CN106676582A - 一种铝合金轮毂铸造成型方法 - Google Patents

一种铝合金轮毂铸造成型方法 Download PDF

Info

Publication number
CN106676582A
CN106676582A CN201611219874.1A CN201611219874A CN106676582A CN 106676582 A CN106676582 A CN 106676582A CN 201611219874 A CN201611219874 A CN 201611219874A CN 106676582 A CN106676582 A CN 106676582A
Authority
CN
China
Prior art keywords
aluminium
aluminum
aluminium liquid
added
wheel hub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611219874.1A
Other languages
English (en)
Other versions
CN106676582B (zh
Inventor
谭红建
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Dcenti Auto-Parts Stock Ltd Co
Original Assignee
Guangdong Dcenti Auto-Parts Stock Ltd Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Dcenti Auto-Parts Stock Ltd Co filed Critical Guangdong Dcenti Auto-Parts Stock Ltd Co
Priority to CN201611219874.1A priority Critical patent/CN106676582B/zh
Publication of CN106676582A publication Critical patent/CN106676582A/zh
Application granted granted Critical
Publication of CN106676582B publication Critical patent/CN106676582B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/36Alloys obtained by cathodic reduction of all their ions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/06Making non-ferrous alloys with the use of special agents for refining or deoxidising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/08Making alloys containing metallic or non-metallic fibres or filaments by contacting the fibres or filaments with molten metal, e.g. by infiltrating the fibres or filaments placed in a mould
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/02Alloys containing metallic or non-metallic fibres or filaments characterised by the matrix material
    • C22C49/04Light metals
    • C22C49/06Aluminium

Abstract

本发明涉及一种铝合金轮毂铸造成型方法。本发明所述的铝合金轮毂铸造成型方法,包括:通过熔盐电解法制备铝锭,所述铝锭包括铝、硅和稀土元素;在熔炉中加入铝锭,待铝锭熔化后,在温度700‑710℃下,向铝液中加入精炼剂,加入量为铝液质量的0.4~0.8%,静置后,除去铝液表面的浮渣;在温度700‑710℃下,向预精炼后的滤液中加入铝‑镍‑磷中间合金,加入量为铝液质量的0.1%‑0.4%,机械搅拌均匀后静置;然后加入纳米氧化锡纤维,加入量为铝液质量的0.05%‑0.2%;将铝液浇注到预热的轮毂模具中,将轮毂模具快速冷却至‑10~‑20℃,待铝液凝固后起模,得到铝合金轮毂。本发明所述的铝合金轮毂铸造成型方法,铝合金的铸造组织均一,孔隙率低,铝合金轮毂的综合性能优异。

Description

一种铝合金轮毂铸造成型方法
技术领域
本发明涉及汽车轮毂领域,特别是涉及一种铝合金轮毂铸造成型方法。
背景技术
汽车车轮在行驶过程中高速转动,并承载着汽车重量、扭动扭矩和其他应力,要求车轮材料有高强度、高弹性模量等力学性能,以满足汽车产品规定的安全性和可靠性要求。汽车车轮材料最初采用钢板,焊接后通过成型挤压形成汽车车轮,由于制造工艺复杂,质量重以及车轮表面质量不满足现代汽车发展的要求,汽车车轮材料已经由铝合金取代了钢板。
铝合金具有流动性好,无热裂倾向,线收缩小,比重小,耐蚀性好等优良特性,是汽车轮毂的主要使用材料。然而现有的方法制备得到的铝合金轮毂,通常结构不致密,容易产生疏松、夹孔等铸造缺陷,铝合金的铸态组织晶粒粗大,力学性能较低。需要在熔炼过程中单独加入晶粒细化剂等物质,使铝合金的铸态组织得到细化。但由于在熔炼过程中添加的晶粒细化剂等物质不易在铝液中均匀分散,从而导致了整个铝合金的铸态组织不均匀、成分不均一,影响后续的产品性能监测。
发明内容
基于此,本发明的目的在于,提供一种铝合金轮毂铸造成型方法,制备得到的铝合金轮毂组织结构致密,机械性能优异。
一种铝合金轮毂铸造成型方法,包括以下步骤:
S1:通过熔盐电解法制备铝锭:将二氧化硅加入冰晶石体系的电解质中,加热使二氧化硅溶解后,向电解质中加入金属铝和稀土氧化物,于970-980℃进行电解,得到各元素质量分数为Al 92.2-94.9%、Si 6.3-7.6、Re 0.02-0.07%、杂质≤0.2%的铝锭;其中,所述铝、二氧化硅和稀土氧化物的质量百分比为(91.5~93.9)%:(6.0~8.3)%:(0.01~0.15)%;所述冰晶石体系电解质为氟化钠、氟化铝和氟化镁,三者的摩尔比为6:3:1;所述稀土氧化物的稀土元素为钆、钐或钕中的任意一种或多种混合;
S2:在熔炉中加入铝锭,升高温度至700-740℃,待铝锭熔化后,机械搅拌均匀;
S3:在温度700-710℃下,向S2中的铝液中加入精炼剂,加入量为铝液质量的0.4~0.8%,静置后,除去铝液表面的浮渣;
S4:在温度700-710℃下,向S3中预精炼后的滤液中加入铝-镍-磷中间合金,加入量为铝液质量的0.1%-0.4%,机械搅拌均匀后静置;然后加入纳米氧化锡纤维,加入量为铝液质量的0.05%-0.2%;
S5:检测铝液密度,使铝液的密度大于或等于2.667g/cm3;若密度小于2.667g/cm3,重复S3,直至密度大于或等于2.667g/cm3
S6:将铝液浇注到预热的轮毂模具中,将轮毂模具快速冷却至-10~-20℃,待铝液凝固后起模,得到铝合金轮毂。
进一步,所述S1中,铝、二氧化硅和稀土氧化物的质量百分比为(91.5~93.9)%:(6.0~8.3)%:(0.01~0.15)%;所述冰晶石体系电解质为氟化钠、氟化铝和氟化镁,三者的摩尔比为6:3:1;所述稀土氧化物的稀土元素为钆、钐或钕中的任意一种或多种混合。铝能够有效还原硅,再进一步熔盐电解得到含硅和稀土元素的铝合金,有效改善铝合金的性能。
进一步,所述精炼剂包括0.5-1.5份稀土、20-30份氯化钠、10-20份氯化钾。稀土能够将氧化铝还原成铝,使铝液中的氧化铝夹杂物含量明显降低,从而减少了氢气的形核基底,降低了铝合金中的孔隙率,并且,稀土会与氢发生相互作用生成稳定的稀土氢化物,从而改变了氢在铝液中的状态,降低了铝液中游离氢的含量,进一步降低铝合金中的孔隙率,由于铝锭中原含有稀土元素,精炼剂中的稀土作为补充只加少量即可达到效果;氯化钠和氯化钾能够有效除去铝液中的杂质。
进一步,所述铝-镍-磷中间合金的制备步骤如下:按重量百分比Al:Ni:P=(85%~95%):(4%~12%):(1%~5%)称取所需量的Al、Ni和P,通过一层P一层石灰石隔离叠成加入感应炉中,适当压紧;然后先将Al和Ni共同熔化混合均匀后,倒入感应炉中,使合金液由上至下渗入P层,通过感应炉保证炉内合金液不凝固,机械搅拌使合金液均匀,然后急速冷却使其凝固,得到Al-Ni-P中间合金。制备得到的Al-Ni-P中间合金组织均一稳定。
进一步,所述铝-镍-磷中间合金和纳米氧化锡纤维的加入量的质量比为4:1~1:2。铝-镍-磷中间合金和纳米氧化锡纤维按照一定比例配合,二者共同作用,使铝合金中的组织得到了更好的细化,减少了铸造缺陷,铝合金的综合性能得到了明显的提高。
进一步,所述铝-镍-磷中间合金和纳米氧化锡纤维的加入量的质量比为2:1。
进一步,所述S3中还包括,在加入精炼剂后,从熔炉下方向铝液中连续通入高纯氩10-15min,然后再静置,除去铝液表面的浮渣。从下方通入高纯氩,能够带动杂质或气体等由下至上全部从铝液表面排出,避免从上至下通导致的杂质或气体排除不净。
进一步,所述S1中熔盐电解的阴极是石墨电极,阳极是铁镍合金。
进一步,所述S2中使用涂有耐火涂层的钛棒进行机械搅拌。耐火涂层能够避免机械搅拌的搅拌棒的成分在高温条件下熔入铝液中,影响铝液成分;且钛棒的熔点很高,在铝液熔炼过程中不会熔入铝液中。
进一步,所述S6中在将铝液浇注到预热的轮毂模具前,在熔炉内部放置滤网,使铝液注入模具之前再次过滤除去杂质。
本发明具有如下优点:
1.本发明在熔盐电解法制备铝合金时,加入二氧化硅,通过铝还原得到硅,并且加入稀土氧化物,使制备得到的铝锭含有硅及稀土元素,在后续熔炼过程中,铝锭中原有的稀土能均匀分散于铝液中,稀土能够将氧化铝还原成铝,使铝液中的氧化铝夹杂物含量明显降低,从而减少了氢气的形核基底,降低了铝合金中的孔隙率。并且,稀土会与氢发生相互作用生成稳定的稀土氢化物,从而改变了氢在铝液中的状态,降低了铝液中游离氢的含量,进一步降低铝合金中的孔隙率。
2.通过加入铝-镍-磷中间合金和纳米氧化锡纤维二者共同作用,铝-镍-磷中间合金作为细化剂加入铝液中,Al-Ni-P中的Ni3Al周围形成Ni2P的保护层,阻止了Ni3Al的熔化,通过磷的扩散形成一个富Ni的液态相区,形核在该区发生,从而细化晶粒。而纳米氧化锡纤维的加入,能够诱导形核中心沿纤维方向排列,使各处的形核中心分布均匀,晶粒细化均匀。铸造得到的铝合金轮毂的综合性能得到了明显的提高。
3.在熔炼过程中,通过密度检测监控铝液中的含氢量,控制含氢量在合理范围内,及时避免含氢量过高导致的合金组织结构的缺陷。
具体实施方式
本发明的铝合金轮毂铸造成型方法,包括以下步骤:
S1:通过熔盐电解法制备铝锭:将二氧化硅加入冰晶石体系的电解质中,加热使二氧化硅溶解后,向电解质中加入金属铝和稀土氧化物,于970-980℃进行电解,得到各元素质量分数为Al 92.2-94.9%、Si 6.3-7.6、Re 0.02-0.07%、杂质≤0.2%的铝锭;其中,所述铝、二氧化硅和稀土氧化物的质量百分比为(91.5~93.9)%:(6.0~8.3)%:(0.01~0.15)%;所述冰晶石体系电解质为氟化钠、氟化铝和氟化镁,三者的摩尔比为6:3:1;所述稀土氧化物的稀土元素为钆、钐或钕中的任意一种或多种混合;
S2:在熔炉中加入铝锭,升高温度至700-740℃,待铝锭熔化后,机械搅拌均匀;
S3:在温度700-710℃下,向S2中的铝液中加入精炼剂,加入量为铝液质量的0.4~0.8%,静置后,除去铝液表面的浮渣;
S4:在温度700-710℃下,向S3中预精炼后的滤液中加入铝-镍-磷中间合金,加入量为铝液质量的0.1%-0.4%,机械搅拌均匀后静置;然后加入纳米氧化锡纤维,加入量为铝液质量的0.05%-0.2%;
S5:检测铝液密度,使铝液的密度大于或等于2.667g/cm3;若密度小于2.667g/cm3,重复S3,直至密度大于或等于2.667g/cm3
S6:将铝液浇注到预热的轮毂模具中,将轮毂模具快速冷却至-10~-20℃,待铝液凝固后起模,得到铝合金轮毂。
相对于现有技术,本发明在熔盐电解法制备铝锭时,加入稀土氧化物,使制备得到的铝锭含有稀土元素,稀土能够将氧化铝还原成铝,使铝液中的氧化铝夹杂物含量明显降低,从而减少了氢气的形核基底,降低了铝合金中的孔隙率。并且,稀土会与氢发生相互作用生成稳定的稀土氢化物,从而改变了氢在铝液中的状态,降低了铝液中游离氢的含量,进一步降低铝合金中的孔隙率。避免在后续熔炼过程中大量加入其它试剂,造成的试剂分散不均匀,从而导致的铝合金的铸态组织不均匀、成分不均匀,影响轮毂的机械性能。
实施例1
本发明的铝合金轮毂铸造成型方法,包括以下步骤:
S1:通过熔盐电解法制备铝锭:将二氧化硅加入冰晶石体系的电解质中,加热使二氧化硅溶解后,向电解质中加入金属铝和稀土氧化物,于970-980℃进行电解,得到各元素质量分数为Al 92.2-94.9%、Si 6.3-7.6、Re 0.02-0.07%、杂质≤0.2%的铝锭;其中,所述铝、二氧化硅和稀土氧化物的质量百分比为(91.5~93.9)%:(6.0~8.3)%:(0.01~0.15)%;所述冰晶石体系电解质为氟化钠、氟化铝和氟化镁,三者的摩尔比为6:3:1;所述稀土氧化物的稀土元素为钆、钐或钕中的任意一种或多种混合。在本实施例中,所述铝、二氧化硅和稀土氧化物的质量百分比为91.5%:8.3%:0.02%。熔盐电解的阴极是石墨电极,阳极是铁镍合金。
S2:在熔炉中加入铝锭,升高温度至700-740℃,待铝锭熔化后,使用涂有耐火涂层的钛棒进行机械搅拌。
S3:在温度700-710℃下,向S2中的铝液中通过高纯氩喷入精炼剂,加入量为铝液质量的0.6%,然后从熔炉下方向铝液中通入高纯氩10-15min后,静置1min,除去铝液表面的浮渣。其中,所述精炼剂包括1份稀土、30份氯化钠、20份氯化钾。稀土能够将氧化铝还原成铝,使铝液中的氧化铝夹杂物含量明显降低,从而减少了氢气的形核基底,降低了铝合金中的孔隙率。并且,稀土会与氢发生相互作用生成稳定的稀土氢化物,从而改变了氢在铝液中的状态,降低了铝液中游离氢的含量,进一步降低铝合金中的孔隙率。氯化钠和氯化钾能够有效除去铝液中的杂质。
S4:在温度700-710℃下,向S3中预精炼后的滤液中加入铝-镍-磷中间合金,加入量为铝液质量的0.25%,机械搅拌均匀后静置1min;加入纳米氧化锡纤维,加入量为铝液质量的0.1%。铝-镍-磷中间合金作为细化剂加入铝液中,Al-Ni-P中的Ni3Al周围形成Ni2P的保护层,阻止了Ni3Al的熔化,通过磷的扩散形成一个富Ni的液态相区,形核在该区发生,从而细化晶粒。而纳米氧化锡纤维的加入,能够诱导形核中心沿纤维方向排列,使各处的形核中心分布均匀,晶粒细化均匀。
S5:通过密度检测仪检测铝液密度,使铝液的密度大于或等于2.667g/cm3,控制铝液中的含氢量;若密度小于2.667g/cm3,重复S3,直至密度大于或等于2.667g/cm3。通过密度检测监控铝液中的含氢量,控制含氢量在合理范围内,避免含氢量过高导致的合金组织结构的缺陷。
S6:将铝液浇注到预热的轮毂模具中,在熔炉内部放置滤网,使铝液注入模具之前再次过滤除去杂质,将轮毂模具快速冷却至-10~-20℃,待铝液凝固后起模,得到铝合金轮毂。通过降低模具的温度,提高铝液的冷却速度,促进铝液快速固化,细化晶粒。
其中,所述铝-镍-磷中间合金通过熔化合成法制备得到,具体步骤是:按重量百分比Al-Ni:P=(85%~95%):(4%~12%):(1%~5%)称取所需量的Al、Ni和P,通过一层P一层石灰石隔离叠成加入感应炉中,适当压紧,避免P层过松,加入Al、Ni后P喷溅损耗;避免P层过紧,Al、Ni熔化后难以与P混合均匀。然后先将Al和Ni共同熔化混合均匀后,倒入感应炉中,使合金液由上至下渗入P层,通过感应炉保证炉内合金液不凝固,机械搅拌使合金液均匀,然后急速冷却使其凝固,得到Al-Ni-P中间合金。在本实施例中,所述Al-Ni-P中间合金按重量百分比为95%:4%:1%。
相对于现有技术,本实施例制备得到的铝合金轮毂,在铝锭制备初期加入硅和稀土元素,硅有效改善铝合金的机械性能,并且熔炼过程中稀土元素在铝液中均匀分散,使得铸态组织均匀,晶粒细化均匀。并且,Al-Ni-P中间合金和纳米氧化锡纤维二者共同作用,Al-Ni-P中间合金作为细化剂加入铝液中,Al-Ni-P中的Ni3Al周围形成Ni2P的保护层,阻止了Ni3Al的熔化,通过磷的扩散形成一个富Ni的液态相区,形核在该区发生,从而细化晶粒。而纳米氧化锡纤维的加入,能够诱导形核中心沿纤维方向排列,使各处的形核中心分布均匀,晶粒细化均匀,有效提高铝合金轮毂的机械性能。
实施例2
本发明的铝合金轮毂铸造成型方法,包括以下步骤:
S1:通过熔盐电解法制备铝锭:将二氧化硅加入冰晶石体系的电解质中,加热使二氧化硅溶解后,向电解质中加入金属铝和稀土氧化物,于970-980℃进行电解,得到各元素质量分数为Al 92.2-94.9%、Si 6.3-7.6、Re 0.02-0.07%、杂质≤0.2%的铝锭;其中,所述铝、二氧化硅和稀土氧化物的质量百分比为(91.5~93.9)%:(6.0~8.3)%:(0.01~0.15)%;所述冰晶石体系电解质为氟化钠、氟化铝和氟化镁,三者的摩尔比为6:3:1;所述稀土氧化物的稀土元素为钆、钐或钕中的任意一种或多种混合。在本实施例中,所述铝、二氧化硅和稀土氧化物的质量百分比为93.9%:6.0%:0.01%。
S2:在熔炉中加入铝锭,升高温度至700-740℃,待铝锭熔化后,使用涂有耐火涂层的钛棒进行机械搅拌。
S3:在温度700-710℃下,向S2中的铝液中通过高纯氩喷入精炼剂,加入量为铝液质量的0.8%,然后从熔炉下方向铝液中通入高纯氩10-15min后,静置1min,除去铝液表面的浮渣。其中,所述精炼剂包括0.5份稀土、20份氯化钠、10份氯化钾。稀土能够将氧化铝还原成铝,使铝液中的氧化铝夹杂物含量明显降低,从而减少了氢气的形核基底,降低了铝合金中的孔隙率。并且,稀土会与氢发生相互作用生成稳定的稀土氢化物,从而改变了氢在铝液中的状态,降低了铝液中游离氢的含量,进一步降低铝合金中的孔隙率。氯化钠和氯化钾能够有效除去铝液中的杂质。
S4:在温度700-710℃下,向S3中预精炼后的滤液中加入铝-镍-磷中间合金,加入量为铝液质量的0.4%,机械搅拌均匀后静置1min;加入纳米氧化锡纤维,加入量为铝液质量的0.2%。铝-镍-磷中间合金作为细化剂加入铝液中,Al-Ni-P中的Ni3Al周围形成Ni2P的保护层,阻止了Ni3Al的熔化,通过磷的扩散形成一个富Ni的液态相区,形核在该区发生,从而细化晶粒。而纳米氧化锡纤维的加入,能够诱导形核中心沿纤维方向排列,使各处的形核中心分布均匀,晶粒细化均匀。
S5:通过密度检测仪检测铝液密度,使铝液的密度大于或等于2.667g/cm3,控制铝液中的含氢量;若密度小于2.667g/cm3,重复S3,直至密度大于或等于2.667g/cm3。通过密度检测监控铝液中的含氢量,控制含氢量在合理范围内,避免含氢量过高导致的合金组织结构的缺陷。
S6:将铝液浇注到预热的轮毂模具中,在熔炉内部放置滤网,使铝液注入模具之前再次过滤除去杂质,将轮毂模具快速冷却至-10~-20℃,待铝液凝固后起模,得到铝合金轮毂。通过降低模具的温度,提高铝液的冷却速度,促进铝液快速固化,细化晶粒。
其中,所述铝-镍-磷中间合金通过熔化合成法制备得到,具体步骤是:按重量百分比Al-Ni:P=(85%~95%):(4%~12%):(1%~5%)称取所需量的Al、Ni和P,通过一层P一层石灰石隔离叠成加入感应炉中,适当压紧,避免P层过松,加入Al、Ni后P喷溅损耗;避免P层过紧,Al、Ni熔化后难以与P混合均匀。然后先将Al和Ni共同熔化混合均匀后,倒入感应炉中,使合金液由上至下渗入P层,通过感应炉保证炉内合金液不凝固,机械搅拌使合金液均匀,然后急速冷却使其凝固,得到Al-Ni-P中间合金。在本实施例中,所述Al-Ni-P中间合金按重量百分比为90%:5%:5%。
实施例3
本发明的铝合金轮毂铸造成型方法,包括以下步骤:
S1:通过熔盐电解法制备铝锭:将二氧化硅加入冰晶石体系的电解质中,加热使二氧化硅溶解后,向电解质中加入金属铝和稀土氧化物,于970-980℃进行电解,得到各元素质量分数为Al 92.2-94.9%、Si 6.3-7.6、Re 0.02-0.07%、杂质≤0.2%的铝锭;其中,所述铝、二氧化硅和稀土氧化物的质量百分比为(91.5~93.9)%:(6.0~8.3)%:(0.01~0.15)%;所述冰晶石体系电解质为氟化钠、氟化铝和氟化镁,三者的摩尔比为6:3:1;所述稀土氧化物的稀土元素为钆、钐或钕中的任意一种或多种混合。在本实施例中,所述铝、二氧化硅和稀土氧化物的质量百分比为92%:7.5%:0.5%。
S2:在熔炉中加入铝锭,升高温度至700-740℃,待铝锭熔化后,使用涂有耐火涂层的钛棒进行机械搅拌。
S3:在温度700-710℃下,向S2中的铝液中通过高纯氩喷入精炼剂,加入量为铝液质量的0.4%,然后从熔炉下方向铝液中通入高纯氩10-15min后,静置1min,除去铝液表面的浮渣。其中,所述精炼剂包括1.5份稀土、25份氯化钠、15份氯化钾。稀土能够将氧化铝还原成铝,使铝液中的氧化铝夹杂物含量明显降低,从而减少了氢气的形核基底,降低了铝合金中的孔隙率。并且,稀土会与氢发生相互作用生成稳定的稀土氢化物,从而改变了氢在铝液中的状态,降低了铝液中游离氢的含量,进一步降低铝合金中的孔隙率。氯化钠和氯化钾能够有效除去铝液中的杂质。
S4:在温度700-710℃下,向S3中预精炼后的滤液中加入铝-镍-磷中间合金,加入量为铝液质量的0.1%,机械搅拌均匀后静置1min;加入纳米氧化锡纤维,加入量为铝液质量的0.05%。铝-镍-磷中间合金作为细化剂加入铝液中,Al-Ni-P中的Ni3Al周围形成Ni2P的保护层,阻止了Ni3Al的熔化,通过磷的扩散形成一个富Ni的液态相区,形核在该区发生,从而细化晶粒。而纳米氧化锡纤维的加入,能够诱导形核中心沿纤维方向排列,使各处的形核中心分布均匀,晶粒细化均匀。
S5:通过密度检测仪检测铝液密度,使铝液的密度大于或等于2.667g/cm3,控制铝液中的含氢量;若密度小于2.667g/cm3,重复S3,直至密度大于或等于2.667g/cm3。通过密度检测监控铝液中的含氢量,控制含氢量在合理范围内,避免含氢量过高导致的合金组织结构的缺陷。
S6:将铝液浇注到预热的轮毂模具中,在熔炉内部放置滤网,使铝液注入模具之前再次过滤除去杂质,将轮毂模具快速冷却至-10~-20℃,待铝液凝固后起模,得到铝合金轮毂。通过降低模具的温度,提高铝液的冷却速度,促进铝液快速固化,细化晶粒。
其中,所述铝-镍-磷中间合金通过熔化合成法制备得到,具体步骤是:按重量百分比Al-Ni:P=(85%~95%):(4%~12%):(1%~5%)称取所需量的Al、Ni和P,通过一层P一层石灰石隔离叠成加入感应炉中,适当压紧,避免P层过松,加入Al、Ni后P喷溅损耗;避免P层过紧,Al、Ni熔化后难以与P混合均匀。然后先将Al和Ni共同熔化混合均匀后,倒入感应炉中,使合金液由上至下渗入P层,通过感应炉保证炉内合金液不凝固,机械搅拌使合金液均匀,然后急速冷却使其凝固,得到Al-Ni-P中间合金。在本实施例中,所述Al-Ni-P中间合金按重量百分比为85%:12%:3%。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (10)

1.一种铝合金轮毂铸造成型方法,其特征在于:包括以下步骤:
S1:通过熔盐电解法制备铝锭:将二氧化硅加入冰晶石体系的电解质中,加热使二氧化硅溶解后,向电解质中加入金属铝和稀土氧化物,于970-980℃进行电解,得到各元素质量分数为Al 92.2-94.9%、Si 6.3-7.6、Re 0.02-0.07%、杂质≤0.2%的铝锭;
S2:在熔炉中加入铝锭,升高温度至700-740℃,待铝锭熔化后,机械搅拌均匀;
S3:在温度700-710℃下,向S2中的铝液中加入精炼剂,加入量为铝液质量的0.4~0.8%,静置后,除去铝液表面的浮渣;
S4:在温度700-710℃下,向S3中预精炼后的滤液中加入铝-镍-磷中间合金,加入量为铝液质量的0.1%-0.4%,机械搅拌均匀后静置;然后加入纳米氧化锡纤维,加入量为铝液质量的0.05%-0.2%;
S5:检测铝液密度,使铝液的密度大于或等于2.667g/cm3;若密度小于2.667g/cm3,重复S3,直至密度大于或等于2.667g/cm3
S6:将铝液浇注到预热的轮毂模具中,将轮毂模具快速冷却至-10~-20℃,待铝液凝固后起模,得到铝合金轮毂。
2.根据权利要求1所述的铝合金轮毂铸造成型方法,其特征在于:所述S1中,铝、二氧化硅和稀土氧化物的质量百分比为(91.5~93.9)%:(6.0~8.3)%:(0.01~0.15)%;所述冰晶石体系电解质为氟化钠、氟化铝和氟化镁,三者的摩尔比为6:3:1;所述稀土氧化物的稀土元素为钆、钐或钕中的任意一种或多种混合。
3.根据权利要求2所述的铝合金轮毂铸造成型方法,其特征在于:所述精炼剂包括0.5-1.5份稀土、20-30份氯化钠、10-20份氯化钾。
4.根据权利要求1所述的铝合金轮毂铸造成型方法,其特征在于:所述铝-镍-磷中间合金的制备步骤如下:按重量百分比Al:Ni:P=(85%~95%):(4%~12%):(1%~5%)称取所需量的Al、Ni和P,通过一层P一层石灰石隔离叠成加入感应炉中,适当压紧;然后先将Al和Ni共同熔化混合均匀后,倒入感应炉中,使合金液由上至下渗入P层,通过感应炉保证炉内合金液不凝固,机械搅拌使合金液均匀,然后急速冷却使其凝固,得到Al-Ni-P中间合金。
5.根据权利要求1-4中任一权利要求所述的铝合金轮毂铸造成型方法,其特征在于:所述铝-镍-磷中间合金和纳米氧化锡纤维的加入量的质量比为4:1~1:2。
6.根据权利要求5所述的铝合金轮毂铸造成型方法,其特征在于:所述铝-镍-磷中间合金和纳米氧化锡纤维的加入量的质量比为2:1。
7.根据权利要求5所述的铝合金轮毂铸造成型方法,其特征在于:所述S3中还包括,在加入精炼剂后,从熔炉下方向铝液中连续通入高纯氩10-15min,然后再静置,除去铝液表面的浮渣。
8.根据权利要求1所述的铝合金轮毂铸造成型方法,其特征在于:所述S1中熔盐电解的阴极是石墨电极,阳极是铁镍合金。
9.根据权利要求1所述的铝合金轮毂铸造成型方法,其特征在于:所述S2中使用涂有耐火涂层的钛棒进行机械搅拌。
10.根据权利要求1所述的铝合金轮毂铸造成型方法,其特征在于:所述S6中在将铝液浇注到预热的轮毂模具前,在熔炉内部放置滤网,使铝液注入模具之前再次过滤除去杂质。
CN201611219874.1A 2016-12-26 2016-12-26 一种铝合金轮毂铸造成型方法 Active CN106676582B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611219874.1A CN106676582B (zh) 2016-12-26 2016-12-26 一种铝合金轮毂铸造成型方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611219874.1A CN106676582B (zh) 2016-12-26 2016-12-26 一种铝合金轮毂铸造成型方法

Publications (2)

Publication Number Publication Date
CN106676582A true CN106676582A (zh) 2017-05-17
CN106676582B CN106676582B (zh) 2017-12-05

Family

ID=58870660

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611219874.1A Active CN106676582B (zh) 2016-12-26 2016-12-26 一种铝合金轮毂铸造成型方法

Country Status (1)

Country Link
CN (1) CN106676582B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109807551A (zh) * 2018-11-30 2019-05-28 宁波市永硕精密机械有限公司 一种降低铝阀体内孔粗糙度的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1103678A (zh) * 1994-09-28 1995-06-14 郑州轻金属研究院 用电解法生产铝硅钛多元合金
US20080160172A1 (en) * 2006-05-26 2008-07-03 Thomas Alan Taylor Thermal spray coating processes
CN106111918A (zh) * 2016-06-29 2016-11-16 无锡康柏斯机械科技有限公司 一种汽车轮毂的铸造工艺

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1103678A (zh) * 1994-09-28 1995-06-14 郑州轻金属研究院 用电解法生产铝硅钛多元合金
US20080160172A1 (en) * 2006-05-26 2008-07-03 Thomas Alan Taylor Thermal spray coating processes
CN106111918A (zh) * 2016-06-29 2016-11-16 无锡康柏斯机械科技有限公司 一种汽车轮毂的铸造工艺

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109807551A (zh) * 2018-11-30 2019-05-28 宁波市永硕精密机械有限公司 一种降低铝阀体内孔粗糙度的方法

Also Published As

Publication number Publication date
CN106676582B (zh) 2017-12-05

Similar Documents

Publication Publication Date Title
CN104805319B (zh) 一种2xxx系超大规格铝合金圆锭的制造方法
CN103740957B (zh) 一种铝合金牺牲阳极的熔铸方法
CN104294068B (zh) 一种能提高a356铝合金细化变质效果的工艺方法
CN105838922B (zh) 一种航空用热强钛合金铸锭及其制备方法
CN109295330B (zh) 一种细化镍基变形高温合金中氮化物系夹杂物的方法
CN105463272A (zh) 一种5005铝合金圆铸锭的生产方法
CN108396204A (zh) 一种亚共晶铝硅合金铸件及提高其性能的工艺方法
CN106244805A (zh) 一种电铝热法冶炼FeV80的方法
CN104313411A (zh) 一种能提高a356铝合金力学性能的工艺方法
CN111020305A (zh) 一种铝合金复合材料皮材扁铸锭及其制造方法
CN104278176A (zh) 一种高质量Al-5Ti-1B中间合金的制备方法
CN104294110A (zh) 一种能提高多元亚共晶铝硅合金力学性能的工艺方法
CN107034374B (zh) 一种氟盐反应法制备Al-5Ti-1B中间合金的方法
CN102534274A (zh) 一种铝用Al-Ti-B中间合金细化剂的制备方法
CN106676582B (zh) 一种铝合金轮毂铸造成型方法
CN113930648A (zh) 一种高锌铝合金扁铸锭的制备方法
CN101994045B (zh) 一种铝锆中间合金的制备方法
CN109468478A (zh) 一种铝锭的制备方法
CN104674099A (zh) 一种高强钛合金制备用六元素中间合金及其制备方法
CN106566959A (zh) 一种铝合金材料及其制备方法
CN106676337B (zh) 一种铝-钽-硼中间合金及其制备方法
CN106756178B (zh) 铝及其合金用Al-Ti-B-Fe晶粒细化剂及其制备方法
CN102367534A (zh) 一种用复合晶粒细化剂制备铸造铝合金的方法
CN106676298B (zh) 一种铝合金轮毂晶粒细化方法
CN104498770B (zh) 一种WSTi2815SC阻燃钛合金及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant