CN106673639A - 共掺杂钇铝石榴石闪烁透明陶瓷及其制备方法 - Google Patents

共掺杂钇铝石榴石闪烁透明陶瓷及其制备方法 Download PDF

Info

Publication number
CN106673639A
CN106673639A CN201710000705.7A CN201710000705A CN106673639A CN 106673639 A CN106673639 A CN 106673639A CN 201710000705 A CN201710000705 A CN 201710000705A CN 106673639 A CN106673639 A CN 106673639A
Authority
CN
China
Prior art keywords
ball
twinkling
garnet
incubated
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710000705.7A
Other languages
English (en)
Other versions
CN106673639B (zh
Inventor
姜本学
陈水林
杨清华
马婉秋
张攀德
姜益光
毛小建
张龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Optics and Fine Mechanics of CAS
Original Assignee
Shanghai Institute of Optics and Fine Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Optics and Fine Mechanics of CAS filed Critical Shanghai Institute of Optics and Fine Mechanics of CAS
Priority to CN201710000705.7A priority Critical patent/CN106673639B/zh
Publication of CN106673639A publication Critical patent/CN106673639A/zh
Application granted granted Critical
Publication of CN106673639B publication Critical patent/CN106673639B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • C04B35/505Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds based on yttrium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

一种共掺杂钇铝石榴石闪烁透明陶瓷及其制备方法,闪烁透明陶瓷具有石榴石结构,其通式为(CexRsyYzGd3‑x‑y‑z)(GamAl5‑m)O12:nMgO,其中Rs为镨(Pr)、铬(Cr)、镱(Yb)中的一种或多种组合。本发明共掺杂钇铝石榴石闪烁透明陶瓷材料具有高光学性能、快衰减、高光产额、低余辉、高密度等特点,采用固相反应法合成,工艺简单,成本较低,可以实现工业化生产。

Description

共掺杂钇铝石榴石闪烁透明陶瓷及其制备方法
技术领域
本发明属于透明陶瓷,具体涉及一种共掺杂钇铝石榴石闪烁透明陶瓷及其制备方法。
背景技术
闪烁体是一种能够吸收高能射线或粒子(X射线、α粒子或γ光子)并将其转换为大量的低能光子(紫外或可见)的材料。基于这种特性,闪烁体被大量的应用于安检、核探测及核医学成像等领域。
自伦琴第一次将闪烁体应用到X射线成像至今,无机闪烁体材料经过多年发展,主要有单晶体及多晶陶瓷两种类型。目前产业化应用的主要以单晶体闪烁材料为主。但单晶体制备条件苛刻,制备周期长,对制备所需的设备要求较高,因而单晶体的制备成本高昂。此外,受其制备条件的限制,单晶体也难以制备出高掺杂浓度的均匀晶体。相比之下,陶瓷具有制备工艺简单,可制备大尺寸的高掺杂浓度样品,生产成本低,可实现大批量工业生产,具有广阔的应用前景。因此,闪烁体陶瓷正在逐步取代单晶闪烁体在各个方面的应用,包括核医学成像等领域。
随着社会的进步,人们对于精准的医学诊断也提出了新要求。特别对于核医学成像,这就要求应用于该领域的闪烁体陶瓷具有高光学性能、快衰减、高的光产额、低余辉及阻止高能射线和粒子的辐照损伤的能力等特点,目前已经开发出多种闪烁材料,但是都存在各种各样的缺点。例如,近十几年来,德国西门子公司及日本日立公司开发的稀土掺杂的Eu:(Gd,Y)2O3和Gd2O2S:Pr,Ce,F闪烁透明陶瓷虽然已成功应用于医学X-CT上,但都存在光产额小,X射线阻止本领不强及衰减时间较长(约1ms)的问题;此外Gd2O2S:Pr,Ce,F闪烁陶瓷具有较快的衰减时间,但是其透过率低,无法满足现在医学需求。因此需要开发一种新的闪烁材料,其具有高的光输出,快的衰减时间,合适的发光波长,特别是低的余辉。
近些年来,研究发现石榴石结构的闪烁陶瓷具有相对高的光输出、快衰减、高密度等优点,可以应用于现代核医学诊断设备。例如,中国科学院宁波材料技术与工程研究所公开了一种具有石榴石结构的新型透明闪烁陶瓷及其制备方法(专利公开号:CN 103396121B),基于Rex:(A1-yBy)m-x(C1-zDz)8-mO12结构制备出一种高光学性能、快衰减、高密度的闪烁陶瓷;日本古河机械金属株式会社公开了闪烁体用石榴石型晶体和使用该石榴石型晶体的放射线检测器(专利公开号:CN 103380194 A),基于(Gd3-x-yCexREy)(Al5-zGaz)O12结构,提出采用稀土Ce离子掺杂制备闪烁体材料,其发光峰位于500-600nm之间,解决了此前闪烁材料发光峰波长为350nm以下的短波长,与由硅半导体构成的PD或Si-PM的灵敏度高的波长不一致的问题,获得一种可以适用于放射线检测器,且荧光寿命短、具有高密度、高发光量及高能量分辨率的闪烁材料。然而,石榴石结构的闪烁陶瓷大多具有强的余辉,会产生背景发光,增加光电探测器的输出噪声,影响成像的真实性。因此,如何解决石榴石闪烁陶瓷材料的强余辉成为闪烁材料应用的又一难点。
为了解决石榴石闪烁陶瓷材料强余辉问题,美国通用公司公开了稀土石榴石闪烁体及其制作方法(专利公开号:CN 103374351 B),基于(Gd1-x-y-zYxYyCez)3-u(Ga1-m-nAlmDn)3+ uO12:wFO结构,采用二价离子作为掺杂剂,引起电荷补偿效应,二价离子造成的缺陷可有助于消除或移除主导带边缘附近的某些缺陷,从而减少电子保持的时间并加速跳跃,降低材料的余辉。发明人研究发现,在石榴石结构闪烁陶瓷材料中,引入共掺杂离子(如:Pr、Cr、Yb等),与材料中的缺陷竞争捕获电子快速发光,同样可以有效抑制材料的余辉。
发明内容
本发明提供一种共掺杂钇铝石榴石闪烁透明陶瓷,该共掺杂钇铝石榴石闪烁透明陶瓷具有高光学性能、快衰减、高光产额、低余辉、高密度等特点。采用固相反应法合成,工艺简单,成本较低,可以实现工业化生产。
本发明的技术解决方案如下:
一种共掺杂钇铝石榴石闪烁透明陶瓷,其特点在于,所述的闪烁透明陶瓷的组成通式为(CexRsyYzGd3-x-y-z)(GamAl5-m)O12:nMgO,其中,Rs作为Ce离子敏化剂,Rs选自Pr、Cr、Yb中的一种或多种组合,x、y、z、m、n的取值范围为;
0.0005≤x≤0.03;
0.0005≤y≤0.03;
0<z<2.94;
0<m<5;
50ppm≤n≤1000ppm。
上述共掺杂钇铝石榴石闪烁透明陶瓷的制备方法,采用固相反应法制备,其特点在于,包括以下步骤:
1)配粉:采用高纯度Y2O3、Gd2O3、Ga2O3、Al2O3、CeO2、Pr2O3、Yb2O3、MgO、Cr2O3粉体,选定Rs、x、y、z、m、n,按照通式(CexRsyYzGd3-x-y-z)(GamAl5-m)O12:nMgO的配比精确称量粉体,混合后称为粉料;
2)球磨:采用无水乙醇作为球磨介质,球磨介质与所述的粉料的比例为5:9,将所述的粉料与球磨介质混合后放入球磨罐中,密封好后,在高能行星球磨机上球磨10~24个小时,形成液体浆料;
3)干燥:将所述的液体浆料置于恒温箱中,在50℃~80℃保温3~10h,干燥后的浆料过200目筛后得到前驱体;
4)预烧:将所述的前驱体放入马弗炉中,在600-1200℃下保温2-10h预烧,得到干燥前驱体;
5)成型:将所述的干燥前驱体干压处理1~3min,压力为3-10MPa,然后进行冷等静压处理,压力为150-250MPa,处理时间为1-5min,得到素坯;
6)烧结:对所述的素坯采用下列两步烧结:
a、氧气气氛无压烧结,在氧气气氛下进行烧结,升温速率为2-10K/min,在烧结温度1500-1700℃下,保温时间为2-15h,得到一次烧结品;
b、将所述的一次烧结品进行热等静压处理,升温速率为2-10K/min,在烧结温度为1500-1750℃,压力为150-300MPa,保温1-10h,得到陶瓷品;
7)退火:将所述的陶瓷品放入马弗炉中,在1200-1450℃温度下,保温10-20h,得到共掺杂钇铝石榴石闪烁透明陶瓷。
本发明共掺杂钇铝石榴石闪烁透明陶瓷的特点是:
制备的共掺杂钇铝石榴石闪烁透明陶瓷的密度高,可有效抵抗X射线等高能射线及粒子造成的辐照损伤;
制备的共掺杂钇铝石榴石闪烁透明陶瓷,平均晶粒尺寸在15μm以下,可见波段的透过率达到50%-80%;
制备的共掺杂钇铝石榴石闪烁透明陶瓷,在X射线激发下具有较强的光发射,其发射峰位于500-600nm范围内,与硅光电二极管的灵敏探测区匹配;
制备的共掺杂钇铝石榴石闪烁透明陶瓷,光产额高,可达到20000ph/MeV~50000ph/MeV,衰减时间小于90ns,余辉强度小于等于0.1%@100ms,在核医学成像领域有巨大应用前景。
本发明采用固相反应法合成,工艺简单,成本较低,可以实现工业化生产。
说明书附图
图1为本发明实施例1样品的XRD图
具体实施方式
下面结合实施例具体说明本发明。应理解,本发明所述上述实施例仅用于说明本发明,而不能限制本发明,本领域研究人员及技术人员根据本发明作出的非本质性的调整均属于本发明的保护范围。
实施例1:(x=0.0005,y=0.0005,z=0.1,m=0.1,n=50ppm),Rs为Pr,该陶瓷样品组成为(Ce0.0005Pr0.0005Y0.1Gd2.899)(Ga0.1Al4.9)O12:0.00005MgO。
以市售高纯原料粉体,按照上述元素比例精确称量,以无水乙醇为球磨介质。按照质量比为球:粉料:无水乙醇=18:9:5的比例,放入球磨罐中,在高能行星球磨机上球磨10h。得到的浆料经过鼓风干燥后放入50℃恒温箱中保温3h。得到的粉体过200目筛后放入炉中1200℃保温2h。得到的粉体在压力为3MPa处理3min成型,再150MPa的压力下冷等静压处理5min得到具有一定强度的素坯。素坯在氧气气氛下以2K/min的速度升温至1500℃,并在该温度下保温2h,而后在HIP热等静压烧结,以10K/min的速度升温至1750℃,压力150MPa,保温2h。最后在1200℃下退火处理20h,抛光后得到陶瓷样品。测试样品,在500~800nm处透过率达到78%;X射线激发发射峰位于530nm,与硅光电二极管的灵敏探测区匹配;绝对光产额:20000ph/MeV;衰减时间:63ns;余辉强度:0.05%@100ms。图1为样品的XRD图,图中测得的样品衍射峰可以与标准PDF卡片(PDF#46-0447)完全吻合,表明制备的样品是纯GYGAG相。
实施例2:(x=0.03,y=0.03,z=2.94,m=4.9,n=1000ppm),Rs为Pr,即陶瓷样品组成为(Ce0.03Pr0.03Y2.94)(Ga4.9Al0.1)O12:0.001MgO。
以市售高纯原料粉体,按照上述元素比例精确称量,以无水乙醇为球磨介质。按照质量比为球:粉料:无水乙醇=18:9:5的比例,放入球磨罐中,在高能行星球磨机上球磨24h。得到的浆料经过鼓风干燥后放入80℃恒温箱中保温10h。得到的粉体过200目筛后放入炉中600℃保温10h。得到的粉体在压力为10MPa处理1min成型,再210MPa的压力下冷等静压处理3min得到具有一定强度的素坯。素坯在氧气气氛下以10K/min的速度升温至1700℃,并在该温度下保温15h,而后在HIP热等静压烧结,以2K/min的速度升温至1500℃,压力300MPa,保温10h。最后在1450℃下退火处理10h,抛光后得到陶瓷样品。测试样品,在500~800nm处透过率达到75%;X射线激发发射峰位于555nm,与硅光电二极管的灵敏探测区匹配;绝对光产额:50000ph/MeV;衰减时间:70ns;余辉强度:0.1%@100ms。
实施例3:(x=0.015,y=0.015,z=1.97,m=2.5,n=500ppm),Rs为Yb,即陶瓷样品组成为(Ce0.015Yb0.015Y1.97Gd1)(Ga2.5Al2.5)O12:0.0005MgO。
以市售高纯原料粉体,按照上述元素比例精确称量,以无水乙醇为球磨介质。按照质量比为球:粉料:无水乙醇=18:9:5的比例,放入球磨罐中,在高能行星球磨机上球磨17h。得到的浆料经过鼓风干燥后放入60℃恒温箱中保温6h。得到的粉体过200目筛后放入炉中800℃保温6h。得到的粉体在压力为5MPa处理2min成型,再250MPa的压力下冷等静压处理1min得到具有一定强度的素坯。素坯在氧气气氛下以5K/min的速度升温至1600℃,并在该温度下保温8h,而后在HIP热等静压烧结,以5K/min的速度升温至1630℃,压力200MPa,保温5h。最后在1350℃下退火处理12h,抛光后得到陶瓷样品。测试样品,在500~800nm处透过率达到74%;X射线激发发射峰位于548nm,与硅光电二极管的灵敏探测区匹配;绝对光产额:30000ph/MeV;衰减时间:55ns;余辉强度:0.01%@100ms。
实施例4:(x=0.02,y=0.02,z=0.98,m=3,n=100ppm),Rs为Yb,即陶瓷样品组成为(Ce0.02Yb0.02Y0.98Gd1.98)(Ga3Al2)O12:0.0001MgO。
以市售高纯原料粉体,按照上述元素比例精确称量,以无水乙醇为球磨介质。按照质量比为球:粉料:无水乙醇=18:9:5的比例,放入球磨罐中,在高能行星球磨机上球磨18h。得到的浆料经过鼓风干燥后放入70℃恒温箱中保温8h。得到的粉体过200目筛后放入炉中1000℃保温5h。得到的粉体在压力为7MPa处理2min成型,再180MPa的压力下冷等静压处理4min得到具有一定强度的素坯。素坯在氧气气氛下以8K/min的速度升温至1550℃,并在该温度下保温10h,而后在HIP热等静压烧结,以3K/min的速度升温至1700℃,压力250MPa保温2h。最后在1300℃下退火处理15h,抛光后得到陶瓷样品。测试样品,在500~800nm处透过率达到75.6%;X射线激发发射峰位于540nm,与硅光电二极管的灵敏探测区匹配;绝对光产额:38000ph/MeV;衰减时间:57ns;余辉强度:0.02%@100ms。
实施例5:(x=0.01,y=0.01,z=0.99,m=2,n=300ppm),Rs为Yb,即陶瓷样品组成为(Ce0.01Yb0.01Y0.99Gd1.99)(Ga2Al3)O12:0.0003MgO。
以市售高纯原料粉体,按照上述元素比例精确称量,以无水乙醇为球磨介质。按照质量比为球:粉料:无水乙醇=18:9:5的比例,放入球磨罐中,在高能行星球磨机上球磨15h。得到的浆料经过鼓风干燥后放入80℃恒温箱中保温8h。得到的粉体过200目筛后放入炉中1100℃保温8h。得到的粉体在压力为5MPa处理2min成型,再230MPa的压力下冷等静压处理2min得到具有一定强度的素坯。素坯在氧气气氛下以3K/min的速度升温至1650℃,并在该温度下保温15h,而后在HIP热等静压烧结,以8K/min的速度升温至1550℃,压力270MPa,保温2h。最后在1250℃下退火处理18h,抛光后得到陶瓷样品。测试样品,在500~800nm处透过率达到77%;X射线激发发射峰位于538nm,与硅光电二极管的灵敏探测区匹配;绝对光产额:28000ph/MeV;衰减时间:54ns;余辉强度:0.06%@100ms。
实验表明本发明制备出的共掺杂钇铝石榴石闪烁透明陶瓷具有高光学性能和优异的闪烁性能,本发明具有高光学性能、快衰减、高光产额、低余辉、高密度等特点,采用固相反应法合成,工艺简单,成本较低,可以实现工业化生产。在核医学成像及核探测等方面具有巨大的应用前景。

Claims (2)

1.一种共掺杂钇铝石榴石闪烁透明陶瓷,其特征在于,所述闪烁陶瓷的组成通式为(CexRsyYzGd3-x-y-z)(GamAl5-m)O12:nMgO,其中,Rs作为Ce离子敏化剂,Rs选自Pr、Cr、Yb中的一种或多种组合,x、y、z、m、n的取值范围为:
0.0005≤x≤0.03;
0.0005≤y≤0.03;
0.94≤z<2.94;
0<m<5;
50ppm≤n≤1000ppm。
2.根据权利要求1所述的共掺杂钇铝石榴石闪烁透明陶瓷的制备方法,其特征在于,包括以下步骤:
(1)配粉:采用高纯度Y2O3、Gd2O3、Ga2O3、Al2O3、CeO2、Pr2O3、Yb2O3、MgO、Cr2O3粉体,选定Rs、x、y、z、m、n,按照通式(CexRsyYzGd3-x-y-z)(GamAl5-m)O12:nMgO的配比精确称量粉体,混合后称为粉料;
(2)球磨:采用无水乙醇作为球磨介质,球磨介质与所述的粉料的比例为5:9,将所述的粉料与球磨介质混合后放入球磨罐中,密封好后,在高能行星球磨机上球磨10~24个小时,形成液体浆料;
(3)干燥:将所述的液体浆料置于恒温箱中,在50℃~80℃保温3~10h,干燥后的浆料过200目筛后得到前驱体;
(4)预烧:将所述的前驱体放入马弗炉中,在600-1200℃下保温2-10h预烧,得到干燥前驱体;
(5)成型:将所述的干燥前驱体干压处理1~3min,压力为3-10MPa,然后进行冷等静压处理,压力为150-250MPa,处理时间为1-5min,得到素坯;
(6)烧结:对所述的素坯采用下列两步烧结:
a、氧气气氛无压烧结,在氧气气氛下进行烧结,升温速率为2-10K/min,在烧结温度1500-1700℃下,保温时间为2-15h,得到一次烧结品;
b、将所述的一次烧结品进行热等静压处理,升温速率为2-10K/min,在烧结温度为1500-1750℃,压力为150-300MPa,保温1-10h,得到陶瓷品;
(7)退火:将所述的陶瓷品放入马弗炉中,在1200-1450℃温度下,保温10-20h,得到共掺杂钇铝石榴石闪烁透明陶瓷。
CN201710000705.7A 2017-01-03 2017-01-03 共掺杂钇铝石榴石闪烁透明陶瓷及其制备方法 Active CN106673639B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710000705.7A CN106673639B (zh) 2017-01-03 2017-01-03 共掺杂钇铝石榴石闪烁透明陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710000705.7A CN106673639B (zh) 2017-01-03 2017-01-03 共掺杂钇铝石榴石闪烁透明陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN106673639A true CN106673639A (zh) 2017-05-17
CN106673639B CN106673639B (zh) 2020-01-14

Family

ID=58848784

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710000705.7A Active CN106673639B (zh) 2017-01-03 2017-01-03 共掺杂钇铝石榴石闪烁透明陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN106673639B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108329029A (zh) * 2018-04-16 2018-07-27 厦门迈通光电有限公司 一种低温烧结闪烁体材料及其制备方法
CN112939592A (zh) * 2021-02-07 2021-06-11 中国科学院上海光学精密机械研究所 镁钙离子共掺钇铝石榴石超快闪烁陶瓷及其制备方法
CN115650725A (zh) * 2022-10-12 2023-01-31 中国科学院上海光学精密机械研究所 一种具有多波段荧光发射的荧光陶瓷材料及其制备方法
CN115894012A (zh) * 2022-10-21 2023-04-04 宁波大学 一种无铅铁电陶瓷材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1057665A (zh) * 1990-06-29 1992-01-08 通用电气公司 空穴-陷阱补偿的闪烁体材料
CN101514100A (zh) * 2009-03-10 2009-08-26 中国科学院上海硅酸盐研究所 一种石榴石结构的闪烁透明陶瓷体系及其制备方法
JP2013002882A (ja) * 2011-06-14 2013-01-07 Furukawa Co Ltd 放射線検出器
US8969812B2 (en) * 2011-01-31 2015-03-03 Furukawa Co., Ltd. Garnet-type crystal for scintillator and radiation detector using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1057665A (zh) * 1990-06-29 1992-01-08 通用电气公司 空穴-陷阱补偿的闪烁体材料
CN101514100A (zh) * 2009-03-10 2009-08-26 中国科学院上海硅酸盐研究所 一种石榴石结构的闪烁透明陶瓷体系及其制备方法
US8969812B2 (en) * 2011-01-31 2015-03-03 Furukawa Co., Ltd. Garnet-type crystal for scintillator and radiation detector using the same
JP2013002882A (ja) * 2011-06-14 2013-01-07 Furukawa Co Ltd 放射線検出器

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108329029A (zh) * 2018-04-16 2018-07-27 厦门迈通光电有限公司 一种低温烧结闪烁体材料及其制备方法
CN108329029B (zh) * 2018-04-16 2020-12-15 厦门迈通光电有限公司 一种低温烧结闪烁体材料及其制备方法
CN112939592A (zh) * 2021-02-07 2021-06-11 中国科学院上海光学精密机械研究所 镁钙离子共掺钇铝石榴石超快闪烁陶瓷及其制备方法
CN115650725A (zh) * 2022-10-12 2023-01-31 中国科学院上海光学精密机械研究所 一种具有多波段荧光发射的荧光陶瓷材料及其制备方法
CN115650725B (zh) * 2022-10-12 2023-11-03 中国科学院上海光学精密机械研究所 一种具有多波段荧光发射的荧光陶瓷材料及其制备方法
CN115894012A (zh) * 2022-10-21 2023-04-04 宁波大学 一种无铅铁电陶瓷材料及其制备方法
CN115894012B (zh) * 2022-10-21 2023-10-03 宁波大学 一种无铅铁电陶瓷材料及其制备方法

Also Published As

Publication number Publication date
CN106673639B (zh) 2020-01-14

Similar Documents

Publication Publication Date Title
CN106673639A (zh) 共掺杂钇铝石榴石闪烁透明陶瓷及其制备方法
JP4290282B2 (ja) 酸化物蛍光体及びそれを用いた放射線検出器、並びにx線ct装置
CN108585853B (zh) 一种铕掺杂氧化钪闪烁体及其制备方法和用途
Ji et al. La2Hf2O7: Ti4+ ceramic scintillator for x-ray imaging
CN107935581B (zh) 两相均匀分布的复合石榴石闪烁陶瓷及其制备方法
CN105418063B (zh) 一种非化学计量比镥铝石榴石闪烁陶瓷及其制备方法
Zhang et al. Reddish orange long lasting phosphorescence of Sm3+ in Sr2ZnSi2O7: Sm3+ phosphors
CN112939592B (zh) 镁钙离子共掺石榴石超快闪烁陶瓷及其制备方法
Singh et al. Effect of cerium doping on optical and scintillation properties of transparent YAG ceramic
JP6037025B2 (ja) シンチレータ材料、放射線検出器及び放射線検査装置
CN101628811A (zh) 透明陶瓷及其制备方法
Chen et al. Fabrication of Ce-doped (Gd2Y) Al5O12/Y3Al5O12 composite-phase scintillation ceramic
Gorokhova et al. Luminescence and scintillation properties of Gd/sub 2/O/sub 2/S: Tb, Ce ceramics
CN110204336B (zh) 一种硫氧化钆粉体和闪晶陶瓷的制备方法
Cao et al. Effect of Gd substitution on structure and spectroscopic properties of (Lu, Gd) 2O3: Eu ceramic scintillator
Wang et al. Fabrication of Gd2O2S: Pr, Ce, F scintillation ceramics by pressureless sintering in nitrogen atmosphere
Liu et al. Cerium-doped lutetium aluminum garnet optically transparent ceramics fabricated by a sol-gel combustion process
ZHU et al. Fine-grained Ce, Y: SrHfO3 scintillation ceramics fabricated by hot isostatic pressing
CN100516169C (zh) 碱金属稀土焦磷酸盐闪烁发光材料及其制备方法和用途
Guoxian et al. Solvothermal fabrication and luminescent properties of Eu2+/Ce3+ doped barium lithium fluoride
Haihang et al. Comparison of Photoluminescence and Scintillation Properties Between Lu₂O₃: Eu Single Crystal and Transparent Ceramic
Starzhinskiy et al. Improving of LSO (Ce) scintillator properties by co-doping
Wu et al. Luminescence and point defects in cerium-doped lutetium scandium orthoborate crystals
CN105800663B (zh) 硫氧化钆闪烁陶瓷的热压反应烧结方法
JP2016160297A (ja) シンチレータ材料、放射線検出器及び放射線検査装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant