CN106705935A - 多轴无人机高度更新方法 - Google Patents

多轴无人机高度更新方法 Download PDF

Info

Publication number
CN106705935A
CN106705935A CN201611096450.0A CN201611096450A CN106705935A CN 106705935 A CN106705935 A CN 106705935A CN 201611096450 A CN201611096450 A CN 201611096450A CN 106705935 A CN106705935 A CN 106705935A
Authority
CN
China
Prior art keywords
height
formula
acceleration
unmanned plane
barometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611096450.0A
Other languages
English (en)
Inventor
董光阳
沈雪峰
张晓飞
任强
冯绍晰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Huace Navigation Technology Ltd
Original Assignee
Shanghai Huace Navigation Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Huace Navigation Technology Ltd filed Critical Shanghai Huace Navigation Technology Ltd
Priority to CN201611096450.0A priority Critical patent/CN106705935A/zh
Publication of CN106705935A publication Critical patent/CN106705935A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C5/00Measuring height; Measuring distances transverse to line of sight; Levelling between separated points; Surveyors' levels
    • G01C5/06Measuring height; Measuring distances transverse to line of sight; Levelling between separated points; Surveyors' levels by using barometric means

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Navigation (AREA)

Abstract

本发明提供了一种多轴无人机高度更新方法,包括:S1:判断无人机的气压计数据是否更新,如果更新,执行S2;如果没有更新,执行S3;S2:通过气压计获取当前飞行高度,进行高度更新,之后进行当前气压计修正系数计算;S3:判断加速度计数据是否更新,如果更新,执行S4;如果没有更新,执行S6;S4:将机体坐标系修正后的加速度转换为地理坐标系下的加速度;S5:加速度偏移向量校正;偏移向量转移到机体坐标系;S6:加速度推算高度和速度信息;利用气压计校准系数进行修正高度和速度信息;S7:返回执行S1判断气压计数据是否更新。本发明将加速度计短期测量精确与气压计长期测量不精确的特点结合在一起,保证了无人机上升过程中高度长期的精确稳定性。

Description

多轴无人机高度更新方法
技术领域
本发明涉及测绘领域,具体涉及一种多轴无人机高度更新方法。
背景技术
MEMS(Micro-Electro-Mechanical System,微机电系统)加速度计和气压计是可以测量无人机相对高度的器件。加速度计和气压计测量高度,优缺点共存:加速度计存在长时间积分,高度短期测量准确(忽略噪声干扰),长期测量不精确;气压计精度达到10cm(气压计输出的数据直接转化为高度的话会有几十厘米的浮动,直接用于高度控制极不稳定)短期测量不精确,长期测量精确。此外,无人机由于电池电量过高,会出现定高上升速度过高,出现炸机,因此也要解决定高上升速度过快问题。
发明内容
本发明提供了一种多轴无人机高度更新方法,解决加速度计存在长时间积分,高度短期测量准确(忽略噪声干扰),长期测量不精确;气压计精度达到10cm(气压计输出的数据直接转化为高度的话会有几十厘米的浮动,直接用于高度控制极不稳定),实现了长期测量更加精确。
本发明的技术方案为:
一种多轴无人机高度更新方法,包括如下步骤:
步骤S1:判断无人机的气压计数据是否更新,如果更新,执行S2;如果没有更新,执行S3;
步骤S2:通过气压计获取当前飞行高度,进行高度更新,之后进行当前气压计修正系数计算;
步骤S3:判断加速度计数据是否更新,如果更新,执行S4;如果没有更新,执行S6;
步骤S4:将机体坐标系修正后的加速度转换为地理坐标系下的加速度;
步骤S5:加速度偏移向量校正;偏移向量转移到机体坐标系;
步骤S6:加速度推算高度和速度信息;利用气压计校准系数进行修正高度和速度信息;
步骤S7:返回执行S1判断气压计数据是否更新。
上述的多轴无人机高度更新方法,其中,所述无人机为四轴无人机。
上述的多轴无人机高度更新方法,其中,在步骤S2中,通过气压计获取当前飞行高度的公式为:
公式一中,Hb、pb和Tb分别为相应大气层的重力势高度、大气压力以及大气层大气温度的下限值;β为温度垂直变化率;R为空气气体常数;gn为自由落体加速度;ph为当前所测得的大气静压。
将起飞点时气压计所测得的高度作为基准高度,与当前气压高度计测量值做差,得到定位高度h测高方程公式:
hat=h+b+ε1 公式二;
公式二中,h为无人机的真实定位高度,b为环境影响所造成的误差,ε1为量测噪声;
当前气压计修正系数计算方法:
corr_bar=-H-z_est0 公式3;
式中,corr_bar为气压计修正系数,z_est0为加速度计Z轴高度。
上述的多轴无人机高度更新方法,其中,在步骤S5中,加速度偏移向量校正的公式为:
accel_bias=accel_bias-corr_bar*para*para 公式4;
公式4中,accel_bias为校正后的加速度偏移向量,para为加速度计Z轴校正系数;
偏移向量转移到机体坐标系的步骤包括:
将地理坐标系利用四元素转换为载体坐标系时,其方向余弦矩阵为
将偏移向量转换到机体坐标系公式:
acc_bias=acc_bias+Rot_matrix[x][y]*accel_bias*para1*dt 公式6;
公式6中,acc_bias为机体坐标系下的偏移向量,Rot_matrix[x][y]为对应的公式5的旋转矩阵,para1为偏移向量积分修正系数,dt为积分时间间隔。
上述的多轴无人机高度更新方法,其中,在步骤S6中,
设捷联式加速度计沿无人机的纵轴、横轴和垂直轴方向与飞机固联,加速度计放置在无人机的重心处,忽略角运动对加速度计输出的影响,则垂向加速度计的量测方程为:
aacc=ag3 公式7;
公式7中,aacc为垂向加速度,ag为真实的垂向加速度,ε3为加速度计对高度的量测噪声;
飞机相对于起飞地面的飞行高度hacc、垂向速度vacc和垂向加速度aacc之间的关系表示为:
本发明将加速度计短期测量精确与气压计长期测量不精确的特点结合在一起,保证了无人机上升过程中高度长期的精确稳定性。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明及其特征、外形和优点将会变得更明显。在全部附图中相同的标记指示相同的部分。并未刻意按照比例绘制附图,重点在于示出本发明的主旨。
图1为本发明提供的一种多轴无人机高度更新方法的流程图。
具体实施方式
在下文的描述中,给出了大量具体的细节以便提供对本发明更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本发明可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本发明发生混淆,对于本领域公知的一些技术特征未进行描述。
为了彻底理解本发明,将在下列的描述中提出详细的步骤以及详细的结构,以便阐释本发明的技术方案。本发明的较佳实施例详细描述如下,然而除了这些详细描述外,本发明还可以具有其他实施方式。
针对现有技术中无人机定高存在的问题,本发明提供了提高小四轴定高精度方法。
本发明技术方案为,利用互补滤波算法,可以实现加速度计和气压计的优势结合,实现无人机定高长时间稳定性和准确性;根据电池电量,改变无人机上升的速度,保证上升的稳定性。
在无人机定高中,所说的高度是地理坐标系下的相对高度,所获取的加速度计Z轴加速度信息是相对于当前机体坐标系下的,因此需要进行机体坐标系和地理坐标系加速度的实时转换,下面简单的介绍进行高度求解的方法:
在定高过程中,需要的速度和位置信息是由地理坐标系下的加速度通过一次积分,二次积分获得,而地理坐标系下的加速度是通过机体坐标系测量的加速度减去机体偏移向量,再转换到地理坐标系求得的。在加速度计和气压计数据融合的过程中,气压计在数据更新时,计算出加速度偏移量校正系数,对地理坐标系下的加速度偏移量进行修正。
由于加速度计XY轴所在平面与水平面上存在倾斜角度,因此Z轴输出的数据是重力在Z轴当前角度的一个分量,是不准确的,所以需要对Z轴的加速度计进行倾角补偿,这样得到的才是垂直方向上的当前重力。
本发明提供了一种多轴无人机高度更新方法,参照图1所示,包括如下步骤:
步骤S1:判断无人机的气压计数据是否更新,如果更新,执行S2;如果没有更新,执行S3。
步骤S2:通过气压计获取当前飞行高度,进行高度更新,之后进行当前气压计修正系数计算。具体的,通过气压计获取当前飞行高度的公式为:
公式一中,Hb、pb和Tb分别为相应大气层的重力势高度、大气压力以及大气层大气温度的下限值;β为温度垂直变化率;R为空气气体常数;gn为自由落体加速度;ph为当前所测得的大气静压。
将起飞点时气压计所测得的高度作为基准高度,与当前气压高度计测量值做差,得到定位高度h测高方程公式:
hat=h+b+ε1 公式二;
公式二中,h为无人机的真实定位高度,b为环境影响所造成的误差,ε1为量测噪声;
当前气压计修正系数计算方法:
corr_bar=-H-z_est0 公式3;
公式3中,corr_bar为气压计修正系数,z_est0为加速度计Z轴高度。
步骤S3:判断加速度计数据是否更新,如果更新,执行S4;如果没有更新,执行S6。
步骤S4:将机体坐标系修正后的加速度转换为地理坐标系下的加速度。
步骤S5:加速度偏移向量校正;偏移向量转移到机体坐标系。具体的,加速度偏移向量校正的公式为:
accel_bias=accel_bias-corr_bar*para*para 公式4;
公式4中,accel_bias为校正后的加速度偏移向量,para为加速度计Z轴校正系数;
偏移向量转移到机体坐标系的步骤包括:
将地理坐标系利用四元素转换为载体坐标系时,其方向余弦矩阵为
将偏移向量转换到机体坐标系公式:
acc_bias=acc_bias+Rot_matrix[x][y]*accel_bias*para1*dt 公式6;
公式6中,acc_bias为机体坐标系下的偏移向量,Rot_matrix[x][y]为对应的公式5的旋转矩阵,para1为偏移向量积分修正系数,dt为积分时间间隔。
步骤S6:加速度推算高度和速度信息;利用气压计校准系数进行修正高度和速度信息。具体的,设捷联式加速度计沿无人机的纵轴、横轴和垂直轴方向与飞机固联,加速度计放置在无人机的重心处,忽略角运动对加速度计输出的影响,则垂向加速度计的量测方程为:
aacc=ag3 公式7;
公式7中,aacc为垂向加速度,ag为真实的垂向加速度,ε3为加速度计对高度的量测噪声;
飞机相对于起飞地面的飞行高度hacc、垂向速度vacc和垂向加速度aacc之间的关系表示为:
步骤S7:返回执行S1判断气压计数据是否更新。
本发明利用互补滤波算法,可以实现加速度计和气压计的优势结合,实现无人机定高长时间稳定性和准确性;根据电池电量,改变无人机上升的速度,保证上升的稳定性。
以上对本发明的较佳实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,其中未尽详细描述的设备和结构应该理解为用本领域中的普通方式予以实施;任何熟悉本领域的技术人员,在不脱离本发明技术方案范围情况下,都可利用上述揭示的方法和技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例,这并不影响本发明的实质内容。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。

Claims (5)

1.一种多轴无人机高度更新方法,其特征在于,包括如下步骤:
步骤S1:判断无人机的气压计数据是否更新,如果更新,执行S2;如果没有更新,执行S3;
步骤S2:通过气压计获取当前飞行高度,进行高度更新,之后进行当前气压计修正系数计算;
步骤S3:判断加速度计数据是否更新,如果更新,执行S4;如果没有更新,执行S6;
步骤S4:将机体坐标系修正后的加速度转换为地理坐标系下的加速度;
步骤S5:加速度偏移向量校正;偏移向量转移到机体坐标系;
步骤S6:加速度推算高度和速度信息;利用气压计校准系数进行修正高度和速度信息;
步骤S7:返回执行S1判断气压计数据是否更新。
2.如权利要求1所述的多轴无人机高度更新方法,其特征在于,所述无人机为四轴无人机。
3.如权利要求1所述的多轴无人机高度更新方法,其特征在于,在步骤S2中,通过气压计获取当前飞行高度的公式为:
公式一中,Hb、pb和Tb分别为相应大气层的重力势高度、大气压力以及大气层大气温度的下限值;β为温度垂直变化率;R为空气气体常数;gn为自由落体加速度;ph为当前所测得的大气静压。
将起飞点时气压计所测得的高度作为基准高度,与当前气压高度计测量值做差,得到定位高度h测高方程公式:
hat=h+b+ε1 公式二;
公式二中,h为无人机的真实定位高度,b为环境影响所造成的误差,ε1为量测噪声;
当前气压计修正系数计算方法:
corr_bar=-H-z_est0 公式3;
式中,corr_bar为气压计修正系数,z_est0为加速度计Z轴高度。
4.如权利要求1所述的多轴无人机高度更新方法,其特征在于,在步骤S5中,加速度偏移向量校正的公式为:
accel_bias=accel_bias-corr_bar*para*para 公式4;
公式4中,accel_bias为校正后的加速度偏移向量,para为加速度计Z轴校正系数;
偏移向量转移到机体坐标系的步骤包括:
将地理坐标系利用四元素转换为载体坐标系时,其方向余弦矩阵为
将偏移向量转换到机体坐标系公式:
acc_bias=acc_bias+Rot_matrix[x][y]*accel_bias*para1*dt 公式6;
公式6中,acc_bias为机体坐标系下的偏移向量,Rot_matrix[x][y]为对应的公式5的旋转矩阵,para1为偏移向量积分修正系数,dt为积分时间间隔。
5.如权利要求1所述的多轴无人机高度更新方法,其特征在于,在步骤S6中,
设捷联式加速度计沿无人机的纵轴、横轴和垂直轴方向与飞机固联,加速度计放置在无人机的重心处,忽略角运动对加速度计输出的影响,则垂向加速度计的量测方程为:
aacc=ag3 公式7;
公式7中,aacc为垂向加速度,ag为真实的垂向加速度,ε3为加速度计对高度的量测噪声;
飞机相对于起飞地面的飞行高度hacc、垂向速度vacc和垂向加速度aacc之间的关系表示为:
CN201611096450.0A 2016-12-02 2016-12-02 多轴无人机高度更新方法 Pending CN106705935A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611096450.0A CN106705935A (zh) 2016-12-02 2016-12-02 多轴无人机高度更新方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611096450.0A CN106705935A (zh) 2016-12-02 2016-12-02 多轴无人机高度更新方法

Publications (1)

Publication Number Publication Date
CN106705935A true CN106705935A (zh) 2017-05-24

Family

ID=58934521

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611096450.0A Pending CN106705935A (zh) 2016-12-02 2016-12-02 多轴无人机高度更新方法

Country Status (1)

Country Link
CN (1) CN106705935A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108458688A (zh) * 2018-02-23 2018-08-28 珠海全志科技股份有限公司 高度与速度更新方法、模块及无人机
CN108496130A (zh) * 2017-05-31 2018-09-04 深圳市大疆创新科技有限公司 飞行控制方法、设备、控制终端及其控制方法、无人机
CN113137965A (zh) * 2020-01-19 2021-07-20 菲力尔无人机系统无限责任公司 飞行高度估计系统和方法
TWI762304B (zh) * 2021-05-06 2022-04-21 國立虎尾科技大學 具區段近似與差壓零點校正的平流層大氣量測系統

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104169680A (zh) * 2012-03-13 2014-11-26 皇家飞利浦有限公司 使用气压传感器监测设备的高度改变
CN104567799A (zh) * 2014-11-28 2015-04-29 天津大学 基于多传感器信息融合的小型旋翼无人机高度测量方法
CN105277171A (zh) * 2014-07-16 2016-01-27 中国移动通信集团公司 一种海拔高度的记录方法、记录装置及终端
US9797743B2 (en) * 2012-11-01 2017-10-24 Verizon Telematics Inc. Method and system for determining whether to reset a height in a height determining device based on the occurrence of steps

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104169680A (zh) * 2012-03-13 2014-11-26 皇家飞利浦有限公司 使用气压传感器监测设备的高度改变
US9797743B2 (en) * 2012-11-01 2017-10-24 Verizon Telematics Inc. Method and system for determining whether to reset a height in a height determining device based on the occurrence of steps
CN105277171A (zh) * 2014-07-16 2016-01-27 中国移动通信集团公司 一种海拔高度的记录方法、记录装置及终端
CN104567799A (zh) * 2014-11-28 2015-04-29 天津大学 基于多传感器信息融合的小型旋翼无人机高度测量方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108496130A (zh) * 2017-05-31 2018-09-04 深圳市大疆创新科技有限公司 飞行控制方法、设备、控制终端及其控制方法、无人机
CN108496130B (zh) * 2017-05-31 2021-06-11 深圳市大疆创新科技有限公司 飞行控制方法、设备、控制终端及其控制方法、无人机
CN108458688A (zh) * 2018-02-23 2018-08-28 珠海全志科技股份有限公司 高度与速度更新方法、模块及无人机
CN113137965A (zh) * 2020-01-19 2021-07-20 菲力尔无人机系统无限责任公司 飞行高度估计系统和方法
TWI762304B (zh) * 2021-05-06 2022-04-21 國立虎尾科技大學 具區段近似與差壓零點校正的平流層大氣量測系統

Similar Documents

Publication Publication Date Title
KR101168100B1 (ko) 차량의 위치, 자세 및 헤딩을 추측하는 시스템 및 방법
CN109269471B (zh) 一种新型gnss接收机倾斜测量系统及方法
CN106705935A (zh) 多轴无人机高度更新方法
EP2557394B1 (en) System for processing pulse signals within an inertial navigation system
KR101739390B1 (ko) 중력오차보상을 통한 관성항법장치의 자체정렬 정확도 향상기법
CN102879832B (zh) 用于地磁要素测量系统的非对准误差校正方法
CN110006450A (zh) 一种激光捷联惯导系统在卧式三轴转台上的标定方法
CN110007354B (zh) 无人机半航空瞬变电磁接收线圈飞行参数测量装置及方法
CN108592952A (zh) 基于杆臂补偿与正反倍速率同时标定多mimu误差的方法
CN113008227B (zh) 一种基于三轴加速度计测姿的地磁二分量测量方法
CN103852760B (zh) 一种基于刚性和柔性基线组合的多基线测量方法
CN104764463B (zh) 一种惯性平台调平瞄准误差的自检测方法
CN111121773B (zh) 一种mems惯性测量组合
CN109710961A (zh) 一种基于gps数据的高空无人机升限数据处理方法
CN107402007A (zh) 一种提高微型ahrs模块精度的方法和微型ahrs模块
CN106840100A (zh) 一种数字式倾角传感器及测量方法
CN108593965A (zh) 一种基于比力模和惯性稳定的加速度计系泊状态标定方法
CN109856691A (zh) 一种基于梯度法的航空重力矢量向下延拓方法及系统
CN108614308B (zh) 一种确定大气参数的方法和设备
CN106052719A (zh) 一种陀螺仪校准方法和装置
RU2539140C1 (ru) Интегрированная бесплатформенная система навигации средней точности для беспилотного летательного аппарата
CN109725649A (zh) 一种基于气压计/imu/gps多传感器融合的旋翼无人机定高算法
CN109470274B (zh) 一种车载光电经纬仪载车平台变形测量系统及方法
CN109084755B (zh) 一种基于重力视速度与参数辨识的加速度计零偏估计方法
CN111141285B (zh) 一种航空重力测量装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170524