CN106672924A - 用庚嗪环饱和溶液制备石墨相氮化碳复合纳米薄膜的方法 - Google Patents

用庚嗪环饱和溶液制备石墨相氮化碳复合纳米薄膜的方法 Download PDF

Info

Publication number
CN106672924A
CN106672924A CN201710055552.6A CN201710055552A CN106672924A CN 106672924 A CN106672924 A CN 106672924A CN 201710055552 A CN201710055552 A CN 201710055552A CN 106672924 A CN106672924 A CN 106672924A
Authority
CN
China
Prior art keywords
film
heptan
nano
dimensional
piperazine ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710055552.6A
Other languages
English (en)
Other versions
CN106672924B (zh
Inventor
李立本
郝景刚
张少锋
任峰
周锋子
李小红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University of Science and Technology
Original Assignee
Henan University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University of Science and Technology filed Critical Henan University of Science and Technology
Priority to CN201710055552.6A priority Critical patent/CN106672924B/zh
Publication of CN106672924A publication Critical patent/CN106672924A/zh
Application granted granted Critical
Publication of CN106672924B publication Critical patent/CN106672924B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/0605Binary compounds of nitrogen with carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Hybrid Cells (AREA)

Abstract

本发明涉及一种用庚嗪环饱和溶液制备石墨相氮化碳复合纳米薄膜的方法,利用庚嗪环饱和溶液将g‑C3N4加载到TiO2纳米棒/纳米管上,制备一维g‑C3N4 /TiO2纳米阵列,可直接将g‑C3N4加载到纳米棒/纳米管上,得到一维g‑C3N4纳米复合阵列,其光催化效率高;由于庚嗪环溶液液体,可以很均匀地吸附在光电纳米薄膜材料上,一维g‑C3N4纳米复合阵列也是均匀的,加载均匀性好,因此这种方法适合大块样品的制备;用廉价原料三聚氰胺生成的庚嗪环溶解于水中,再吸附于光电材料纳米棒上,原料几乎没有浪费,原料利用率高,适合大规模生产。

Description

用庚嗪环饱和溶液制备石墨相氮化碳复合纳米薄膜的方法
技术领域
本发明涉及光电纳米薄膜领域,具体的说是一种用庚嗪环饱和溶液制备石墨相氮化碳复合纳米薄膜的方法。
背景技术
氢气是一种高能量的清洁能源,燃烧后生成水,整个体系清洁可再生;而太阳能也是一种“取之不尽,用之不竭”的清洁可再生能源。利用太阳能,尤其是可见光分解水制氢具有重大的工业意义。目前制备石墨相氮化碳(g-C3N4)复合光电纳米薄膜的方法主有以下几种:将g-C3N4加载到其他光电纳米颗粒上,这种方法获得的复合纳米颗粒尺寸较大,比表面积很小,光催化效率很低;将g- C3N4加载其他光电纳米薄膜上的方法主要是化学气相沉积法,这种方法有很多缺点,比如:操作复杂、污染环境、原料利用率极低等,不适合制作大面积的一维g-C3N4复合纳米阵列,也不适合大批量生产。
发明内容
针对上述现有的加载方法存在的操作复杂、污染环境、原料利用率极低等问题,本发明提供一种用庚嗪环饱和溶液制备石墨相氮化碳复合纳米薄膜的方法。
为解决上述技术问题,本发明采用的技术方案为:
一种用庚嗪环饱和溶液制备石墨相氮化碳复合纳米薄膜的方法,包括以下步骤:
步骤一:用水热法制备一维光电纳米薄膜材料;
步骤二:以三聚氰胺为原料,用水热法制备庚嗪环白色粉末,并配制成饱和溶液,具体步骤如下:
1)将三聚氰胺溶于无水乙醇中,加入0.2mol/L稀硝酸,搅拌反应得白色沉淀;
2)将步骤1)所得反应液过滤,取滤饼于60℃条件下干燥12h,得到庚嗪环白色粉末;
3)将步骤2)所得白色粉末放入容器中,加水搅拌直至粉末完全溶解,得庚嗪环饱和溶液;
步骤三:制备一维g-C3N4光电纳米薄膜,具体步骤如下:
a)将步骤一所得一维光电纳米薄膜浸入步骤二所得的庚嗪环饱和溶液中,静置20min,取出后在于80℃条件下干燥30min;
b)将步骤a)干燥后的样品放入马弗炉中于450℃条件下保温2h,即可得到一维g-C3N4光电纳米薄膜。
所述的光电纳米薄膜材料为TiO2、SrTiO3、WO3、BiVO4、Ag2O、Bi2WO6、CdS、Co3O4、Fe2O3、Ag3VO4或Ag3PO4
本发明的有益效果:
本发明提供的用庚嗪环饱和溶液制备石墨相氮化碳复合纳米薄膜的方法,可直接将g-C3N4加载到纳米棒/纳米管上,得到一维g-C3N4纳米复合阵列,其光催化效率高;由于庚嗪环溶液液体,可以很均匀地吸附在光电纳米薄膜材料上,一维g-C3N4纳米复合阵列也是均匀的,加载均匀性好,因此这种方法适合大块样品的制备;用廉价原料三聚氰胺生成的庚嗪环溶解于水中,再吸附于光电材料纳米棒上,原料几乎没有浪费,原料利用率高,适合大规模生产;由于整个过程中没有气体的挥发,且原料全部转化为g-C3N4并加载到光电材料纳米棒上,过程中没有污染物的排放,对环境友好;以廉价的三聚氰胺为原料生成产物g-C3N4,而g-C3N4只需要微小的量即可达到很好的效果,因此本方法的成本极低。
附图说明
图1 为TiO2纳米棒阵列平面SEM图;
图2为TiO2纳米棒阵列截面SEM图;
图3为g-C3N4/TiO2纳米复合棒TEM图;
图4为TiO2纳米棒阵列与g-C3N4/TiO2纳米复合阵列在可见光下的光电流检测图。
具体实施方式
下面结合具体实施方式对本发明做进一步的阐述。
一种用庚嗪环饱和溶液制备石墨相氮化碳复合纳米薄膜的方法,包括以下步骤:
步骤一:用水热法制备一维光电纳米薄膜材料;
步骤二:以三聚氰胺为原料,用水热法制备庚嗪环白色粉末,并配制成饱和溶液,具体步骤如下:
1)将三聚氰胺溶于无水乙醇中,加入0.2mol/L稀硝酸,搅拌反应得白色沉淀;
2)将步骤1)所得反应液过滤,取滤饼于60℃条件下干燥12h,得到庚嗪环白色粉末;
3)将步骤2)所得白色粉末放入容器中,加水搅拌直至粉末完全溶解,得庚嗪环饱和溶液;
步骤三:制备一维g-C3N4光电纳米薄膜,具体步骤如下:
a)将步骤一所得一维光电纳米薄膜浸入步骤二所得的庚嗪环饱和溶液中,静置20min,取出后在于80℃条件下干燥30min;
b)将步骤a)干燥后的样品放入马弗炉中于450℃条件下保温2h,即可得到一维g-C3N4光电纳米薄膜。
其中,化学反应过程如下所示:
实施例1
利用饱和庚嗪环溶液法将g-C3N4加载到TiO2纳米线上,制备一维TiO2 / g-C3N4纳米阵列,包括以下几个步骤:
步骤一:用水热法制备一维TiO2纳米阵列,具体过程如下:
1)、裁两块1.2cm*1.8cm的FTO导电玻璃清洗后备用;
2)、将30mL去离子水+30mL盐酸(37.5wt%)+1mL钛酸四丁酯加入100mL的反应釜中,磁力搅拌10min;
3)、将两块FTO导电玻璃与反应釜衬里45°角导电面向下斜靠在衬里内壁上,在保温炉中150℃下保温12h,取出、清洗、烘干后即可得到TiO2纳米线阵列;
步骤二:以三聚氰胺为原料用水热法制备庚嗪环白色粉末,并配成饱和溶液,具体步骤如下:
1)、将1g三聚氰胺溶于20mL无水乙醇中,加入60mL稀硝酸(0.2mol/L),磁力搅拌10min;
2)、将上述溶液过滤后,取滤饼在保温炉中60℃条件下干燥12h,得到庚嗪环白色粉末;
3)、将庚嗪环粉末放入烧杯中,在超声震荡的条件下逐步加入去离子水直至粉末完全溶解,即可得到庚嗪环饱和溶液;
步骤三:制备一维TiO2 / g-C3N4纳米阵列,具体步骤如下:
1)、将TiO2纳米线阵列浸入庚嗪环饱和溶液20min,取出后在保温炉中80℃烘干30min;
2)、将烘干后的样品放入马弗炉中450℃下保温2h,即可得到一维TiO2 / g-C3N4纳米复合阵列。
本方法可以简单地、均匀地、稳定地将g-C3N4与TiO2纳米阵列复合,这种方法适合制作大面积的一维g-C3N4/TiO2纳米复合阵列,也适合于大批量生产。此外,本方法也可用于将g-C3N4与SrTiO3,WO3,BiVO4,Ag2O,Bi2WO6,CdS,Co3O4,Fe2O3,Ag3VO4,Ag3PO4等纳米阵列的复合,并明显增强以上所述纳米光电材料对可见光的响应。

Claims (2)

1.一种用庚嗪环饱和溶液制备石墨相氮化碳复合纳米薄膜的方法,其特征在于,包括以下步骤:
步骤一:用水热法制备一维光电纳米薄膜材料;
步骤二:以三聚氰胺为原料,用水热法制备庚嗪环白色粉末,并配制成饱和溶液,具体步骤如下:
1)将三聚氰胺溶于无水乙醇中,加入0.2mol/L稀硝酸,搅拌反应得白色沉淀;
2)将步骤1)所得反应液过滤,取滤饼于60℃条件下干燥12h,得到庚嗪环白色粉末;
3)将步骤2)所得白色粉末放入容器中,加水搅拌直至粉末完全溶解,得庚嗪环饱和溶液;
步骤三:制备一维g-C3N4光电纳米薄膜,具体步骤如下:
a)将步骤一所得一维光电纳米薄膜浸入步骤二所得的庚嗪环饱和溶液中,静置20min,取出后在于80℃条件下干燥30min;
b)将步骤a)干燥后的样品放入马弗炉中于450℃条件下保温2h,即可得到一维g-C3N4光电纳米薄膜。
2.如权利要求1所述的用庚嗪环饱和溶液制备石墨相氮化碳复合纳米薄膜的方法,其特征在于:所述的光电纳米薄膜材料为TiO2、SrTiO3、WO3、BiVO4、Ag2O、Bi2WO6、CdS、Co3O4、Fe2O3、Ag3VO4或Ag3PO4
CN201710055552.6A 2017-01-25 2017-01-25 用庚嗪环饱和溶液制备石墨相氮化碳复合纳米薄膜的方法 Active CN106672924B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710055552.6A CN106672924B (zh) 2017-01-25 2017-01-25 用庚嗪环饱和溶液制备石墨相氮化碳复合纳米薄膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710055552.6A CN106672924B (zh) 2017-01-25 2017-01-25 用庚嗪环饱和溶液制备石墨相氮化碳复合纳米薄膜的方法

Publications (2)

Publication Number Publication Date
CN106672924A true CN106672924A (zh) 2017-05-17
CN106672924B CN106672924B (zh) 2019-02-22

Family

ID=58859984

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710055552.6A Active CN106672924B (zh) 2017-01-25 2017-01-25 用庚嗪环饱和溶液制备石墨相氮化碳复合纳米薄膜的方法

Country Status (1)

Country Link
CN (1) CN106672924B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108187714A (zh) * 2017-12-14 2018-06-22 江苏大学 一种可分离柔性催化膜的制备方法
CN114100658A (zh) * 2021-11-23 2022-03-01 湖南农业大学 氮化碳/三氧化钨/硫掺杂氯氧化锑双z型复合光催化剂及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102125863A (zh) * 2011-01-27 2011-07-20 湘潭大学 一种石墨相氮化碳/金红石单晶二氧化钛纳米线阵列的制备方法
CN102616757A (zh) * 2012-01-11 2012-08-01 南京大学昆山创新研究院 一种自组装氮化碳纳米管的制备方法以及由该方法制得的纳米管
CN104986742A (zh) * 2015-06-29 2015-10-21 济南大学 一种类珠链状石墨化氮化碳纳米材料及其制备方法
CN105271142A (zh) * 2015-11-19 2016-01-27 南京工程学院 一种不规则棒状g-C3N4材料及其制备方法和应用
CN105316077A (zh) * 2015-11-16 2016-02-10 青岛领军节能与新材料研究院 一种石墨烯/氮化碳量子点复合纳米材料及润滑油摩擦改善剂
CN105642329A (zh) * 2016-01-01 2016-06-08 三峡大学 一种负载型石墨相碳化氮复合材料,制备方法及其应用
CN105810442A (zh) * 2016-03-16 2016-07-27 长春工业大学 一种g-C3N4增强型太阳能电池的制造方法
CN106268900A (zh) * 2016-07-21 2017-01-04 吉林师范大学 一种g‑C3N4量子点敏化AgVO3纳米线的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102125863A (zh) * 2011-01-27 2011-07-20 湘潭大学 一种石墨相氮化碳/金红石单晶二氧化钛纳米线阵列的制备方法
CN102616757A (zh) * 2012-01-11 2012-08-01 南京大学昆山创新研究院 一种自组装氮化碳纳米管的制备方法以及由该方法制得的纳米管
CN104986742A (zh) * 2015-06-29 2015-10-21 济南大学 一种类珠链状石墨化氮化碳纳米材料及其制备方法
CN105316077A (zh) * 2015-11-16 2016-02-10 青岛领军节能与新材料研究院 一种石墨烯/氮化碳量子点复合纳米材料及润滑油摩擦改善剂
CN105271142A (zh) * 2015-11-19 2016-01-27 南京工程学院 一种不规则棒状g-C3N4材料及其制备方法和应用
CN105642329A (zh) * 2016-01-01 2016-06-08 三峡大学 一种负载型石墨相碳化氮复合材料,制备方法及其应用
CN105810442A (zh) * 2016-03-16 2016-07-27 长春工业大学 一种g-C3N4增强型太阳能电池的制造方法
CN106268900A (zh) * 2016-07-21 2017-01-04 吉林师范大学 一种g‑C3N4量子点敏化AgVO3纳米线的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HONGJIAN YAN ET AL.: "Synthesis of graphitic carbon nitride by directly heating sulfuric acid treated melamine for enhanced photocatalytic H2 production from water under visible light", 《INTERNATIONAL JOURNAL OF HYDROGEN ENERGY》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108187714A (zh) * 2017-12-14 2018-06-22 江苏大学 一种可分离柔性催化膜的制备方法
CN114100658A (zh) * 2021-11-23 2022-03-01 湖南农业大学 氮化碳/三氧化钨/硫掺杂氯氧化锑双z型复合光催化剂及其制备方法和应用
CN114100658B (zh) * 2021-11-23 2023-09-12 湖南农业大学 氮化碳/三氧化钨/硫掺杂氯氧化锑双z型复合光催化剂及其制备方法和应用

Also Published As

Publication number Publication date
CN106672924B (zh) 2019-02-22

Similar Documents

Publication Publication Date Title
Zhao et al. Reactable polyelectrolyte-assisted synthesis of BiOCl with enhanced photocatalytic activity
Chen et al. Review on the recent progress of carbon counter electrodes for dye-sensitized solar cells
Sun et al. Fabrication of novel g-C3N4 nanocrystals decorated Ag3PO4 hybrids: enhanced charge separation and excellent visible-light driven photocatalytic activity
CN103785434B (zh) 一种g-C3N4纳米片/CdS复合可见光催化剂
Cai et al. An acid-free medium growth of rutile TiO 2 nanorods arrays and their application in perovskite solar cells
CN106944116A (zh) 氮化碳/二氧化钛纳米片阵列异质结光催化剂及制备方法
Yu et al. Hierarchical hybrid nanostructures of Sn 3 O 4 on N doped TiO 2 nanotubes with enhanced photocatalytic performance
CN103990486B (zh) 一种硫化铟/氮化碳复合纳米材料的制备方法
CN103521252B (zh) 氮掺杂石墨烯复合半导体纳米粒子的光催化剂及制备方法
CN104383910B (zh) 一种颗粒大小可控的钒酸铋/石墨烯复合光催化剂的制法
CN103285861B (zh) 一种具有可见光活性的Ag3VO4/TiO2复合纳米线其制备方法及应用
CN105709793B (zh) 硫化镉纳米粒子修饰的五氧化二铌纳米棒/氮掺杂石墨烯复合光催化剂、制备方法与应用
Cao et al. A novel Bi12TiO20/g-C3N4 hybrid catalyst with a bionic granum configuration for enhanced photocatalytic degradation of organic pollutants
Zhao et al. Efficient visible light photocatalytic activity of p–n junction CuO/TiO 2 loaded on natural zeolite
CN109126856B (zh) 一种具有紧密连接的可见光催化剂的制备方法
CN106000431A (zh) 片状CdS/BiOCl复合纳米材料及其制备方法
Yang et al. Facile synthesis of nitrogen-defective gC 3 N 4 for superior photocatalytic degradation of rhodamine B
Wang et al. In situ decomposition-thermal polymerization method for the synthesis of Au nanoparticle–decorated gC 3 N 4 nanosheets with enhanced sunlight-driven photocatalytic activity
CN103223338A (zh) 一种二氧化钛微球阵列负载铂可见光光催化剂及制备方法
Zhu et al. Coating BiOCl@ g-C3N4 nanocomposite with a metal organic framework: enhanced visible light photocatalytic activities
CN104801325A (zh) 光催化剂复合结构体及其制备方法
Zheng et al. A visible-light active pn heterojunction ZnO/Co3O4 composites supported on Ni foam as photoanode for enhanced photoelectrocatalytic removal of methylene blue
CN108654651B (zh) 一种二氧化钛/二氟氧钛复合气相光催化剂的制备方法
Cao et al. Construction of 3DOM Carbon Nitrides with Quasi‐Honeycomb Structures for Efficient Photocatalytic H2 Production
CN111330602A (zh) 一种碳布负载BiOCl/BiVO4可回收柔性复合光催化材料、制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170517

Assignee: LuoYang HongTai Semiconductor Co.,Ltd.

Assignor: Henan University of Science and Technology

Contract record no.: X2019980000345

Denomination of invention: Method for preparing graphite phase carbon nitride composite nano-film by using heptazine saturated solution

Granted publication date: 20190222

License type: Exclusive License

Record date: 20191031

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170517

Assignee: Henan Yefeng Electronics Co.,Ltd.

Assignor: HENAN University OF SCIENCE AND TECHNOLOGY

Contract record no.: X2023980051536

Denomination of invention: Method for preparing graphite phase carbon nitride composite nanofilms using a saturated solution of heptazidin ring

Granted publication date: 20190222

License type: Common License

Record date: 20231215