CN106711272B - 基于Bi基四元卤化物单晶的半导体辐射探测器及制备方法 - Google Patents

基于Bi基四元卤化物单晶的半导体辐射探测器及制备方法 Download PDF

Info

Publication number
CN106711272B
CN106711272B CN201611071705.8A CN201611071705A CN106711272B CN 106711272 B CN106711272 B CN 106711272B CN 201611071705 A CN201611071705 A CN 201611071705A CN 106711272 B CN106711272 B CN 106711272B
Authority
CN
China
Prior art keywords
radiation detector
layer
semiconductor radiation
crystal
single crystals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611071705.8A
Other languages
English (en)
Other versions
CN106711272A (zh
Inventor
唐江
潘伟程
巫皓迪
罗家俊
牛广达
周英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN201611071705.8A priority Critical patent/CN106711272B/zh
Publication of CN106711272A publication Critical patent/CN106711272A/zh
Priority to US16/069,019 priority patent/US20190019905A1/en
Priority to PCT/CN2017/112762 priority patent/WO2018099322A1/zh
Application granted granted Critical
Publication of CN106711272B publication Critical patent/CN106711272B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/115Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Measurement Of Radiation (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种基于Bi基四元卤化物单晶的半导体辐射探测器及其制备方法,涉及半导体材料制备的射线成像探测器技术领域。所述的半导体辐射探测器结构包括以Bi基四元卤化物单晶作为射线吸光层,电子选择性接触选择层,空穴选择性接触层,分别贴合在所述吸光层的两面,两个电极分别与两个选择性电荷接触层接触,作为器件的正极和负极。本发明的半导体辐射探测器具备高灵敏度,环境友好,稳定等优点。

Description

基于Bi基四元卤化物单晶的半导体辐射探测器及制备方法
技术领域
本发明属于以半导体材料制备的射线成像探测器技术领域,更具体地,涉及一种利用Bi基四元卤化物单晶制备X射线及Gama射线的成像探测器及制备方法。
背景技术
射线成像技术是放射性射线(如X射线和γ射线等)作为媒介,获得以图像形式展现的检测对象的结构或功能信息,为相应行业提供各种对所观察对象进行诊断、检测和监测的技术手段,广泛应用于医疗卫生、公共安全和高端制造业等行业。探测器是射线成像设备的重要组成部分。用于探测放射性射线的探测器一般有气体探测器、闪烁探测器、半导体探测器等类型,其中半导体探测器能得到最好的能量分辨率。
半导体探测器是直接吸收放射性射线,通过光电效应、康普顿散射、电子对产生三种作用方式产生电子-空穴对,它们在外加电场中运动产生探测器的基本电信号。对于这样一种半导体辐射探测器,其吸光层根据不同的用处可以使用多种半导体材料,如硅(Si),非晶硒(a-Se)等,但这些材料具有需要加大偏压,工艺复杂,灵敏度低等缺点。因此寻找一种对于放射性射线具有高灵敏度的材料作为半导体辐射探测器的吸收层是非常迫切和必要的。
发明内容
本发明提出一种基于Bi基四元卤化物单晶的半导体辐射探测器及制备方法,目的在于获得高性能、无毒、稳定的半导体辐射探测器,解决现有技术存在的工艺复杂、灵敏度低、环境污染和稳定性差等问题,以及灵敏度、工作偏压、稳定性和环境污染等指标不能兼顾问题。
特别的,本发明提供了一种基于全无机双钙钛矿单晶的半导体辐射探测器,包括:
以Bi基四元卤化物单晶作为所述半导体辐射探测器的吸光层,以吸收高能射线,产生电子-空穴对;
所述高能射线包括X射线和Gama射线,能量大于20Kev;
两个选择性电荷接触层,分别贴合在所述吸光层的两面,从而选择性抽取收集所述吸光层产生的电子-空穴对;和
两个电极,分别与两个所述选择性电荷接触层直接接触,以作为所述半导体辐射探测器的正极和负极(正极与电子选择性接触层直接接触,负极接空穴选择性接触层)。
优选地,Bi基四元卤化物单晶化学组成为Cs2AgBiX6,X为Cl或Br。
优选地,两个所述的选择性电荷接触层分别为电子选择性接触层和空穴选择性接触层,所述电子选择性接触层用于导出吸光层产生的电子,空穴选择性接触层用于导出吸光层产生的空穴。
优选地,所述电子选择性接触层包括碳六十(C60)、富勒烯衍生物(PCBM)、二氧化钛(TiO2)或氧化锌(ZnO)中的一种,多种或无。
优选地,所述的空穴选择性接触层包括氧化镍(NiO)或无。
优选地,所述的电极两个电极为金。
按照本发明的另一方面,还提出所述的半导体辐射探测器的制作方法,包括如下步骤:
(1)按2:1:1的摩尔比称取CsX,AgX,BiX3,其中X为Cl或Br,加入到卤化氢溶液(HX,X=Br,Cl)中,将溶液加热到130℃-110℃充分溶解后,以小于1℃/h的速度降温,当温度降低到70℃-50℃时,晶体析出,得到Bi基四元卤化物单晶晶体;
(2)将得到的晶体烘干;
(3)在晶体的上、下面制备电子选择性接触层和空穴选择性接触层;
(4)在电子选择性接触层和空穴选择性接触层上分别制作电极。
本发明提出以Bi基四元卤化物单晶作为导体辐射探测器的吸光层,具有如下优点:
Bi基四元卤化物单晶材料,具有合适的禁带宽度,高的迁移率和载流子寿命,稳定性高,是一种全新的半导体辐射探测器的吸光层材料。相较于传统的碲化镉、非晶硒、硅的辐射探测器具有高的灵敏度和低的工作偏压,相较于最近提出的甲胺铅溴,Bi基四元卤化物单晶在保证性能的同时无毒且具有高的稳定性。
附图说明
图1是依照本发明的半导体辐射探测器结构的横段面示意图;
图2是理论计算的不同材料对于30KeV能量射线的吸收与厚度关系的曲线;
图3是依照本发明的半导体辐射探测器功能的解释性示意图;
图4是测量得到的μ*τ值;
图5是测量得到的IT曲线图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
下面通过实施例,对本发明作进一步的说明。
图1是显示一种半导体辐射探测器结构的横断面示意图;图2是理论计算的不同材料对于不同能量高能射线的吸收系数曲线;图3是依照本发明的半导体辐射探测器功能的解释性示意图;图3是依照本发明的半导体辐射探测器功能的解释性示意图;图4是测量得到的μ*τ值(μ是载流子迁移率,τ是载流子寿命,两者相乘大,说明加较小的偏压,就能将载流子导出,从而使得探测器具有较好的灵敏度);图5是测量得到的IT曲线图,由IT图可看到探测器在高能射线开和关的条件下的电流变化。
如图1所示,本实例中的半导体辐射探测器包括Bi基四元卤化物单晶作为吸光层3,在吸光层的上下侧有电子选择性接触层2和空穴选择性接触层4,在电子选择性接触层2和空穴选择性接触层4上分别有电极1和电极5。电子选择性接触层2和空穴选择性接触层4也可以无,由Bi基四元卤化物单晶上下两侧直接接触两个电极。
电子选择性接触层2和空穴选择性接触层4是为了利用半导体中对载流子的电子和空穴之间的电荷转移作用显著不同而抑制暗电流。其中正偏压施加在施压电极1上,为了抑制空穴的注入,使用如碳六十(C60)、富勒烯衍生物(PCBM)、二氧化钛(TiO2)、氧化锌(ZnO)等作为电子选择性接触层。反向偏压施加于电极5上,为了抑制电子的注入,使用氧化镍(NiO)作为空穴选择性接触层。
在本实例中的半导体辐射探测器向电极1施加正偏压,高能射线从电极1入射穿过电子选择性接触层2被Bi基四元卤化物单晶吸光层3吸收,并在Bi基四元卤化物单晶吸光层3中产生电子空穴对,分别向两个电极移动产生电流。
如图2所示,以Bi基四元卤化物单晶作为半导体辐射探测器的吸光层,其吸收系数比硅(Si)要大,和碲化镉(CdTe),有机无机钙钛矿(MAPbI3)相比差不多,因此该材料作为半导体辐射探测器的吸光层在吸收上具有一定的优势,即在相同厚度的情况下Bi基四元卤化物能够吸收高能射线的效率只略低于碲化镉(CdTe),高于有机无机钙钛矿(MAPbI3)和硅(Si)。
如图3所示,当施加一个正偏压以便在高能射线入射一侧的电极(即电压施加电极6)有一个比载流子电极1更高的电位时,由高能射线入射生成的电子移向X射线入射一侧,而空穴移向相反的一侧。在这个过程中产生的电子-空穴对能付达到对应的电极导出由载流子迁移率μ、载流子寿命τ和外加偏压E决定,当μ*τ的值比较大时,导出电子-空穴的外加偏压就会更小,以此材料作为半导体辐射探测器的吸光层,探测器灵敏度就会越高。目前所用的半导体辐射探测器的吸光层μ*τ=10-5-10-8,所需工作偏压为Kv数量级,而我们提出的Bi基四元卤化物单晶(Cs2AgBiBr6)μ*τ=10-2,(如图4所示),只需要1V-10V的工作偏压就能导出载流子,具有高的灵敏度。图4示出在同一高能射线的照射下,改变偏压得到的光电流随电压变化的曲线,通过曲线拟合求得μ*τ=10-2,远高于半导体辐射探测器吸光层的常用材料μ*τ=10-5-10-8;表明本发明与其他材料相比,在μ*τ这一关键值相当规模上具有明显优势。
如图5所示,在偏压0.1V条件下,在35keV的X射线的照射下的IT曲线图。图中光电流上升时表示X射线打开,关闭表示X射线关闭。图5是一个测试实例,说明具有探测器具有较好的光暗电流比,探测性能好。
实施案例1:
本实例将介绍铯银铋溴(Cs2AgBiBr6)晶体的制备和以该晶体制备半导体辐射探测器:
取溴化银(AgBr,0.188g,1mmol),溴化铋(BiBr3,0.449g,1mmol)和溴化铯(CsBr,0.426g,2mmol)加入到10ml的氢溴酸(HBr)溶液中,将溶液加热到130℃,使得溶液充分溶解,之后再以1℃/h的速度降温到60℃,析出晶体,从而得到铯银铋溴(Cs2AgBiBr6)晶体。
再在该晶体的上下面用热蒸发蒸上80nm厚的金电极。
实施案例2:
本实例将介绍铯银铋溴(Cs2AgBiBr6)晶体的制备,并在该晶体上加电荷选择性接触层以制备半导体辐射探测器:
取溴化银(AgBr,0.188g,1mmol),溴化铋(BiBr3,0.449g,1mmol)和溴化铯(CsBr,0.426g,2mmol)加入到10ml的氢溴酸(HBr)溶液中,将溶液加热到130℃,使得溶液充分溶解,之后再以1℃/h的速度降温到60℃,析出晶体,从而得到铯银铋溴(Cs2AgBiBr6)晶体。
在晶体的上表面通过热蒸发蒸上碳六十(C60)。
再在该晶体的上下面用热蒸发蒸上80nm厚的金电极。
实施案例3:
本实例将介绍铯银铋氯(Cs2AgBiCl6)晶体的制备和以该晶体制备半导体辐射探测器:
取氯化银(AgCl,0.144g,1mmol),氯化铋(BiBr3,0.317g,1mmol)和氯化铯(CsCl,0.382g,2mmol)加入到10ml的盐酸(HCl)溶液中,将溶液加热到120℃,使得溶液充分溶解,之后再以0.5℃/h的速度降温到60℃,析出晶体,从而得到铯银铋氯(Cs2AgBiCl6)晶体。
再在该晶体的上下面用热蒸发蒸上80nm厚的金电极。
实施例可知,本发明所制备的半导体辐射探测器具有高灵敏度,稳定性,环境友好等优点。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种基于Bi基四元卤化物单晶的半导体辐射探测器,其特征在于,包括吸光层和两个电极;其中:
所述吸光层是Bi基四元卤化物单晶晶体制成,用于吸收高能射线,产生电子-空穴对,其中,所述Bi基四元卤化物为Cs2AgBiX6,其中X为Cl或Br;
所述两个电极,分别与吸光层接触,作为所述半导体辐射探测器的正极和负极;两个电极的工作偏压0.1V-10V;
所述高能射线包括X射线和Gama射线,能量大于20Kev。
2.根据权利要求1所述的半导体辐射探测器,其特征在于,所述吸光层与电极之间,设有选择性电荷接触层,便于电子、空穴的分离和导出。
3.根据权利要求2所述的半导体辐射探测器,其特征在于,所述两个选择性电荷接触层,分别为电子选择性接触层和空穴选择性接触层;所述电子选择性接触层用于导出吸光层产生的电子,空穴选择性接触层用于导出吸光层产生的空穴。
4.根据权利要求3所述的半导体辐射探测器,其特征在于,所述的电子选择性接触层包括碳六十(C60)、富勒烯衍生物(PCBM)、二氧化钛(TiO2)或氧化锌(ZnO)中的一种。
5.根据权利要求3或4所述的半导体辐射探测器,其特征在于,所述的空穴选择性接触层为氧化镍(NiO)。
6.根据权利要求1或2所述的半导体辐射探测器,其特征在于,所述两个电极为金材料制备而成。
7.一种权利要求1所述的半导体辐射探测器的制作方法,其特征在于,包括如下步骤:
(1)按2:1:1的摩尔比称取CsX,AgX,BiX3,其中X为Cl或Br,加入到卤化氢溶液中,将溶液加热到110℃-130℃充分溶解后,以小于1℃/h的速度降温,当温度降低到70℃-50℃时,晶体析出,得到Bi基四元卤化物单晶晶体,其中,所述卤化氢溶液为HX,X=Br,Cl;
(2)将得到的晶体烘干;
(3)在晶体的上下面分别制备金电极。
8.一种权利要求3所述的半导体辐射探测器的制作方法,其特征在于,包括如下步骤:
(1)按2:1:1的摩尔比称取CsX,AgX,BiX3,其中X为Cl或Br,原料加入到卤化氢溶液中,将溶液加热到110℃-130℃充分溶解后,以小于1℃/h的速度降温,当温度降低到70℃-50℃时,晶体析出,得到Bi基四元卤化物单晶晶体,其中,所述卤化氢溶液为HX,X=Br,Cl;
(2)将得到的晶体烘干;
(3)在晶体的上、下面制备电子选择性接触层和空穴选择性接触层;
(4)在电子选择性接触层和空穴选择性接触层上分别制作电极。
CN201611071705.8A 2016-11-29 2016-11-29 基于Bi基四元卤化物单晶的半导体辐射探测器及制备方法 Active CN106711272B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201611071705.8A CN106711272B (zh) 2016-11-29 2016-11-29 基于Bi基四元卤化物单晶的半导体辐射探测器及制备方法
US16/069,019 US20190019905A1 (en) 2016-11-29 2017-11-24 Semiconductor radiation detector based on bi-based quaternary halide single crystal and manufacturing method thereof
PCT/CN2017/112762 WO2018099322A1 (zh) 2016-11-29 2017-11-24 基于Bi基四元卤化物单晶的半导体辐射探测器及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611071705.8A CN106711272B (zh) 2016-11-29 2016-11-29 基于Bi基四元卤化物单晶的半导体辐射探测器及制备方法

Publications (2)

Publication Number Publication Date
CN106711272A CN106711272A (zh) 2017-05-24
CN106711272B true CN106711272B (zh) 2018-05-11

Family

ID=58934184

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611071705.8A Active CN106711272B (zh) 2016-11-29 2016-11-29 基于Bi基四元卤化物单晶的半导体辐射探测器及制备方法

Country Status (3)

Country Link
US (1) US20190019905A1 (zh)
CN (1) CN106711272B (zh)
WO (1) WO2018099322A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106711272B (zh) * 2016-11-29 2018-05-11 华中科技大学 基于Bi基四元卤化物单晶的半导体辐射探测器及制备方法
CN107248538B (zh) * 2017-05-25 2019-03-08 华中科技大学 一种双钙钛矿晶体的后处理方法及应用
CN107299393B (zh) * 2017-06-08 2018-12-14 华中科技大学 一种多元钙钛矿材料及其制备与应用
CN107934916B (zh) * 2017-11-16 2020-10-20 中山大学 一种稳定无铅的全无机双钙钛矿a2bb’x6纳米晶的制备方法
CN108365031B (zh) * 2018-02-27 2019-07-23 华中科技大学 一种提高辐射探测性能的方法、对应的辐射探测器及制备
CN108400244B (zh) * 2018-03-06 2021-07-30 郑州大学 一种基于无铅双钙钛矿薄膜的深紫外光探测器及制备方法
CN108559503B (zh) * 2018-03-30 2020-07-07 华中科技大学 一种Cs2AgBiBr6双钙钛矿及其制备方法
CN110408993B (zh) * 2019-06-29 2020-10-27 宁波大学 一种用于X射线探测的Cs2AgBiBr6双钙钛矿晶体的制备方法
CN111157547A (zh) * 2020-01-20 2020-05-15 成都闰德芯传感器技术有限公司 一种碲化锌镉晶体的检测方法
CN113697855B (zh) * 2020-05-20 2022-07-12 中国科学院上海硅酸盐研究所 一种Cu掺杂双钙钛矿材料及其制备方法
US11897784B2 (en) * 2020-12-18 2024-02-13 North Carolina State University Perovskite materials for ionizing radiation detection and related methods
CN115000232A (zh) * 2022-06-16 2022-09-02 太原理工大学 一种基于Cs2AgBiBr6的近红外光电探测器及其制作方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103636021A (zh) * 2011-08-17 2014-03-12 吉坤日矿日石能源株式会社 光电转换元件及其制造方法
CN105829913A (zh) * 2013-12-18 2016-08-03 西门子保健有限责任公司 具有有机光电探测器外壳的闪烁体

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5155696B2 (ja) * 2008-03-05 2013-03-06 富士フイルム株式会社 撮像素子
WO2015010055A1 (en) * 2013-07-19 2015-01-22 University Of Tennessee Research Foundation Ternary metal halide scintillator
KR102409391B1 (ko) * 2015-10-27 2022-06-15 삼성전자주식회사 양자점을 포함하는 광전자소자
US20170194101A1 (en) * 2015-12-31 2017-07-06 The Board Of Trustees Of The Leland Stanford Junior University HALIDE DOUBLE PEROVSKITE Cs2AgBiBr6 SOLAR-CELL ABSORBER HAVING LONG CARRIER LIFETIMES
CN106711272B (zh) * 2016-11-29 2018-05-11 华中科技大学 基于Bi基四元卤化物单晶的半导体辐射探测器及制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103636021A (zh) * 2011-08-17 2014-03-12 吉坤日矿日石能源株式会社 光电转换元件及其制造方法
CN105829913A (zh) * 2013-12-18 2016-08-03 西门子保健有限责任公司 具有有机光电探测器外壳的闪烁体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CS2AgBiX6(X=Br,Cl): New visible light absorbing, lead-free halide perovskite semiconductors;A;<Chem.Mater.>;20160210(第28期);第1348-1354页 *

Also Published As

Publication number Publication date
CN106711272A (zh) 2017-05-24
WO2018099322A1 (zh) 2018-06-07
US20190019905A1 (en) 2019-01-17

Similar Documents

Publication Publication Date Title
CN106711272B (zh) 基于Bi基四元卤化物单晶的半导体辐射探测器及制备方法
He et al. Detecting ionizing radiation using halide perovskite semiconductors processed through solution and alternative methods
Zhuang et al. Highly sensitive X-ray detector made of layered perovskite-like (NH4) 3Bi2I9 single crystal with anisotropic response
Wei et al. Halide lead perovskites for ionizing radiation detection
Tao et al. A lead-free hybrid iodide with quantitative response to X-ray radiation
EP3350836B1 (en) Method for producing a radiation detector and radiation detector
US10656290B2 (en) Direct photon conversion detector
US7977643B2 (en) Radiation detector assembly, radiation detector, and method for radiation detection
US10312292B2 (en) X-ray detector
Cao et al. Lead-free halide perovskite photodetectors spanning from near-infrared to X-ray range: a review
Leveillee et al. Influence of π-conjugated cations and halogen substitution on the optoelectronic and excitonic properties of layered hybrid perovskites
Jeong et al. Roadmap on halide perovskite and related devices
CN108365031B (zh) 一种提高辐射探测性能的方法、对应的辐射探测器及制备
Andričević et al. Kilogram‐Scale Crystallogenesis of Halide Perovskites for Gamma‐Rays Dose Rate Measurements
CN112531116A (zh) 一种钙钛矿超快x射线探测器及其制备方法
US11531124B2 (en) Inorganic ternary halide semiconductors for hard radiation detection
Li et al. Perovskite Dimensional Evolution Through Cations Engineering to Tailor the Detection Limit in Hard X‐ray Response
Shrestha et al. A perspective on the device physics of lead halide perovskite semiconducting detector for gamma and x-ray sensing
KR102126941B1 (ko) 엑스선 디텍터 및 이의 제조방법
CN112552185B (zh) 苯乙胺银铟溴的制备方法和半导体辐射探测器及制备方法
WO2022030156A1 (ja) 電離放射線変換デバイス、電離放射線の検出方法、及び電離放射線変換デバイスの製造方法
Andričević The impact of detection volume on hybrid halide perovskite-based radiation detectors
WO2022030157A1 (ja) 電離放射線変換デバイスおよび電離放射線の検出方法
US11508865B2 (en) Copper halide chalcogenide semiconductor compounds for photonic devices
EP4194903A1 (en) Ionizing radiation conversion device and method for detecting ionizing radiation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Tang Jiang

Inventor after: Pan Weicheng

Inventor after: Wu Haodi

Inventor after: Luo Jiajun

Inventor after: Niu Guangda

Inventor after: Zhou Ying

Inventor before: Tang Jiang

Inventor before: Pan Weicheng

Inventor before: Wu Haodi

Inventor before: Luo Jiajun

Inventor before: Niu Guangda

Inventor before: Zhou Ying

GR01 Patent grant
GR01 Patent grant