CN112939592B - 镁钙离子共掺石榴石超快闪烁陶瓷及其制备方法 - Google Patents

镁钙离子共掺石榴石超快闪烁陶瓷及其制备方法 Download PDF

Info

Publication number
CN112939592B
CN112939592B CN202110187828.2A CN202110187828A CN112939592B CN 112939592 B CN112939592 B CN 112939592B CN 202110187828 A CN202110187828 A CN 202110187828A CN 112939592 B CN112939592 B CN 112939592B
Authority
CN
China
Prior art keywords
ceramic
ultrafast
magnesium
calcium ion
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110187828.2A
Other languages
English (en)
Other versions
CN112939592A (zh
Inventor
姜本学
黄鑫
张龙
何进
姜益光
马婉秋
沈宗云
王魏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Optics and Fine Mechanics of CAS
Original Assignee
Shanghai Institute of Optics and Fine Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Optics and Fine Mechanics of CAS filed Critical Shanghai Institute of Optics and Fine Mechanics of CAS
Priority to CN202110187828.2A priority Critical patent/CN112939592B/zh
Publication of CN112939592A publication Critical patent/CN112939592A/zh
Application granted granted Critical
Publication of CN112939592B publication Critical patent/CN112939592B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • C04B2235/445Fluoride containing anions, e.g. fluosilicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6585Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage above that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

一种镁钙离子共掺石榴石超快闪烁陶瓷及其制备方法。本发明采用固相反应法,利于两步烧结工艺,制备镁钙离子共掺石榴石陶瓷的通式为:CexGd3‑xGa5‑yAlyO12:mMgO:nCaF2,式中x=0.001~0.005,y=2~3,m=0.005~0.015,n=0.005~0.015,且m=n。本发明制备的CexGd3‑ xGa5‑yAlyO12:mMgO:nCaF2陶瓷具有高光产额,超快衰减时间等优势,有效减少双离子共掺导致的缺陷加剧问题,可应用于超快脉冲辐射探测、TOP‑PET等领域,采用固相反应法制备,工艺简单,成本较低,可实现工业化生产。

Description

镁钙离子共掺石榴石超快闪烁陶瓷及其制备方法
技术领域
本发明涉及闪烁陶瓷,特别是一种镁钙离子共掺石榴石超快闪烁陶瓷及其制备方法。
背景技术
闪烁材料是一种能够吸收高能光子(X/γ射线)或粒子(质子、中子等)转换为易于探测的低能的可见或者紫外光的材料。闪烁材料作为探测器的核心功能元件,被广泛应用于高能物理、核物理探测、医学成像诊断(XCT、PET)、地质勘探、天文空间物理学以及安全稽查等领域。基于此,人们从未停止过对闪烁材料的更新升级,以满足更高水平的要求。
石榴石结构的闪烁体具有高光学透明特性及易于稀土元素掺杂的结构优势,是目前应用最为广泛的闪烁材料之一。其中,YAG∶:Ce晶体是早期应用较多的闪烁材料,其光输出高(30000Ph/MeV),衰减时间短(90ns),具有优异的能量分辨率(6%~7%@662keV),对γ射线、α粒子探测能力强(参见徐兰兰,稀土闪烁晶体研究进展,中国科学:技术科学,2016年,第46卷,第7期)。相比YAG:Ce(ρ=4.56g/cm3,Zeff=32),LuAG:Ce(ρ=6.67g/cm3,Zeff=63)具有更高的有效原子序数、更大的密度,逐渐取代YAG:Ce成为石榴石结构无机闪烁晶体研究的重点。但LuAG:Ce材料存在明显的缺点,其发光的慢分量比例较高。这是因为LuAG:Ce结构中存在大量的缺陷,会引起浅电子陷阱,导致光产额降低,衰减时间变长。基于此,Fasoli等人提出利用等价离子掺杂控制Ce3+能级位置从而抑制浅电子陷阱来改善材料的闪烁性能,使用Ga和Gd离子掺杂到LuAG结构中,生长的Gd3(Al1-x Gax)5O12:Ce(简写为GAGG:Ce)石榴石晶体,其光产额提高至LuAG的3倍,在CT应用中有明显的优势,GAGG:Ce晶体由于其大密度和高光输出以及高原子序数,已初步应用于核医学成像及高能物理领域。。二价阳离子共掺进闪烁材料三价阳离子格位,它们可以影响材料电荷补偿机制,或者改变材料内部缺陷浓度,进而影响材料的闪烁性能。Mg2+掺杂的影响机制存在争议,其中最为学者接受的是:由于电荷补偿使部分Ce3+转变为Ce4+,Ce4+中心提供快速辐射退激通道,其捕获导带电子后,形成处于激发态的Ce3+,并立即辐射光子,这对于抑制浅电子陷阱导致的闪烁衰减的慢分量起关键作用。Ca2+掺杂的影响机制则是因为Ca2+半径大而价态低,在GAGG:Ce中占据六配位,导致阳离子空位和空穴陷阱浓度的增加,对Gd3+到Ce3+的能量传递产生淬灭作用,在抑制闪烁发光慢成分的同时降低了光输出。这种通过掺杂二价阳离子来抑制缺陷影响的方法叫“缺陷工程”(参见孟猛,新型闪烁晶体Gd3(Al,Ga)5O12:Ce3+的研究进展,人工晶体学报,2019年,第48卷,第8期)。Mg2+掺杂的优势在于能保持光输出,而Ca2+掺杂的优势在于可以加速衰减时间,但两者共掺时存在一问题,会加剧晶格畸变,限制性能。为得到高光产额-快衰减时间组合的配比,避免加剧晶格畸变,对Mg、Ca掺杂量的调控极为重要。此外,除了单晶材料,闪烁陶瓷也一直是人们研究的热点,相较于单晶的制备困难、生长周期长、难实现均匀掺杂以及成本高昂等劣势,陶瓷的制备工艺简单、生产成本低、可大尺寸制备、实现高浓度均匀掺杂,还可进行大规模工业化生产,具有更为广阔的应用前景。
近年来,随着核探测及相关技术的飞速发展,为实现高灵敏度、快响应电离辐射探测及探测器的小型化,尤其是时空一体化的TOF-PET技术的提出,对闪烁材料的提出了更苛刻的要求,特别是在衰减时间上。如何在保证适中的光输出前提下,实现尽可能快的时间响应特性,是目前闪烁材料领域和探测领域关注的热点问题。
发明内容
为了优化闪烁材料的衰减时间以满足更高要求,实现闪烁材料的工业化生产,本发明提供一种镁钙离子共掺石榴石超快闪烁陶瓷及其制备方法,该陶瓷具有高光学性能、快衰减、高光产额高密度等优势。利用固相反应法合成,工艺简单,成本较低,可实现工业化生产。
本发明的技术解决方案如下:
一种镁钙离子共掺石榴石超快闪烁陶瓷,其特点在于,所述闪烁陶瓷的组成通式为:CexGd3-xGa5-yAlyO12:mMgO:nCaF2,式中x=0.001~0.005,y=2~3,m=0.005~0.01,n=0.005~0.015,且m=n。
上述镁钙离子共掺石榴石超快闪烁陶瓷的制备方法,其特点在于,该制备方法包括以下步骤:
(1)原料的准备:采用高纯度CeO2、Gd2O3、Ga2O3、Al2O3、MgO、CaF2纳米量级粉体,选定x、y、m、n,按照通式CexGd3-xGa5-yAlyO12:mMgO:nCaF2的配比精确称量粉体并混合;
(2)原料的球磨和干燥:将混合料置于球磨罐中,添加球磨助剂无水乙醇,无水乙醇的重量与所述原料的重量比为1:2,通过行星式球磨机球磨12~24h,将所得的混合浆料与球磨罐一起放入50~80℃的恒温干燥烘箱中干燥6~8h,得到干燥配合料过200目筛后得到前驱体;
(3)预烧:将所述前驱体放入马弗炉中,在600~1000℃下预烧3~8h,得到干燥前驱体;
(4)成型:将所述干燥前驱体于5~10MPa下干压处理3min,然后进一步冷等静压,压力为150~250MPa,时间为5min,得到陶瓷素坯;
(5)烧结:对所述素坯采用两步烧结工艺,先在氧气气氛中进行烧结,烧结温度为1600~1750℃,保温时间为5~10h,然后进行热等静压处理,压力为150~300MPa,烧结温度为1600~1750℃,保温2~5h,得到陶瓷样品;
(6)退火:对所述陶瓷样品进行退火处理,将其置于马弗炉中,在1000~1200℃下保温10~20h,得到镁钙离子共掺石榴石超快闪烁陶瓷。
所述的镁钙离子共掺石榴石超快闪烁陶瓷的制备方法,其特征在于,在烧结和退火过程中,升温速率控制在2~10K/min,降温速率控制在10~20K/min。
所述的镁钙离子共掺石榴石超快闪烁陶瓷的制备方法,其特征在于,根据需求对所制备的闪烁陶瓷进行抛光切割,制得厚度一定的规则块体的镁钙离子共掺石榴石超快闪烁陶瓷。
本发明的技术效果如下:
(1)GGAG:Ce,Mg,Ca陶瓷的光输出为27400±1600ph/MeV,衰减时间降低至31ns,在超快脉冲辐射探测和TOP-PET等领域有巨大应用前景;
(2)制备的镁钙离子共掺石榴石超快闪烁陶瓷,平均晶粒尺寸在15μm以下,可见波段透过率达到60~85%;
(3)本发明采用固相反应法制备,工艺简单,成本较低,可实现工业化生产。
附图说明
图1是本发明实施例1~4的XRD图;
图2是本发明实施例1~4的衰减时间图。
具体实施方式
以下结合附图和实施方式进一步说明本发明,应理解,附图及下属实施方式仅用于说明本发明而非限制本发明。
实施例1
原料的准备:采用高纯度CeO2、Gd2O3、Ga2O3、Al2O3、MgO、CaF2纳米量级粉体,选定x=0.009,y=2,m=n=0.005,按照通式Ce0.009Gd2.991Ga3Al2O12:0.005MgO:0.005CaF2精确称量粉体并混合;
原料的球磨和干燥:将混合料置于球磨罐中,添加球磨助剂无水乙醇,无水乙醇的重量与所述原料的重量比为1:2,通过行星式球磨机球磨12h,将所得的混合浆料与球磨罐一起放入60℃的恒温干燥烘箱中干燥6h,得到干燥配合料过200目筛后得到前驱体;
预烧:将所述前驱体放入马弗炉中,在800℃下预烧6h,得到干燥前驱体;
成型:将所述干燥前驱体于5MPa下干压处理3min,然后进一步冷等静压,压力为150MPa,时间为5min,得到陶瓷素坯;
烧结:对所述素坯采用两步烧结工艺,先在氧气气氛中进行烧结,烧结温度为1600℃,保温时间为5h,然后进行热等静压处理,压力为250MPa,烧结温度为1700℃,保温2h,得到陶瓷样品;
退火:对所述陶瓷样品进行退火处理,将其置于马弗炉中,在1200℃下保温10h,得到镁钙离子共掺石榴石超快闪烁陶瓷。
在烧结和退火过程中,升温速率控制在5K/min,降温速率控制在10K/min。
根据需求对所制备的闪烁陶瓷进行抛光切割,制得厚度一定的规则块体的镁钙离子共掺石榴石超快闪烁陶瓷。
实施例2
原料的准备:采用高纯度CeO2、Gd2O3、Ga2O3、Al2O3、MgO、CaF2纳米量级粉体,选定x=0.009,y=3,m=n=0.008,按照通式Ce0.009Gd2.991Ga2Al3O12:0.008MgO:0.008CaF2精确称量粉体并混合;
原料的球磨和干燥:将混合料置于球磨罐中,添加球磨助剂无水乙醇,无水乙醇的重量与所述原料的重量比为1:2,通过行星式球磨机球磨15h,将所得的混合浆料与球磨罐一起放入60℃的恒温干燥烘箱中干燥8h,得到干燥配合料过200目筛后得到前驱体;
预烧:将所述前驱体放入马弗炉中,在800℃下预烧6h,得到干燥前驱体;
成型:将所述干燥前驱体于5MPa下干压处理3min,然后进一步冷等静压,压力为200MPa,时间为5min,得到陶瓷素坯;
烧结:对所述素坯采用两步烧结工艺,先在氧气气氛中进行烧结,烧结温度为1650℃,保温时间为5h,然后进行热等静压处理,压力为250MPa,烧结温度为1750℃,保温3h,得到陶瓷样品;
退火:对所述陶瓷样品进行退火处理,将其置于马弗炉中,在1000℃下保温10h,得到镁钙离子共掺石榴石超快闪烁陶瓷。
在烧结和退火过程中,升温速率控制在5K/min,降温速率控制在10K/min。
根据需求对所制备的闪烁陶瓷进行抛光切割,制得厚度一定的规则块体的镁钙离子共掺石榴石超快闪烁陶瓷。
实施例3
原料的准备:采用高纯度CeO2、Gd2O3、Ga2O3、Al2O3、MgO、CaF2纳米量级粉体,选定x=0.009,y=3,m=n=0.01,按照通式Ce0.009Gd2.991Ga2Al3O12:0.001MgO:0.001CaF2精确称量粉体并混合;
原料的球磨和干燥:将混合料置于球磨罐中,添加球磨助剂无水乙醇,无水乙醇的重量与所述原料的重量比为1:2,通过行星式球磨机球磨24h,将所得的混合浆料与球磨罐一起放入80℃的恒温干燥烘箱中干燥6h,得到干燥配合料过200目筛后得到前驱体;
预烧:将所述前驱体放入马弗炉中,在1000℃下预烧6h,得到干燥前驱体;
成型:将所述干燥前驱体于8MPa下干压处理3min,然后进一步冷等静压,压力为250MPa,时间为5min,得到陶瓷素坯;
烧结:对所述素坯采用两步烧结工艺,先在氧气气氛中进行烧结,烧结温度为1700℃,保温时间为10h,然后进行热等静压处理,压力为250MPa,烧结温度为1750℃,保温2h,得到陶瓷样品;
退火:对所述陶瓷样品进行退火处理,将其置于马弗炉中,在1200℃下保温10h,得到镁钙离子共掺石榴石超快闪烁陶瓷。
在烧结和退火过程中,升温速率控制在3K/min,降温速率控制在8K/min。
根据需求对所制备的闪烁陶瓷进行抛光切割,制得厚度一定的规则块体的镁钙离子共掺石榴石超快闪烁陶瓷。
实施例4
原料的准备:采用高纯度CeO2、Gd2O3、Ga2O3、Al2O3、MgO、CaF2纳米量级粉体,选定x=0.009,y=2,m=n=0.015,按照通式Ce0.009Gd2.991Ga3Al2O12:0.015MgO:0.015CaF2精确称量粉体并混合;
原料的球磨和干燥:将混合料置于球磨罐中,添加球磨助剂无水乙醇,无水乙醇的重量与所述原料的重量比为1:2,通过行星式球磨机球磨24h,将所得的混合浆料与球磨罐一起放入80℃的恒温干燥烘箱中干燥8h,得到干燥配合料过200目筛后得到前驱体;
预烧:将所述前驱体放入马弗炉中,在1000℃下预烧7h,得到干燥前驱体;
成型:将所述干燥前驱体于10MPa下干压处理3min,然后进一步冷等静压,压力为200MPa,时间为5min,得到陶瓷素坯;
烧结:对所述素坯采用两步烧结工艺,先在氧气气氛中进行烧结,烧结温度为1600℃,保温时间为10h,然后进行热等静压处理,压力为300MPa,烧结温度为1700℃,保温3h,得到陶瓷样品;
退火:对所述陶瓷样品进行退火处理,将其置于马弗炉中,在1000℃下保温20h,得到镁钙离子共掺石榴石超快闪烁陶瓷。
在烧结和退火过程中,升温速率控制在5K/min,降温速率控制在10K/min。
根据需求对所制备的闪烁陶瓷进行抛光切割,制得厚度一定的规则块体的镁钙离子共掺石榴石超快闪烁陶瓷。
其余各实施例(7~10为对比样)参数及效果见下表:
Figure GDA0003833355420000051
Figure GDA0003833355420000061
图1是本发明的镁钙离子共掺石榴石超快闪烁陶瓷的XRD衍射示意图,图中可见实施例1~4的特征峰均与GGAG:Ce标准图谱一致。图2是本发明的实施例1~4的衰减时间图,最快可达到31ns。

Claims (4)

1.一种镁钙离子共掺石榴石超快闪烁陶瓷,其特征在于,所述超快闪烁陶瓷的组成通式为:CexGd3-xGa5-yAlyO12:mMgO:nCaF2,式中x=0.001~0.005,y=2~3,m=0.005~0.015,n=0.005~0.015,且m=n。
2.权利要求1所述的镁钙离子共掺石榴石超快闪烁陶瓷的制备方法,其特征在于,该制备方法包括以下步骤:
(1)原料的准备:采用高纯度CeO2、Gd2O3、Ga2O3、Al2O3、MgO、CaF2纳米量级粉体,选定x、y、m、n,按照通式CexGd3-xGa5-yAlyO12:mMgO:nCaF2的配比精确称量粉体并混合;
(2)原料的球磨和干燥:将混合料置于球磨罐中,添加球磨助剂无水乙醇,无水乙醇的重量与所述原料的重量比为1:2,通过行星式球磨机球磨12~24h,将所得的混合浆料与球磨罐一起放入50~80℃的恒温干燥烘箱中干燥6~8h,得到干燥配合料过200目筛后得到前驱体;
(3)预烧:将所述前驱体放入马弗炉中,在600~1000℃下预烧3~8h,得到干燥前驱体;
(4)成型:将所述干燥前驱体于5~10MPa下干压处理3min,然后进一步冷等静压,压力为150~250MPa,时间为5min,得到陶瓷素坯;
(5)烧结:对所述素坯采用两步烧结工艺,先在氧气气氛中进行烧结,烧结温度为1600~1750℃,保温时间为5~10h,然后进行热等静压处理,压力为150~300MPa,烧结温度为1600~1750℃,保温2~5h,得到陶瓷样品;
(6)退火:对所述陶瓷样品进行退火处理,将其置于马弗炉中,在1000~1200℃下保温10~20h,得到镁钙离子共掺石榴石超快闪烁陶瓷。
3.权利要求2所述的镁钙离子共掺石榴石超快闪烁陶瓷的制备方法,其特征在于,在烧结和退火过程中,升温速率控制在2~10K/min,降温速率控制在10~20K/min。
4.权利要求2所述的镁钙离子共掺石榴石超快闪烁陶瓷的制备方法,其特征在于,根据需求对所制备的闪烁陶瓷进行抛光切割,制得厚度一定的规则块体的镁钙离子共掺石榴石超快闪烁陶瓷。
CN202110187828.2A 2021-02-07 2021-02-07 镁钙离子共掺石榴石超快闪烁陶瓷及其制备方法 Active CN112939592B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110187828.2A CN112939592B (zh) 2021-02-07 2021-02-07 镁钙离子共掺石榴石超快闪烁陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110187828.2A CN112939592B (zh) 2021-02-07 2021-02-07 镁钙离子共掺石榴石超快闪烁陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN112939592A CN112939592A (zh) 2021-06-11
CN112939592B true CN112939592B (zh) 2022-11-08

Family

ID=76244083

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110187828.2A Active CN112939592B (zh) 2021-02-07 2021-02-07 镁钙离子共掺石榴石超快闪烁陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN112939592B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115650725B (zh) * 2022-10-12 2023-11-03 中国科学院上海光学精密机械研究所 一种具有多波段荧光发射的荧光陶瓷材料及其制备方法
CN115894012B (zh) * 2022-10-21 2023-10-03 宁波大学 一种无铅铁电陶瓷材料及其制备方法
CN115894028B (zh) * 2022-12-30 2023-07-14 江苏师范大学 一种用于交变电场指示的发光陶瓷及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6590699B2 (ja) * 2013-01-23 2019-10-16 ユニバーシティ オブ テネシー リサーチ ファウンデーション ガーネット型シンチレータのシンチレーション及び光学特性を改変するための共ドーピング方法
US9650569B1 (en) * 2015-11-25 2017-05-16 Siemens Medical Solutions Usa, Inc. Method of manufacturing garnet interfaces and articles containing the garnets obtained therefrom
CN106673639B (zh) * 2017-01-03 2020-01-14 中国科学院上海光学精密机械研究所 共掺杂钇铝石榴石闪烁透明陶瓷及其制备方法
CN108863340B (zh) * 2017-05-16 2020-10-23 中国科学院上海硅酸盐研究所 一种复合结构透明闪烁陶瓷及其制备方法
CN108441960A (zh) * 2018-04-18 2018-08-24 苏州四海常晶光电材料有限公司 二价金属阳离子与铈共掺镥铝石榴石晶体制备方法
CN108893779A (zh) * 2018-07-16 2018-11-27 苏州四海常晶光电材料有限公司 一种钙镁离子与铈共掺钇铝石榴石闪烁晶体及其制备方法
CN112281215B (zh) * 2020-09-30 2021-06-15 中国电子科技集团公司第二十六研究所 Ce掺杂钆铝镓石榴石结构闪烁晶体提高发光均匀性、降低余晖的方法及晶体材料和探测器

Also Published As

Publication number Publication date
CN112939592A (zh) 2021-06-11

Similar Documents

Publication Publication Date Title
CN112939592B (zh) 镁钙离子共掺石榴石超快闪烁陶瓷及其制备方法
US11584885B2 (en) Codoping method for modifying the scintillation and optical properties of garnet-type scintillators
Yanagida et al. Scintillation properties of transparent ceramic Pr: LuAG for different Pr concentration
CN107935581B (zh) 两相均匀分布的复合石榴石闪烁陶瓷及其制备方法
CA3059126C (en) Garnet scintillator co-doped with monovalent ion
CN112358296A (zh) 一种硫氧化钆闪烁陶瓷制备方法
Chen et al. Highly transparent ZrO2-doped (Ce, Gd) 3Al3Ga2O12 ceramics prepared via oxygen sintering
Kopylov et al. Fabrication and characterization of Eu3+-doped Lu2O3 scintillation ceramics
CN106673639B (zh) 共掺杂钇铝石榴石闪烁透明陶瓷及其制备方法
Shen et al. The radiation hardness of Pr: LuAG scintillating ceramics
Chen et al. Fabrication of Ce-doped (Gd2Y) Al5O12/Y3Al5O12 composite-phase scintillation ceramic
CN101560102B (zh) C掺杂α-Al2O3透明陶瓷热释光和光释光材料的制备方法
Chen et al. Fabrication and optical properties of cerium doped Lu3Ga3Al2O12 scintillation ceramics
Retivov et al. Gd3+ content optimization for mastering high light yield and fast GdxAl2Ga3O12: Ce3+ scintillation ceramics
Shi et al. Dense Ce3+ doped Lu3A15O12 ceramic scintillators with low sintering adds: Doping content effect, luminescence characterization and proton irradiation hardness
Wang et al. Luminescence properties of Eu3+-doped Lanthanum gadolinium hafnates transparent ceramics
Zhu et al. Influence of calcium doping concentration on the performance of Ce, Ca: LuAG scintillation ceramics
Xie et al. Eu: Lu2O3 transparent ceramics fabricated by vacuum sintering of co-precipitated nanopowders
Hu et al. The influences of stoichiometry on the sintering behavior, optical and scintillation properties of Pr: LuAG ceramics
CN110204336B (zh) 一种硫氧化钆粉体和闪晶陶瓷的制备方法
Cao et al. Effect of Gd substitution on structure and spectroscopic properties of (Lu, Gd) 2O3: Eu ceramic scintillator
Wang et al. Fabrication of Gd2O2S: Pr, Ce, F scintillation ceramics by pressureless sintering in nitrogen atmosphere
Chen et al. Fabrication of Ce:(Gd2Y)(Ga3Al2) O12 scintillator ceramic by oxygen-atmosphere sintering and hot isostatic pressing
Tian et al. Crystal growth and spectral properties of (Yb 0.15 Lu 0.85 x Y 0.85-0.85 x) 3 Al 5 O 12 single crystals
CN113213909B (zh) 一种抗紫外线辐射的yag基透明陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant