CN106711186A - 一种低比导的高压功率器件 - Google Patents

一种低比导的高压功率器件 Download PDF

Info

Publication number
CN106711186A
CN106711186A CN201611120855.3A CN201611120855A CN106711186A CN 106711186 A CN106711186 A CN 106711186A CN 201611120855 A CN201611120855 A CN 201611120855A CN 106711186 A CN106711186 A CN 106711186A
Authority
CN
China
Prior art keywords
voltage power
power device
high voltage
led
low ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611120855.3A
Other languages
English (en)
Inventor
吴丽娟
章中杰
杨航
宋月
胡利民
袁娜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changsha University of Science and Technology
Original Assignee
Changsha University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changsha University of Science and Technology filed Critical Changsha University of Science and Technology
Priority to CN201611120855.3A priority Critical patent/CN106711186A/zh
Publication of CN106711186A publication Critical patent/CN106711186A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET

Abstract

本发明涉及的低比导高压功率器件属于功率半导体器件技术领域。本发明在漂移区的槽氧层中引入纵向场板,并在槽氧层的一侧做重掺杂的N型注入。对比表面耗尽的横向场板结构,纵向场板能辅助耗尽漂移区,因此相比常规结构,本发明有利于漂移区的高掺杂。重掺杂的N条能优化体电场,带来高的击穿电压和低的比导通道。本发明具有工艺实现简单,耐压高,比导低,而且由于槽型漂移区的折叠作用,版图面积小等优点。采用本发明可获得各种性能优良的体硅横向低比导高耐压半导体功率器件。

Description

一种低比导的高压功率器件
技术领域
本发明涉及的低比导高压功率器件属于功率半导体器件技术领域。
背景技术
传统高压功率MOS器件存在比导通电阻(Specific On-Resistance, Ron,sp)与击穿电压(Breakdown Voltage, BV)2.5次方的“硅极限”关系(Ron,sp∝BV2.5),随着器件击穿电压的提高,在高压应用时器件的比导通电阻会急剧增加。超结(Super Junction, SJ)结构打破了“硅极限”,使得器件比导通电阻与击穿电压之间的关系变为Ron,sp∝BV1.32,1.32次方的指数关系较传统2.5次方的指数关系极大地降低了器件的比导通电阻,从而拓展了功率MOS器件在更高电压领域的应用。对于高压器件,器件的比导通电阻Ron,sp=导通电阻Ron*器件面积A,因此器件面积的大小,对器件的比导通电阻有着至关重要的影响。横向高压器件,其导通电阻主要由接触电阻、源漏区电阻、沟道电阻、积累区电阻及漂移区电阻构成。较长的漂移区以及其较低的掺杂浓度,使得漂移区电阻在横向高压器件导通电阻中所占的比重较大。人们提出了多种结构改善横向高压器件的比导通电阻,并已将SJ技术应用于横向高压器件中,但SJ结构的PN条横向放置,导致器件漂移区仍然较长且占据较大的面积,不利于比导通电阻的进一步降低。而随着Trench技术的逐渐成熟,人们已将横向高压器件的沟道区及积累区由横向变为纵向,以缩小沟道区和积累区导致的器件面积的增加,但迄今为止仍没有将漂移区进行纵向化。因此结合Trench技术和SJ技术的优点将长的横向超结漂移区变为纵向,再做横向的表面体引出,即能将Ron,sp与BV的关系折中到1.32至2.5次方之间,使得器件比导通电阻大幅降低。因此如何将占据器件比导通电阻较大比重的漂移区纵向化,对实现超低比导通电阻的横向高压器件具有较为重要的研究意义。
如图1所示,为典型的横向功率器件槽型结构,漂移区的纵向化,可以减小漂移区长度,缩小漂移区面积。采用新的结构,通过在横向高压器件漂移区中引入槽氧层及纵向SJ(重掺杂N条)结构,使得横向高压器件耐压由源漏两端纵向硅层共同承担,而非传统结构中较长的漂移区来承担器件耐压,实现耐压方式的结构改变,从而实现体内电场分布的最优化。槽氧层的引入,极大缩短了横向漂移区的长度;纵向SJ(重掺杂N条)结构,不仅增强了槽氧层电场,也极大地降低了器件的比导通电阻。新器件结构使得器件比导通电阻极大降低,突破传统高压器件中存在的比导通电阻和击穿电压的“硅极限”关系。
发明内容
本发明申请的目的在于通过长漂移区的纵向化和纵向场板和SJ技术使得横向高压器件比导通电阻极大降低,解决传统高压器件中存在的比导通电阻和击穿电压的“硅极限”难题。扩展低比导的高压功率器件的应用范围。
为解决上述问题,本发明实施例提供了如下技术方案:
一种低比导的高压功率器件,包括:半导体P型衬底层1、N型漂移区3、其特征在于:所述N型漂移区31设置有元胞结构61和终端结构62。
所述的元胞结构61包括P型体区41。
优选的,
所述的P型体区41包括第一P型重掺杂42和第一N型重掺杂32,其上端是源极金属52和栅氧化层21。
优选的,
所述源极金属52和栅氧化层21通过介质层22隔离。
优选的,
所示栅氧化层21上端面设置有多晶硅栅电极51。
优选的,
所述终端结构62包括槽氧层2、第一N型重掺杂区33、第二N型重掺杂条(SJ结构)34。
优选的,
所述槽氧层2分别与元胞结构61和第一N型重掺杂区33连接,内有体场板54。
优选的,
所述场板54与多晶硅栅电极51和栅氧化层21连接后延伸到槽氧层2中。
优选的,
所述第一N型重掺杂区33上端设置有漏极金属53。
优选的,
所述漏极金属53和栅氧化层21之间通过介质层22隔离。
优选的,
所述第二N型重掺杂条(SJ结构)34与槽氧层2的侧面和栅氧化层21的底部连接。
与现有技术相比,上述技术方案具有以下优点:
本发明提供的一种低比导的高压功率器件,在槽氧层2内引入了场板54,在槽氧层2的右侧引入了第二N型重掺杂条(SJ结构)34。该发明与传统技术相比,第二N型重掺杂条(SJ结构)34为开态电流提供超低导通电阻通道,静态时,第二N型重掺杂条(SJ结构)34和槽氧层2界面处形成新的电场尖峰,增强了槽氧层电场,从而提高了击穿电压。通过在横向高压器件漂移区中引入槽氧层2及第二N型重掺杂条(SJ结构)34。槽氧层的引入,极大缩短了横向漂移区的长度;第二N型重掺杂条(SJ结构)34,不仅增强了槽氧层电场,也极大地降低了器件的比导通电阻。纵向场板结构调制了体内电场,实现了电场的优化分布,提高了器件耐压,新结构在提高耐压的同时降低了比导。而且由于槽型漂移区的折叠作用,版图面积小等优点,工艺实现满足常规的CMOS工艺。
附图说明
图1 是传统横向高压功率器件结构剖面示意图;
图2 是本发明的平面栅低比导通电阻的横向高压器件结构剖面图;
图3 是本发明的超低比导通电阻的横向高压器件的耐压原理图;
图4 是本发明的超低比导通电阻的横向高压器件的常规结构和新结构的体电场;
图5 是本发明的超低比导通电阻的横向高压器件的常规结构和新结构的表面电场;
图6 是本发明的具有漏极场板的低比导通电阻的横向高压器件结构剖面图;
图7 是本发明的具有双向纵向场板的低比导通电阻的横向高压器件结构剖面图;
图8 是本发明的平面栅低比导通电阻的横向高压器件结构剖面图,其中第二条N 35直接集成在P型衬底1上;
图9 是本发明提供的平面栅超低比导通电阻的横向高压器件结构剖面图,其中高压器件不包含N型漂移区31 ;
图10 是本发明的平面栅低比导通电阻的横向高压器件结构剖面图,其中第三条N 36位于介质槽的左侧;
图11 是本发明提供的平面栅超低比导通电阻的横向高压器件结构剖面图,其中高压器件不包含N型漂移区31 ;
图12 是本发明的浅槽栅结构的槽栅超低比导通电阻的横向高压器件结构剖面图;
图13 是本发明的中等槽栅结构的槽栅低比导通电阻的横向高压器件结构剖面图;
图14 是本发明的深槽栅结构的槽栅低比导通电阻的横向高压器件结构剖面图;
图15 是本发明的另一种槽栅低比导通电阻的横向高压器件结构剖面图,其中,多晶硅栅51位于槽氧层2中;
图16 是本发明提供的一种新型的横向IGBT 器件结构剖面图,其中,第二N型重掺杂区33 用第二P型重掺杂区44代替;
图17 是本发明的具有双向纵向场板的低比导通电阻的新型的横向IGBT器件结构剖面图;
图18 是本发明的具有双向纵向场板的低比导通电阻的新型的横向IGBT器件结构剖面图;其中,器件集成在SOI衬底3上;
图19 是本发明提供的低比导通电阻的横向高压器件结构剖面图,其中,器件集成在SOI衬底3上;
图20 是本发明的具有双向纵向场板的低比导通电阻的横向高压器件结构剖面图其中,器件集成在SOI衬底3上;
图21 是本发明提供的超低比导通电阻的横向高压器件结构剖面图,器件集成了多个元胞结构61,共用同一个终端结构62;
图22 是传统横向高压功率器件和本发明提供的超低比导通电阻的横向高压器件击穿时电势分布图;
图23 是传统横向高压功率器件和本发明提供的低比导通电阻的横向高压器件击穿时,器件的表面和体内的横向电场分布图;
图24 是传统横向高压功率器件和本发明提供的低比导通电阻的横向高压器件击穿时,器件的高压器件绕槽氧层的电场分布;
图25 是穿通横向高压功率器件和本发明提供的低比导通电阻的横向高压器件击穿是,器件的高压器件介质层的电场分布。
图26 是本发明提供的低比导通电阻的横向高压器件纵向剖面图。

Claims (11)

1.一种低比导的高压功率器件,包括:半导体P型衬底层1、N型漂移区31、其特征在于:所述N型漂移区31设置有元胞结构61和终端结构62。
2.根据权利要求1所述的一种低比导的高压功率器件,其特征在于:所述的元胞结构61包括P型体区41。
3.根据权利要求1所述的一种低比导的高压功率器件,其特征在于:所述的P型体区41包括第一P型重掺杂42和第一N型重掺杂32,其上端是源极金属52和栅氧化层21。
4.根据权利要求1所述的一种低比导的高压功率器件,其特征在于:所述源极金属52和栅氧化层21通过介质层22隔离。
5.根据权利要求1所述的一种低比导的高压功率器件,其特征在于:所述栅氧化层21上端面设置有多晶硅栅电极51。
6.根据权利要求1所述的一种低比导的高压功率器件,其特征在于:所述终端结构62包括槽氧层2、第一N型重掺杂区33、第二N型重掺杂条(SJ结构)34。
7.根据权利要求1所述的一种低比导的高压功率器件,其特征在于:所述槽氧层2分别与元胞结构61和第一N型重掺杂区33连接,内有纵向场板54。
8.根据权利要求1所述的一种低比导的高压功率器件,其特征在于:所述场板54与多晶硅栅电极51和栅氧化层21连接后延伸到槽氧层2中。
9.根据权利要求1所述的一种低比导的高压功率器件,其特征在于:所述第一N型重掺杂区33上端设置有漏极金属53。
10.根据权利要求1所述的一种低比导的高压功率器件,其特征在于:所述漏极金属53和栅氧化层21之间通过介质层22隔离。
11.根据权利要求1所述的一种低比导的高压功率器件,其特征在于:所述第二N型重掺杂条(SJ结构)34与槽氧层2的侧面和栅氧化层21的底部连接。
CN201611120855.3A 2016-12-08 2016-12-08 一种低比导的高压功率器件 Pending CN106711186A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611120855.3A CN106711186A (zh) 2016-12-08 2016-12-08 一种低比导的高压功率器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611120855.3A CN106711186A (zh) 2016-12-08 2016-12-08 一种低比导的高压功率器件

Publications (1)

Publication Number Publication Date
CN106711186A true CN106711186A (zh) 2017-05-24

Family

ID=58936342

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611120855.3A Pending CN106711186A (zh) 2016-12-08 2016-12-08 一种低比导的高压功率器件

Country Status (1)

Country Link
CN (1) CN106711186A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107425052A (zh) * 2017-07-28 2017-12-01 电子科技大学 一种横向高压器件
CN113299745A (zh) * 2021-06-10 2021-08-24 珠海市浩辰半导体有限公司 一种终端结构、半导体器件及制作方法
CN113299744A (zh) * 2021-06-10 2021-08-24 珠海市浩辰半导体有限公司 一种终端结构、半导体器件及制作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5539238A (en) * 1992-09-02 1996-07-23 Texas Instruments Incorporated Area efficient high voltage Mosfets with vertical resurf drift regions
CN101840935A (zh) * 2010-05-17 2010-09-22 电子科技大学 Soi横向mosfet器件
CN103715238A (zh) * 2013-12-30 2014-04-09 电子科技大学 一种超低比导通电阻的横向高压器件

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5539238A (en) * 1992-09-02 1996-07-23 Texas Instruments Incorporated Area efficient high voltage Mosfets with vertical resurf drift regions
CN101840935A (zh) * 2010-05-17 2010-09-22 电子科技大学 Soi横向mosfet器件
CN103715238A (zh) * 2013-12-30 2014-04-09 电子科技大学 一种超低比导通电阻的横向高压器件

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107425052A (zh) * 2017-07-28 2017-12-01 电子科技大学 一种横向高压器件
CN113299745A (zh) * 2021-06-10 2021-08-24 珠海市浩辰半导体有限公司 一种终端结构、半导体器件及制作方法
CN113299744A (zh) * 2021-06-10 2021-08-24 珠海市浩辰半导体有限公司 一种终端结构、半导体器件及制作方法
CN113299744B (zh) * 2021-06-10 2022-04-15 珠海市浩辰半导体有限公司 一种终端结构、半导体器件及制作方法
CN113299745B (zh) * 2021-06-10 2022-04-15 珠海市浩辰半导体有限公司 一种终端结构、半导体器件及制作方法

Similar Documents

Publication Publication Date Title
CN101840935B (zh) Soi横向mosfet器件
CN101840933B (zh) 带表面缓冲环终端结构的超结金属氧化物场效应晶体管
CN104201206B (zh) 一种横向soi功率ldmos器件
CN103715238B (zh) 一种超低比导通电阻的横向高压器件
CN102969358B (zh) 一种横向高压功率半导体器件
CN102779836B (zh) 使用高介电常数槽结构的低比导通电阻的纵向功率器件
CN103474466B (zh) 一种高压器件及其制造方法
CN102420251A (zh) 一种具有非均匀浮岛结构的vdmos器件
CN105633137B (zh) 一种槽栅功率mosfet器件
CN101969073A (zh) 快速超结纵向双扩散金属氧化物半导体管
CN103022134B (zh) 一种超低比导通电阻的soi横向高压功率器件
CN102969355B (zh) 一种soi基pmosfet功率器件
CN103928522B (zh) 一种槽型积累层mosfet器件
CN101552291A (zh) N沟道超结纵向双扩散金属氧化物半导体管
CN105789314A (zh) 一种横向soi功率ldmos
CN106711186A (zh) 一种低比导的高压功率器件
CN103280457A (zh) 一种超低比导通电阻的横向高压功率器件及制造方法
CN105070760A (zh) 一种功率mos器件
CN107680997A (zh) 带有可调型场板的横向双扩散金属氧化物半导体场效应管
CN102832237B (zh) 一种槽型半导体功率器件
CN202616236U (zh) 一种具有p型埋层的超结纵向双扩散金属氧化物半导体管
CN101771081B (zh) N型超结横向双扩散半导体金属氧化物晶体管
CN107863343B (zh) 平面mos器件及其制造方法
CN201570500U (zh) P型超结横向双扩散半导体金属氧化物晶体管
CN104465778A (zh) 一种槽型mos功率器件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 410114 No. 960, Section 2, Wanjiali South Road, Tianxin District, Changsha City, Hunan Province

Applicant after: Changsha University of Sciences and Technology

Address before: 410114 No. 2, 960 Wan Li Li South Road, Yuhua District, Changsha, Hunan

Applicant before: Changsha University of Sciences and Technology

WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170524