为1:2~5:6。
一种用于肿瘤成像与治疗的纳米材料,该纳米材料具有核-壳结构,包括外部壳层与内部核心,所述外部壳层包括碳化聚合物壳层,碳化聚合物壳层上还附着有上转换发光纳米粒子(UCNPs)层,上转换发光纳米粒子层表面经过PEG改性修饰,所述内部核心为均匀分散在内部空腔中的具有超顺磁性的Fe3O4纳米晶,所述纳米材料具有磁靶向、磁共振成像(MRI)、上转换发光成像、光热治疗功能,可实现肿瘤的诊断治疗一体化。
其中,所述上转换发光纳米粒子层由若干上转换发光纳米粒子均匀排列而成,该上转换发光纳米粒子包括有NaGdF4:Yb3+/Er3+、NaGdF4:Yb3+/Er3+@NaGdF4、NaGdF4:Yb3+/Tm3+、NaGdF4:Yb3+/Tm3+@NaGdF4
本发明的有益效果为:
(1)用于肿瘤成像与治疗的纳米材料表面经过双亲性聚合物PEG改性修饰,具有良好的水溶性;
(2)用于肿瘤成像与治疗的纳米材料同时具有磁靶向、磁共振成像(MRI)、上转换发光成像、光热治疗等功能,可实现肿瘤的诊断治疗一体化;
(3)用于肿瘤成像与治疗的纳米材料本身生物相容性好,治疗时的毒副作用较小,磁性强度可控;
(4)用于肿瘤成像与治疗的纳米材料的制备方法重复性高,操作易实现,合成过程对设备要求较低,有望应用于生物医学领域。
上述是发明技术方案的概述,以下结合附图与具体实施方式,对本发明做进一步说明。
附图说明
图1为Fe3O4纳米晶(A),自组装后的Fe3O4@h-C(B),Fe3O4@h-C@NaGdF4:Yb3+/Er3+@NaGdF4(C)及改性后D的Fe3O4@h-C@NaGdF4:Yb3+/Er3+@NaGdF4@PEG(D)的透射电镜图;
图2为不同浓度Fe3O4@h-C@NaGdF4:Yb3+/Er3+@NaGdF4@PEG在功率密度为1.5W/cm2的808nm近红外光照射0-400s的光热转换曲线;
图3为不同浓度Fe3O4@h-C@NaGdF4:Yb3+/Er3+@NaGdF4@PEG在功率密度为160W/cm2的980nm激光照射下的上转换荧光光谱图;
图4为不同浓度Fe3O4@h-C@NaGdF4:Yb3+/Er3+@NaGdF4@PEG的3T磁共振成像图。
具体实施方式
为更进一步阐述本发明为达到预定目的所采取的技术手段及功效,以下结合附图及较佳实施例,对本发明的具体实施方式详细说明。
实施例1
本发明实施例提供一种用于肿瘤成像与治疗的纳米材料及其制备方法,包括以下步骤:
(1)将FeCl3·6H2O和油酸钠(摩尔比为1:1)加至乙醇、去离子水与正己烷的混合液(体积比为4:3:7)中,超声溶解完全后,在PTFE搅拌桨搅拌下,70℃冷凝回流,油浴加热4h,得到红棕色粘稠液,将其转移至梨形分液漏斗中,加入适量去离子水,振荡,静置,弃去水相,重复洗涤3次,取油相于110℃下真空干燥一夜,得油酸铁;
(2)采用热裂解法,取步骤(1)制得的油酸铁、油酸和十八烯(摩尔比为2:1:39.6)于三口烧瓶中,超声分散完全后,在真空条件下,110℃加热30min。在惰性气体保护下,以3℃min-1的速度升温,将上述混合物加热至320℃,冷凝回流维持30min,得棕黑色浑浊液,在惰性气体保护下冷却至室温。向棕黑色浑浊液中加入5-10倍体积的乙醇,离心取沉淀,然后将沉淀溶于适量正己烷,离心取清液,再向清液中加入适量乙醇,离心取固体,如此重复洗涤3次,得到的黑色固体Fe3O4纳米晶,溶于正己烷中,配成30mg/mL的Fe3O4分散液密封储存;
(3)将油酸钠溶于80℃去离子水,取步骤(2)配好的Fe3O4的正己烷分散液加至油酸钠溶液中,超声分散10min后,放入烘箱中50℃干燥至溶液不分层,得混合物A;其中,油酸钠与Fe3O4纳米晶的质量比为20:3;
(4)将2,4-二羟基苯甲酸和六次甲基四胺(摩尔比4:1)加至80℃去离子水中,溶解完全后,加入步骤(3)得到的混合物A,超声分散10min,其后转移至反应釜中,放入烘箱160℃维持4h后自然冷却,离心取固体。再用去离子水离心洗涤多次,最后用乙醇离心洗涤1次。将离心得到的固体于烘箱中50℃干燥一夜,得到Fe3O4@h-P粉末,置于干燥器储存;
(5)采用热解法,采用热解法,在弱还原气氛中(H2/Ar=5%/95%),在500℃下加热2h,使Fe3O4@h-P的聚合物壳碳化,生成具有空腔的、内部包含有含有Fe3O4纳米晶的空心碳壳纳米球,即Fe3O4@h-C;
(6)采用溶剂热法,以GdCl3·6H2O、YbCL3·6H2O和ErCl3·6H2O(摩尔比56:10:1)为原料,分散于油酸/1-十八碳烯的混合溶液中,在150℃下搅拌1h后,加入NaOH和NH4F的甲醇溶液,在300℃与氩气保护下搅拌1h,反应完成后冷却,加入丙酮中进行离心获得NaGdF4:Yb3 +/Er3+,并用环己烷和丙酮洗涤两次,制得NaGdF4:Yb3+/Er3+,并将其分散于环己烷溶液中,得到NaGdF4:Yb3+/Er3+的环己烷溶液;
(7)采用溶剂挥发法,以NaGdF4:Yb3+/Er3+的环己烷溶液与步骤(5)中合成的Fe3O4@h-C为原料(NaGdF4:Yb3+/Er3+与Fe3O4@h-C质量比1:170),先将Fe3O4@h-C溶于乙醇中,密封磁力搅拌一夜,再将NaGdF4:Yb3+/Er3+的环己烷溶液用环己烷稀释,其后将Fe3O4@h-C的乙醇溶液在搅拌下缓慢加入该混合溶液中,搅拌30min后,加热至50℃,敞口搅拌至溶剂除尽,NaGdF4:Yb3+/Er3+逐渐附着至Fe3O4@h-C上,冷却后将所得固体用环己烷反复离心洗涤,至离心所得上清液用980nm激光照射观察不到荧光,取离心所得固体,既为Fe3O4@h-C@NaGdF4:Yb3+/Er3+
(8)采用EDC偶联法合成mPEG-C18PMH,将聚(马来酸酐-1-十八碳烯)(C18PMH)与溶于CH2Cl2/TEA混合溶液中的氨基聚乙二醇(mPEG-NH2)在室温下反应2h,然后加入1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐(EDC·HCl)为偶联剂,再搅拌24h,得到其后C18PMH-mPEG粗产物,采用超纯水对所得mPEG-C18PMH粗产物进行透析,通过透析膜(截留分子量MWCO为8000-14000)两天,最后冷冻干燥,即得mPEG-C18PMH粉末;所述C18PMH与mPEG-NH2质量比为1:5;
(9)通过油酸链-C18链的疏水作用,在Fe3O4@h-C@NaGdF4:Yb3+/Er3+表面负载mPEG-C18PMH,首先将步骤(7)得到的Fe3O4@h-C@NaGdF4:Yb3+/Er3+分散于等体积的氯仿中,得到Fe3O4@h-C@NaGdF4:Yb3+/Er3+的氯仿分散液,将步骤(8)所得的mPEG-C18PMH溶于等体积的氯仿中,其后缓慢加入Fe3O4@h-C@NaGdF4:Yb3+/Er3+的氯仿分散液,升温至30℃敞口搅拌,直至氯仿挥发完全,得到灰黑色胶状物。然后,立刻加入适量去离子水,继续搅拌,使固体均匀分散,其后用去离子水离心洗涤固体多次,既得Fe3O4@h-C@NaGdF4:Yb3+/Er3+@PEG,最后将离心所得固体溶于去离子水中,4℃密封保存,其中C18PMH-mPEG与Fe3O4@h-C@NaGdF4:Yb3+/Er3+的质量比为1:2。
实施例2
本发明实施例提供另一用于肿瘤成像与治疗的纳米材料及其制备方法,包括以下步骤:
(1)将FeCl3·6H2O和油酸钠(摩尔比为1:1)加至乙醇、去离子水与环己烷的混合液(体积比为4:3:7)中,超声溶解完全后,在PTFE搅拌桨搅拌下,60℃冷凝回流,油浴加热6h,得到红棕色粘稠液,将其转移至梨形分液漏斗中,加入适量去离子水,振荡,静置,弃去水相,重复洗涤3次,取油相于140℃下真空干燥一夜,得油酸铁;
(2)采用热裂解法,取步骤(1)制得的油酸铁、油酸和十八烯(摩尔比为2:1:39.6)于三口烧瓶中,超声分散完全后,在真空条件下,100℃加热40min。在惰性气体保护下,以4℃min-1的速度升温,将上述混合物加热至350℃,冷凝回流维持20min,得棕黑色浑浊液,在惰性气体保护下冷却至室温。向棕黑色浑浊液中加入5-10倍体积的乙醇,离心取沉淀,然后将沉淀溶于适量环己烷,离心取清液,再向清液中加入适量乙醇,离心取固体,如此重复洗涤3次,得到的黑色固体Fe3O4纳米晶,溶于环己烷中,配成30mg/mL的Fe3O4分散液密封储存;
(3)将油酸钠溶于90℃去离子水,取步骤(2)配好的Fe3O4的环己烷分散液加至油酸钠溶液中,超声分散20min后,放入烘箱中40℃干燥至溶液不分层,得混合物A;其中,油酸钠与Fe3O4纳米晶的质量比为20:3;
(4)将2,4-二羟基苯甲酸和六次甲基四胺(摩尔比4:1)加至90℃去离子水中,溶解完全后,加入步骤(3)得到的混合物A,超声分散20min,其后转移至反应釜中,放入烘箱160℃维持4h后自然冷却,离心取固体。再用去离子水离心洗涤多次,最后用乙醇离心洗涤1次。将离心得到的固体于烘箱中50℃干燥一夜,得到Fe3O4@h-P粉末,置于干燥器储存;
(5)采用热解法,采用热解法,在弱还原气氛中(H2/Ar=5%/95%),在500℃下加热2h,使Fe3O4@h-P的聚合物壳碳化,生成具有空腔的、内部包含有含有Fe3O4纳米晶的空心碳壳纳米球,即Fe3O4@h-C;
(6)采用溶剂热法,以GdCl3·6H2O、YbCL3·6H2O和ErCl3·6H2O(摩尔比56:10:1)为原料,分散于油酸/1-十八碳烯的混合溶液中,在150℃下搅拌1h后,加入NaOH和NH4F的甲醇溶液,在300℃与氩气保护下搅拌1h,反应完成后冷却,加入丙酮中进行离心获得NaGdF4:Yb3 +/Er3+,并用环己烷和丙酮洗涤两次,制得NaGdF4:Yb3+/Er3+,并将其分散于环己烷溶液中,得到NaGdF4:Yb3+/Er3+的环己烷溶液;
(7)将GdCl3加入到三颈圆底烧瓶中,并加热至110℃以蒸发除去水。然后在150℃下加入油酸和十八烷的复合溶液,待GdCl3完全溶解后冷却至60℃。接着,加入NaGdF4:Yb3+/Er3+、NaOH和NH4F的甲醇溶液,将溶液在110℃加热30分钟,以除去甲醇,环己烷。将所得溶液在300℃氩气下反应1小时。反应完成后,通过在加入丙酮中离心获得NaGdF4:Yb3+/Er3+@NaGdF4的粗产品,并用环己烷和丙酮洗涤两次后,再分散在环己烷中,得到NaGdF4:Yb3+/Er3 +@NaGdF4的环己烷溶液。
(8)采用溶剂挥发法,以NaGdF4:Yb3+/Er3+@NaGdF4的环己烷溶液与步骤(5)中合成的Fe3O4@h-C为原料(NaGdF4:Yb3+/Er3+@NaGdF4与Fe3O4@h-C质量比1:50),先将Fe3O4@h-C溶于乙醇中,密封磁力搅拌一夜,再将NaGdF4:Yb3+/Er3+@NaGdF4的环己烷溶液用环己烷稀释,其后将Fe3O4@h-C的乙醇溶液在搅拌下缓慢加入该混合溶液中,搅拌30min后,加热至40℃,敞口搅拌至溶剂除尽,NaGdF4:Yb3+/Er3+@NaGdF4逐渐附着至Fe3O4@h-C上,冷却后将所得固体用环己烷反复离心洗涤,至离心所得上清液用980nm激光照射观察不到荧光,取离心所得固体,既为Fe3O4@h-C@NaGdF4:Yb3+/Er3+@NaGdF4
(9)采用EDC偶联法合成mPEG-C18PMH,将聚(马来酸酐-1-十八碳烯)(C18PMH)与溶于CH2Cl2/TEA混合溶液中的氨基聚乙二醇(mPEG-NH2)在室温下反应3h,然后加入1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐(EDC·HCl)为偶联剂,再搅拌12h,得到其后mPEG-C18PMH粗产物,采用超纯水对所得mPEG-C18PMH粗产物进行透析,通过透析膜(截留分子量MWCO为8000-14000)两天,最后冷冻干燥,即得mPEG-C18PMH粉末;所述C18PMH与mPEG-NH2质量比为1:5;
(10)通过油酸链-C18链的疏水作用,在Fe3O4@h-C@NaGdF4:Yb3+/Er3+@NaGdF4表面负载mPEG-C18PMH,首先将步骤(7)得到的Fe3O4@h-C@NaGdF4:Yb3+/Er3+@NaGdF4分散于等体积的氯仿中,得到Fe3O4@h-C@NaGdF4:Yb3+/Er3+@NaGdF4的氯仿分散液,将步骤(8)所得的mPEG-C18PMH溶于等体积的氯仿中,其后缓慢加入Fe3O4@h-C@NaGdF4:Yb3+/Er3+@NaGdF4的氯仿分散液,升温至45℃敞口搅拌,直至氯仿挥发完全,得到灰黑色胶状物。然后,立刻加入适量去离子水,继续搅拌,使固体均匀分散,其后用用去离子水离心洗涤固体多次,既得Fe3O4@h-C@NaGdF4:Yb3+/Er3+@NaGdF4@PEG最后将离心所得固体溶于去离子水中,4℃密封保存,其中mPEG-C18PMH与Fe3O4@h-C@NaGdF4:Yb3+/Er3+@NaGdF4的质量比为5:6。
图1为Fe3O4(A),Fe3O4@h-C(B),Fe3O4@h-C@NaGdF4:Yb3+/Er3+@NaGdF4(C)和Fe3O4@h-C@NaGdF4:Yb3+/Er3+@NaGdF4@PEG(D)的透射电镜图。从A图中可以看出,Fe3O4大小形貌均一,分散性好,由粒度分析软件nano measurer1.2.5统计100个纳米粒子得出Fe3O4的粒径为6.44±1.14nm。B图显示Fe3O4@h-C形状规则,球体内部存在较大空腔,空腔内包含有Fe3O4纳米晶,球体表面较光滑,统计40个纳米粒子得Fe3O4@h-C的粒径为334.35±30.23nm,壳层厚度的平均值为61.40nm。C图显示Fe3O4@h-C@NaGdF4:Yb3+/Er3+@NaGdF4为表面均匀附着NaGdF4:Yb3+/Er3+@NaGdF4的规则的纳米球体。D图显示改性后的Fe3O4@h-C@NaGdF4:Yb3+/Er3 +@NaGdF4@PEG纳米球表面,NaGdF4:Yb3+/Er3+@NaGdF4能稳定附着。
称取Fe3O4@h-C@NaGdF4:Yb3+/Er3+@NaGdF4@PEG,配成400μg/mL的水分散液,并用去离子水稀释,配成300μg/mL,200μg/mL,100μg/mL的具有浓度梯度的水分散液。取等体积的各浓度的分散液,于同规格的试剂瓶中。在波长为808nm,功率密度为1.5W/cm2的近红外光的激发下,每隔20s记录各试剂瓶中分散液的温度,当激光照射至400s时,关闭激光。温度与时间的关系如图2所示。
图2为不同浓度Fe3O4@h-C@NaGdF4:Yb3+/Er3+@NaGdF4@PEG在功率密度为1.5W/cm2的808nm近红外光照射0-400s的光热转换曲线。图2的数据表明,材料的浓度越高,升温的速度越快,并且最终的温度也最高。在约300s后,各个浓度的材料温度都维持在一个稳定的值。
称取Fe3O4@h-C@NaGdF4:Yb3+/Er3+@NaGdF4@PEG,配成400μg/mL的水分散液,并用去离子水稀释,配成300μg/mL,200μg/mL,100μg/mL的具有浓度梯度的水分散液。取Gd3+的理论浓度为0.47M的NaGdF4:Yb3+/Er3+@NaGdF4环己烷溶液100μL,用环己烷稀释至2mL。
取上述配好的样品2mL置于1.0cm×1.0cm石英比色皿中,在功率密度为160W/cm2的980nm激光照射下测上转换荧光光谱,如图3所示。
图3为实施例1制备的不同浓度Fe3O4@h-C@UCNPs@PEG在功率密度为160W/cm2的980nm激光照射下的上转换荧光光谱图。图3表明粒子浓度越高,荧光强度越大。
将Fe3O4@h-C@NaGdF4:Yb3+/Er3+@NaGdF4@PEG通过ICP-AES测试法测定分散液中Gd元素的浓度。然后用去离子水配置Gd浓度依次为0.2、0.1、0.05、0.025、0.0125mM的分散液,通过磁共振成像测定不同Gd浓度下的T1弛豫效应如图4所示。
图4实施例1制备的不同浓度Fe3O4@h-C@NaGdF4:Yb3+/Er3+@PEG的3T磁共振成像图。图4显示样品浓度增加,样品的影像越明亮,说明本材料具有良好的T1造影效果。
实施例3
本发明实施例提供另一用于肿瘤成像与治疗的纳米材料及其制备方法,包括以下步骤:
(1)将FeCl3·6H2O和油酸钠(摩尔比为1:1)加至乙醇、去离子水与正己烷的混合液(体积比为4:3:7)中,超声溶解完全后,在磁力搅拌下,80℃冷凝回流,油浴加热3h,得到红棕色粘稠液,将其转移至梨形分液漏斗中,加入适量去离子水,振荡,静置,弃去水相,重复洗涤3次,取油相于100℃下真空干燥一夜,得油酸铁;
(2)采用热裂解法,取步骤(1)制得的油酸铁、油酸和十八烯(摩尔比为2:1:39.6)于三口烧瓶中,超声分散完全后,在真空条件下,120℃加热20min。在惰性气体保护下,以3℃min-1的速度升温,将上述混合物加热至310℃,冷凝回流维持40min,得棕黑色浑浊液,在惰性气体保护下冷却至室温。向棕黑色浑浊液中加入5-10倍体积的乙醇,离心取沉淀,然后将沉淀溶于适量正己烷,离心取清液,再向清液中加入适量乙醇,离心取固体,如此重复洗涤3次,得到的黑色固体Fe3O4纳米晶,溶于正己烷中,配成30mg/mL的Fe3O4分散液密封储存;
(3)将油酸钠溶于100℃去离子水,取步骤(2)配好的Fe3O4的正己烷分散液加至油酸钠溶液中,超声分散5min后,放入烘箱中70℃干燥至溶液不分层,得混合物A;其中,油酸钠与Fe3O4纳米晶的质量比为20:3;
(4)将2,4-二羟基苯甲酸和六次甲基四胺(摩尔比4:1)加至100℃去离子水中,溶解完全后,加入步骤(3)得到的混合物A,超声分散5min,其后转移至反应釜中,放入烘箱160℃维持4h后自然冷却,离心取固体。再用去离子水离心洗涤多次,最后用乙醇离心洗涤1次。将离心得到的固体于烘箱中50℃干燥一夜,得到Fe3O4@h-P粉末,置于干燥器储存;
(5)采用热解法,采用热解法,在弱还原气氛中(H2/Ar=5%/95%),在400℃下加热3h,使Fe3O4@h-P的聚合物壳碳化,生成具有空腔的、内部包含有含有Fe3O4纳米晶的空心碳壳纳米球,即Fe3O4@h-C;
(6)采用溶剂热法,以Gd(CH3COO)3、Tm(CH3COO)3和Yb(CH3COO)3(摩尔比49:49:2)为原料,分散于油酸/十八烷的混合溶液中,在140℃下搅拌3h后,加入NaOH和NH4F的甲醇溶液,在200℃与氩气保护下搅拌3h,反应完成后冷却,加入丙酮中进行离心获得NaGdF4:Yb3+/Tm3+,并用环己烷和丙酮洗涤两次,制得NaGdF4:Yb3+/Tm3+,并将其分散于环己烷溶液中,得到NaGdF4:Yb3+/Tm3+的环己烷溶液;
(7)采用溶剂挥发法,以NaGdF4:Yb3+/Tm3+的环己烷溶液与步骤(5)中合成的Fe3O4@h-C为原料(NaGdF4:Yb3+/Tm3+与Fe3O4@h-C质量比1:170),先将Fe3O4@h-C溶于乙醇中,密封磁力搅拌一夜,再将NaGdF4:Yb3+/Tm3+的环己烷溶液用环己烷稀释,其后将Fe3O4@h-C的乙醇溶液在搅拌下缓慢加入该混合溶液中,搅拌30min后,加热至60℃,敞口搅拌至溶剂除尽,NaGdF4:Yb3+/Tm3+逐渐附着至Fe3O4@h-C上,冷却后将所得固体用环己烷反复离心洗涤,至离心所得上清液用980nm激光照射观察不到荧光,取离心所得固体,既为Fe3O4@h-C@NaGdF4:Yb3+/Tm3+
(8)采用EDC偶联法合成mPEG-C18PMH,将聚(马来酸酐-1-十八碳烯)(C18PMH)与溶于CH2Cl2/TEA混合溶液中的氨基聚乙二醇(mPEG-NH2)在室温下反应4h,然后加入1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐(EDC·HCl)为偶联剂,再搅拌36h,得到其后C18PMH-mPEG粗产物,采用超纯水对所得mPEG-C18PMH粗产物进行透析,通过透析膜(截留分子量MWCO为14000)两天,最后在常温真空下冷却干燥,即得mPEG-C18PMH粉末;所述C18PMH与mPEG-NH2质量比为1:5;
(9)通过油酸链-C18链的疏水作用,在Fe3O4@h-C@NaGdF4:Yb3+/Tm3+表面负载mPEG-C18PMH,首先将步骤(7)得到的Fe3O4@h-C@NaGdF4:Yb3+/Tm3+分散于等体积的氯仿中,得到Fe3O4@h-C@NaGdF4:Yb3+/Tm3+的氯仿分散液,将步骤(8)所得的mPEG-C18PMH溶于等体积的氯仿中,其后缓慢加入Fe3O4@h-C@NaGdF4:Yb3+/Tm3+的氯仿分散液,升温至40℃敞口搅拌,直至氯仿挥发完全,得到灰黑色胶状物。然后,立刻加入适量去离子水,继续搅拌,使固体均匀分散,其后用用去离子水离心洗涤固体多次,既得Fe3O4@h-C@NaGdF4:Yb3+/Tm3+@PEG,最后将离心所得固体溶于去离子水中,4℃密封保存,其中mPEG-C18PMH与Fe3O4@h-C@NaGdF4:Yb3+/Tm3+的质量比为1:2。
实施例4
本发明实施例提供另一用于肿瘤成像与治疗的纳米材料及其制备方法,包括以下步骤:
(1)将FeCl3·6H2O和油酸钠(摩尔比为1:1)加至乙醇、去离子水与正己烷的混合液(体积比为4:3:7)中,超声溶解完全后,在磁力搅拌下,70℃冷凝回流,油浴加热4h,得到红棕色粘稠液,将其转移至梨形分液漏斗中,加入适量去离子水,振荡,静置,弃去水相,重复洗涤3次,取油相于130℃下真空干燥一夜,得油酸铁;
(2)采用热裂解法,取步骤(1)制得的油酸铁、油酸和十八烯(摩尔比为2:1:39.6)于三口烧瓶中,超声分散完全后,在真空条件下,110℃加热30min。在惰性气体保护下,以4℃min-1的速度升温,将上述混合物加热至330℃,冷凝回流维持30min,得棕黑色浑浊液,在惰性气体保护下冷却至室温。向棕黑色浑浊液中加入5-10倍体积的乙醇,离心取沉淀,然后将沉淀溶于适量正己烷,离心取清液,再向清液中加入适量乙醇,离心取固体,如此重复洗涤3次,得到的黑色固体Fe3O4纳米晶,溶于正己烷中,配成30mg/mL的Fe3O4分散液密封储存;
(3)将油酸钠溶于85℃去离子水,取步骤(2)配好的Fe3O4的正己烷分散液加至油酸钠溶液中,超声分散10min后,放入烘箱中60℃干燥至溶液不分层,得混合物A;其中,油酸钠与Fe3O4纳米晶的质量比为20:3;
(4)将2,4-二羟基苯甲酸和六次甲基四胺(摩尔比4:1)加至90℃去离子水中,溶解完全后,加入步骤(3)得到的混合物A,超声分散10min,其后转移至反应釜中,放入烘箱160℃维持4h后自然冷却,离心取固体。再用去离子水离心洗涤多次,最后用乙醇离心洗涤1次。将离心得到的固体于烘箱中50℃干燥一夜,得到Fe3O4@h-P粉末,置于干燥器储存;
(5)采用热解法,采用热解法,在弱还原气氛中(H2/Ar=5%/95%),在500℃下加热2h,使Fe3O4@h-P的聚合物壳碳化,生成具有空腔的、内部包含有含有Fe3O4纳米晶的空心碳壳纳米球,即Fe3O4@h-C;
(6)采用溶剂热法,以Gd(CH3COO)3、Tm(CH3COO)3和Yb(CH3COO)3(摩尔比49:49:2)为原料,分散于油酸/十八烷的混合溶液中,在140℃下搅拌1h后,加入NaOH和NH4F的甲醇溶液,在300℃与氩气保护下搅拌1h,反应完成后冷却,加入丙酮中进行离心获得NaGdF4:Yb3+/Tm3+,并用环己烷和丙酮洗涤两次,制得NaGdF4:Yb3+/Tm3+,并将其分散于环己烷溶液中,得到NaGdF4:Yb3+/Tm3+的环己烷溶液;
(7)将GdCl3加入到三颈圆底烧瓶中,并加热至110℃以蒸发除去水。然后在150℃下加入油酸和十八烷的复合溶液,待GdCl3完全溶解后冷却至60℃。接着,加入NaGdF4:Yb3+/Tm3+、NaOH和NH4F的甲醇溶液,将溶液在100℃加热30分钟,以除去甲醇,环己烷。将所得溶液在200℃氩气下反应2小时。反应完成后,通过在加入丙酮中离心获得NaGdF4:Yb3+/Tm3+@NaGdF4的粗产品,并用环己烷和丙酮洗涤两次后,再分散在环己烷中,得到NaGdF4:Yb3+/Tm3 +@NaGdF4的环己烷溶液。
(8)采用溶剂挥发法,以NaGdF4:Yb3+/Tm3+@NaGdF4的环己烷溶液与步骤(5)中合成的Fe3O4@h-C为原料(NaGdF4:Yb3+/Tm3+@NaGdF4与Fe3O4@h-C质量比1:50),先将Fe3O4@h-C溶于乙醇中,密封磁力搅拌一夜,再将NaGdF4:Yb3+/Tm3+@NaGdF4的环己烷溶液用环己烷稀释,其后将Fe3O4@h-C的乙醇溶液在搅拌下缓慢加入该混合溶液中,搅拌30min后,加热至50℃,敞口搅拌至溶剂除尽,NaGdF4:Yb3+/Tm3+@NaGdF4逐渐附着至Fe3O4@h-C上,冷却后将所得固体用环己烷反复离心洗涤,至离心所得上清液用980nm激光照射观察不到荧光,取离心所得固体,既为Fe3O4@h-C@NaGdF4:Yb3+/Tm3+@NaGdF4
(9)采用EDC偶联法合成mPEG-C18PMH,将聚(马来酸酐-1-十八碳烯)(C18PMH)与溶于CH2Cl2/TEA混合溶液中的氨基聚乙二醇(mPEG-NH2)在室温下反应2h,然后加入1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐(EDC·HCl)为偶联剂,再搅拌24h,得到其后mPEG-C18PMH粗产物,采用超纯水对所得mPEG-C18PMH粗产物进行透析,通过透析膜(截留分子量MWCO为8000-14000)两天,最后在常温真空下冷却干燥,即得mPEG-C18PMH粉末;所述C18PMH与mPEG-NH2质量比为1:5;
(10)通过油酸链-C18链的疏水作用,在Fe3O4@h-C@NaGdF4:Yb3+/Tm3+@NaGdF4表面负载mPEG-C18PMH,首先将步骤(7)得到的Fe3O4@h-C@NaGdF4:Yb3+/Tm3+@NaGdF4分散于等体积的氯仿中,得到Fe3O4@h-C@NaGdF4:Yb3+/Tm3+@NaGdF4的氯仿分散液,将步骤(8)所得的mPEG-C18PMH溶于等体积的氯仿中,其后缓慢加入Fe3O4@h-C@NaGdF4:Yb3+/Tm3+@NaGdF4的氯仿分散液,升温至35℃敞口搅拌,直至氯仿挥发完全,得到灰黑色胶状物。然后,立刻加入适量去离子水,继续搅拌,使固体均匀分散,其后用用去离子水离心洗涤固体多次,既得Fe3O4@h-C@NaGdF4:Yb3+/Tm3+@NaGdF4@PEG,最后将离心所得固体溶于去离子水中,4℃密封保存,其中mPEG-C18PMH与Fe3O4@h-C@NaGdF4:Yb3+/Tm3+@NaGdF4的质量比为5:6。
本发明的重点主要在于,用于肿瘤成像与治疗的纳米材料表面经过双亲性聚合物PEG改性修饰,具有良好的水溶性;同时具有磁靶向、磁共振成像(MRI)、上转换发光成像、光热治疗等功能,可实现肿瘤的诊断治疗一体化;纳米材料本身生物相容性好,治疗时的毒副作用较小,磁性强度可控;制备方法重复性高,操作易实现,合成过程对设备要求较低,有望应用于生物医学领域。
以上所述,仅是本发明的较佳实施例而已,并非对本发明的技术范围作任何限制,故采用与本发明上述实施例相同或近似的技术特征,均在本发明的保护范围之内。

Claims (10)

1.一种用于肿瘤成像与治疗的纳米材料的制备方法,其特征在于,包括以下步骤:
(1)以油酸钠与氯化铁为原料,溶于乙醇、去离子水与环己烷的混合液,在60-80℃冷凝回流的环境中反应3-6小时,加水振荡反复洗涤后,弃去油相,于100-140℃下真空干燥一夜,得油酸铁;
(2)采用热裂解法,以步骤(1)所得油酸铁为原料,溶于油酸与十八烯的混合液中、在真空100-120℃的环境下加热20-40min,其后充入惰性气体,逐步升温至310-320℃并冷凝回流20-40min,冷却至室温后加入乙醇沉淀,取该沉淀溶于正己烷或环己烷中,离心取清液,再向清液中加入适量乙醇,离心取沉淀,如此重复洗涤3次,得到的黑色固体Fe3O4纳米晶,溶于正己烷或环己烷中,得到Fe3O4分散液;
(3)将油酸钠溶于80-100℃的去离子水中,取步骤(2)配好的Fe3O4分散液加至油酸钠溶液中,超声分散5-20min后,放入烘箱中40-70℃干燥至溶液不分层,得到混合物A;
(4)以2,4-二羟基苯甲酸、六次甲基四胺、步骤(3)得到的混合物A为原料,溶于80-100℃的去离子水中,超声分散5-20min后,在160℃下保温4h,在弱酸-弱碱相互作用的诱导下,通过水热过程分子进行自组装,生成具有空腔的、内部包含有Fe3O4纳米晶的空心聚合物壳纳米球,即Fe3O4@h-P,自然冷却后离心、洗涤、干燥成Fe3O4@h-P粉末;
(5)采用热解法,在弱还原气氛H2/Ar=5%/95%中,在500℃下加热2h,使Fe3O4@h-P的聚合物壳碳化,生成具有空腔的、内部包含有Fe3O4纳米晶的空心碳壳纳米球,即Fe3O4@h-C;
(6)采用溶剂挥发法,以上转换发光纳米粒子的环己烷溶液与步骤(5)中合成的Fe3O4@h-C为原料,先将Fe3O4@h-C溶于乙醇中,再将UCNPs的环己烷溶液用环己烷稀释,其后将Fe3O4@h-C的乙醇溶液在搅拌下缓慢加入该混合溶液中,搅拌20-50min后,加热至40-60℃,敞口搅拌至溶剂除尽,UCNPs均匀附着至Fe3O4@h-C上,冷却后将所得固体用环己烷反复离心洗涤,至离心所得上清液用980nm激光照射观察不到荧光,取离心所得固体,即为Fe3O4@h-C@UCNPs;
(7)采用EDC偶联法合成C18PMH-mPEG:将聚(马来酸酐-1-十八碳烯)C18PMH与溶于CH2Cl2/TEA混合溶液中的氨基聚乙二醇mPEG-NH2在室温下反应2-4h,然后加入1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐EDC·HCl为偶联剂,再搅拌12-36h,得到其mPEG-C18PMH粗产物,采用超纯水对所得mPEG-C18PMH粗产物进行透析,通过截留分子量MWCO为12000-14000的透析膜透析两天,最后冷冻干燥,即得C18PMH-mPEG粉末;所述C18PMH与mPEG-NH2质量比为1:5;
(8)通过油酸链-C18链的疏水作用,在Fe3O4@h-C@UCNPs表面负载mPEG-C18PMH:先将步骤(6)所得Fe3O4@h-C@UCNPs分散于氯仿中,得到Fe3O4@h-C@UCNPs的氯仿分散液,再将步骤(7)所得mPEG-C18PMH溶于等体积的氯仿中,其后缓慢加入Fe3O4@h-C@UCNPs的氯仿分散液,升温至30-45℃并进行敞口搅拌,直至氯仿挥发完全,得到灰黑色胶状物,立即加入去离子水,继续搅拌使固体均匀分散,离心后用去离子水反复洗涤,即得具有亲水性的Fe3O4@h-C@UCNPs@PEG。
2.如权利要求1所述的用于肿瘤成像与治疗的纳米材料的制备方法,其特征在于,所述UCNPs包括有NaGdF4:Yb3+/Er3+、NaGdF4:Yb3+/Er3+@NaGdF4、NaGdF4:Yb3+/Tm3+、NaGdF4:Yb3+/Tm3 +@NaGdF4
3.如权利要求2所述的用于肿瘤成像与治疗的纳米材料的制备方法,其特征在于,所述步骤(1)中油酸钠与氯化铁的摩尔比为1:1。
4.如权利要求1所述的用于肿瘤成像与治疗的纳米材料的制备方法,其特征在于,所述步骤(2)中油酸铁、油酸、十八烯的摩尔比为2:1:39.6。
5.如权利要求1所述的用于肿瘤成像与治疗的纳米材料的制备方法,其特征在于,所述步骤(3)中油酸钠与Fe3O4纳米晶的质量比为20:3。
6.如权利要1所述的用于肿瘤成像与治疗的纳米材料的制备方法,其特征在于,所述步骤(6)中UCNPs与Fe3O4@h-C的质量比为1:170~1:50。
7.如权利要求1所述的用于肿瘤成像与治疗的纳米材料的制备方法,其特征在于,所述步骤(7)中C18PMH与mPEG-NH2质量比为1:5。
8.如权利要1所述的用于肿瘤成像与治疗的纳米材料的制备方法,其特征在于,所述步骤(8)中mPEG-C18PMH与Fe3O4@h-C@UCNPs的质量比为1:2~5:6。
9.一种由权利要求1所述方法制备的用于肿瘤成像与治疗的纳米材料,其特征在于,该纳米材料具有核-壳结构,包括外部壳层与内部核心,所述外部壳层包括碳化聚合物壳层,碳化聚合物壳层上还附着有上转换发光纳米粒子(UCNPs)层,上转换发光纳米粒子层表面经过PEG改性修饰,所述内部核心为均匀分散在内部空腔中的具有超顺磁性的Fe3O4纳米晶,所述纳米材料具有磁靶向、磁共振成像(MRI)、上转换发光成像、光热治疗功能,可实现肿瘤的诊断治疗一体化。
10.如权利要求9所述的用于肿瘤成像与治疗的纳米材料,其特征在于,所述上转换发光纳米粒子层由若干上转换发光纳米粒子均匀排列而成,该上转换发光纳米粒子包括有NaGdF4:Yb3+/Er3+、NaGdF4:Yb3+/Er3+@NaGdF4、NaGdF4:Yb3+/Tm3+、NaGdF4:Yb3+/Tm3+@NaGdF4
CN201611077005.XA 2016-11-30 2016-11-30 一种用于肿瘤成像与治疗的纳米材料及其制备方法 Active CN106729770B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611077005.XA CN106729770B (zh) 2016-11-30 2016-11-30 一种用于肿瘤成像与治疗的纳米材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611077005.XA CN106729770B (zh) 2016-11-30 2016-11-30 一种用于肿瘤成像与治疗的纳米材料及其制备方法

Publications (2)

Publication Number Publication Date
CN106729770A CN106729770A (zh) 2017-05-31
CN106729770B true CN106729770B (zh) 2019-10-11

Family

ID=58897973

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611077005.XA Active CN106729770B (zh) 2016-11-30 2016-11-30 一种用于肿瘤成像与治疗的纳米材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106729770B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108904800B (zh) * 2018-07-07 2021-03-26 上海大学 基于纳米钯异质生长的上转换纳米杂化体系、制备方法及应用
CN109709081B (zh) * 2018-11-12 2021-03-26 上海大学 一种利用荧光检测的纳米生物传感器及其制备方法、应用
CN110408041B (zh) * 2019-08-28 2021-01-26 海南省妇幼保健院 一种c18-pmh-peg复合物的制备方法
CN110760070B (zh) * 2019-08-29 2020-11-10 海南省妇幼保健院 一种功能复合物rgo-ionp-peg的制备方法
CN110819342A (zh) * 2019-11-21 2020-02-21 德州学院 一种上转换纳米颗粒、载药纳米颗粒及其制备方法和应用
FR3112075B1 (fr) * 2020-07-01 2022-11-11 Pileni Marie Paule Utilisation de nano cristaux auto-assemblés
CN115120747B (zh) * 2022-06-20 2023-10-10 浙江理工大学 一种羟基磷灰石负载的四氧化三铁纳米棒及其制备方法和应用
CN115771890B (zh) * 2022-11-28 2024-02-27 云南中烟工业有限责任公司 一种二维介孔碳的批量化制备方法及用途

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102107011A (zh) * 2011-01-28 2011-06-29 中国科学院宁波材料技术与工程研究所 顺磁-上转换发光复合纳米粒子及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140147391A1 (en) * 2012-11-28 2014-05-29 The Hong Kong Polytechnic University BIOPROBE BASED ON SINGLE-PHASE UPCONVERSION NANOPARTICLES (UCNPs) FOR MULTI-MODAL BIOIMAGING

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102107011A (zh) * 2011-01-28 2011-06-29 中国科学院宁波材料技术与工程研究所 顺磁-上转换发光复合纳米粒子及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"NaGdF4 Nanoparticle-Based Molecular Probes for Magnetic Resonance Imaging of Intraperitoneal Tumor Xenografts in Vivo";Yi Hou等;《ACS NANO》;20121130;第7卷(第1期);第330-338页 *
"NaYF4:Yb,Er-Fe3O4纳米复合颗粒的制备与表征";周慧睿等;《材料导报B:研究篇》;20110930;第25卷(第9期);第14-18页 *

Also Published As

Publication number Publication date
CN106729770A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
CN106729770B (zh) 一种用于肿瘤成像与治疗的纳米材料及其制备方法
Dong et al. Upconversion-mediated ZnFe 2 O 4 nanoplatform for NIR-enhanced chemodynamic and photodynamic therapy
Yang et al. A single 808 nm near-infrared light-mediated multiple imaging and photodynamic therapy based on titania coupled upconversion nanoparticles
Zhang et al. Graphene oxide-BaGdF5 nanocomposites for multi-modal imaging and photothermal therapy
Huang et al. Bifunctional Gd2O3/C nanoshells for MR imaging and NIR therapeutic applications
Tian et al. Engineered design of theranostic upconversion nanoparticles for tri-modal upconversion luminescence/magnetic resonance/X-ray computed tomography imaging and targeted delivery of combined anticancer drugs
CN108837161B (zh) 一种聚多巴胺包裹的金核/中空硅壳纳米材料及其制备和应用
Khaniabadi et al. Trastuzumab conjugated porphyrin-superparamagnetic iron oxide nanoparticle: A potential PTT-MRI bimodal agent for herceptin positive breast cancer
Huang et al. NaYF 4: Yb/Er@ PPy core–shell nanoplates: an imaging-guided multimodal platform for photothermal therapy of cancers
Jang et al. Fluorescent dye labeled iron oxide/silica core/shell nanoparticle as a multimodal imaging probe
CN112156192B (zh) 一种具有靶向荧光/磁共振双模态成像和光热治疗功能的复合纳米探针及其制备和应用
Ding et al. All-in-one theranostic nanoplatform with controlled drug release and activated MRI tracking functions for synergistic NIR-II hyperthermia-chemotherapy of tumors
CN104162174A (zh) 一种金包覆氧化铁星形核壳结构纳米颗粒的制备及其成像和热疗的应用
CN104689346B (zh) 用于肿瘤mri/ct成像和光热治疗的多功能纳米探针及应用
CN108324955A (zh) 一种超小硫化铜负载的中空介孔硅靶向纳米载药复合物的制备方法
CN108671231A (zh) 一种用于肿瘤光热增效治疗和超声成像的多功能纳米载体及制备方法
Zhu et al. Europium-phenolic network coated BaGdF 5 nanocomposites for tri-modal computed tomography/magnetic resonance/luminescence imaging
EP1863539A2 (en) Hybrid inorganic nanoparticles, methods of using and methods of making
CN108434121B (zh) 一种双层核壳结构分子载体
CN112370535A (zh) 一种肿瘤微环境响应型off-on上转换荧光探针及其制备方法和应用
CN108949151A (zh) 表面生长过渡金属二硫化物的上转换发光纳米复合材料、制备方法及应用
Hu et al. Fabrication of Gd 2 O (CO 3) 2· H 2 O/silica/gold hybrid particles as a bifunctional agent for MR imaging and photothermal destruction of cancer cells
CN106310259B (zh) 一种多功能纳米复合材料及其制备方法和应用
CN109078196A (zh) 一种骨髓间充质干细胞介导的纳米水凝胶及其制备和应用
CN104826138B (zh) 一种Cu3BiS3‑PEG‑FITC&Gd‑DTPA多模式成像和光热治疗纳米材料的制备及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Liu Jinliang

Inventor after: Wang Jiacuan

Inventor after: Shi Liyi

Inventor after: Sun Lining

Inventor after: Mou Xiaoming

Inventor before: Liu Jinliang

Inventor before: Shi Liyi

Inventor before: Wang Jiacuan

Inventor before: Sun Lining

Inventor before: Mou Xiaoming

GR01 Patent grant
GR01 Patent grant